
Sparkflows Documentation
Release 0.0.1

Sparkflows

Jan 27, 2021

Contents

1 Architecture & Deployment 3
1.1 Architecture & Deployment . 3

2 Installation 7
2.1 Installation . 7

3 Configuration 35
3.1 Configuration . 35

4 Authentication 75
4.1 Authentication . 75

5 Security 89
5.1 Security . 89

6 Operating Fire Insights 97
6.1 Operating Guide . 97

7 Quick Start Guide 107
7.1 Quickstart Guide . 107

8 User Guide 117
8.1 User Guide . 117

9 Web App User Guide 147
9.1 Analytical Apps User Guide . 147

10 Data Science 159
10.1 Machine Learning User Guide . 159

11 Time Series 183
11.1 Time Series Analysis . 183

12 Tutorials 193
12.1 Tutorials . 193

13 Troubleshooting 393
13.1 Troubleshooting . 393

i

14 Frequently Asked Questions 401
14.1 FAQ . 401

15 Administration 409
15.1 Administration Guide . 409

16 Databricks Integration 411
16.1 Databricks Guide . 411

17 AWS Integration 435
17.1 AWS Guide . 435

18 AZURE Integration 469
18.1 AZURE Guide . 469

19 Load Balancer Integration 479
19.1 Load Balancer . 479

20 Superset 485
20.1 Superset . 485

21 Python 491
21.1 Python Integration . 491

22 Performance 501
22.1 Performance Tuning . 501

23 Developer Guide 503
23.1 Developer Guide . 503

24 Processors 515
24.1 Processors . 515

25 Release Notes 707
25.1 Release Notes . 707

26 REST API Authentication 719
26.1 REST API Authentication . 719

27 REST API’s using Python 727
27.1 REST API Examples using Python . 727

28 REST API’s using Java 733
28.1 REST API Examples using Java . 733

29 REST API’s using curl 735
29.1 REST API Examples using curl . 735

30 Third Party Acknowledgements 773
30.1 Third Party Acknowledgements . 773

31 Indices and tables 779

ii

Sparkflows Documentation, Release 0.0.1

Fire Insights makes it incredibly fast and easy to do Self-Serve Data Preparation and Advanced Analytics.

With the power of Fire Insights at your hands, seamlessly find value from your data and scale to Petabytes of data.

Install on the cloud, on-premise or even on your laptop. Fire Insights seamlessly integrates with the most complex of
Enterprise Environments.

Contents 1

Sparkflows Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Architecture & Deployment

1.1 Architecture & Deployment

Sparkflows can be installed in one of two ways:

• On a standalone machine. In this case all the processing would happen within the single process.

– This can be used to run Sparkflows on your laptop/desktop.

• On the Edge node of a Hadoop/Spark Cluster.

– In this case, the jobs for processing would be submitted to the Hadoop/Spark Cluster.

1.1.1 Fire Architecture

Fire consists of three core components:

• Web Browser for defining end-to-end workflows for building data products and applications

– Users interact with the web based drag and drop user interface for creating Datasets and Workflows

– Workflows leverage the exhaustive set of functional and operational nodes such as Data Profiling, Data
Cleaning, ETL, NLP, OCR, Machine Learning etc. displayed in the user interface.

• Web Server running on an Edge node in a Apache Spark Cluster

– For running the workflows, they are submitted to the web server. The web server submits the workflow
to the Apache Spark cluster as a spark job using spark-submit. The results of the workflow execution are
streamed back and displayed in the Browser.

– Web Server provides a host of other features likes interactive execution, schema inference and propagation,
user permissions and roles, LDP integration etc.

• Apache Spark cluster on which the workflows are executed as Spark jobs

– Workflows are saved in a JSON string.

– Workflows can also be submitted on the spark cluster through spark-submit via a command line interface

3

Sparkflows Documentation, Release 0.0.1

1.1.2 Fire Deployment Options

Fire Insights can easily be deployed:

• On an Apache Hadoop/Apache Spark Cluster or

• On a standalone machine

Deployment on an Apache Hadoop/Apache Spark Cluster

The clusters could be based on the Apache Hadoop distribution from Cloudera, Hortonworks, MapR or any other
Hadoop Cluster distributors.

The cluster can be on-premise or on the cloud.

Deployment on a Standalone Machine

In this mode, Fire is installed on a mac/windows/linux machine. All the executions happen on that machine, in the
web server.

This mode can be used for:

• Designing Workflows to be finally deployed on a larger Apache Spark Cluster

• For analyzing smaller sets of data

4 Chapter 1. Architecture & Deployment

Sparkflows Documentation, Release 0.0.1

1.1. Architecture & Deployment 5

Sparkflows Documentation, Release 0.0.1

6 Chapter 1. Architecture & Deployment

CHAPTER 2

Installation

2.1 Installation

2.1.1 Installer for laptop/desktop

You can download and use the Installer for installing/upgrading Fire Insights on your laptop or desktop.

This is not recommended to use on the server, where you need better control over the Installation process.

Prerequisites

• JDK 1.8

Java 8 can be downloaded and installed from here : https://www.oracle.com/java/technologies/javase-jdk8-downloads.
html

You may have to set JAVA_HOME after the installation.

Download

Download the installer from : https://www.sparkflows.io/download

Execute

Execute the installer with :

java -jar sparkflows-installer-1.0.jar

Default port for sparkflows is : 8080

You can also change the port number while installing or starting the server.

When you finish

7

https://www.oracle.com/java/technologies/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase-jdk8-downloads.html
https://www.sparkflows.io/download

Sparkflows Documentation, Release 0.0.1

• Browse to http://<system-ip>:port

• Login with below credentials :

• Username : admin

• Password : admin

2.1.2 Linux/Mac OS Installation Prerequisites

Below are the Prerequisites for installing Fire Insights on a mac or linux machine:

- JDK 1.8+ installed.
- java and jar have to be in the PATH
- 8 GB+ of RAM.
- Python 3.6+ (when running Python and PySpark, otherwise not needed)

If Fire would be connected to an Apache Spark Cluster:

- Spark 2.X is needed on the cluster
- Fire has to be installed on an Edge node of the Spark Cluster

If using Python and PySpark (not needed for the core features of Fire Insights)

- Python 3.X can be set up with the Python virtual environment and activated

Downloading and Installing Java 8

Java 8 can be downloaded and installed from here : https://www.oracle.com/java/technologies/javase/
javase8-archive-downloads.html

You may have to set JAVA_HOME after the installation.

There are various ways for Installing Java 8 on Linux. Some are listed below.

Using Linux RPM Package

• Download the Linux x64 RPM Package

• yum localinstall jdk-8u202-linux-x64.rpm (this has to be run as the root user)

Update .bash_profile to add the below:

export JAVA_HOME=/usr/java/jdk1.8.0_202-amd64/
export PATH=$PATH:$JAVA_HOME/bin

Download OpenJDK

• https://openjdk.java.net/install/

• Install OpenJDK on Ubuntu

https://docs.datastax.com/en/jdk-install/doc/jdk-install/installOpenJdkDeb.html

8 Chapter 2. Installation

http:/
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html
https://openjdk.java.net/install/
https://docs.datastax.com/en/jdk-install/doc/jdk-install/installOpenJdkDeb.html

Sparkflows Documentation, Release 0.0.1

2.1.3 Linux/Mac OS Installation Steps

Fire can run independently on any machine, since we package Apache Spark along with or it can be connected to a
Spark cluster.

If Sparkflows Fire needs to be connected to a Spark Cluster, install it on an edge node of the cluster. The edge node
has the hadoop binaries and spark configs.

Quick Installation Steps of Fire with H2 DB

• Download the fire tgz file from:

– https://www.sparkflows.io/download OR

– https://www.sparkflows.io/archives

• Unpack it:

tar xvf fire-x.y.z.tgz

• Create H2 DB:

cd <fire install_dir>
./create-h2-db.sh

• Launch Fire Server:

cd <fire install_dir>
./run-fire-server.sh start

• Open your web browser and navigate to:

<machine_name>:8080

• Login with:

admin/admin or test/test

Detailed Installation Steps

• Glossary

– <install_dir> : location where you unzipped fire tgz file. For example this can be your home direc-
tory.

– <machine_name> : hostname where your installed Fire

– # : used for comments and documentation

• Download the fire tgz file from:

– https://www.sparkflows.io/download OR

– https://www.sparkflows.io/archives

• Unzip it:

tar xvf fire-x.y.z.tgz

2.1. Installation 9

https://www.sparkflows.io/download
https://www.sparkflows.io/archives
https://www.sparkflows.io/download
https://www.sparkflows.io/archives

Sparkflows Documentation, Release 0.0.1

• Set up H2 or MySQL DB

Fire can be configured to run with H2 db or MySQL. H2 is very easy to set up with Fire. For production deployments
MySQL is recommended.

• ../database/h2-db

• ../database/mysql-db

• Launch Fire:

cd <fire install_dir>
./run-fire.sh start

• Launch Fire Server:

cd <fire install_dir>
./run-fire-server.sh start

• Test by opening your web browser and going to:

localhost:8080

OR

<machine_name>:8080

• Login with:

username: admin and password: admin.

Note: Two user accounts come preconfigured with Fire.

• admin/admin

• test/test

You may change these usernames and passwords in Fire under the menu Administration/Users

Stopping Fire

Stop Fire with the below:

./run-fire.sh stop

Stopping the Fire Server

Stop the Fire Server with the below:

./run-fire-server.sh stop

Connecting to Apache Spark Cluster

Now that you have Fire installed, you may want to connect it to your Apache Spark Cluster.

10 Chapter 2. Installation

Sparkflows Documentation, Release 0.0.1

• Connecting to Apache Spark Cluster

2.1.4 Windows Installation Prerequisites

Below are the Prerequisites for installing Fire Insights on a windows machine:

- JDK 1.8 installed.
- java and jar have to be in the PATH
- 8+ GB of RAM on the machine.
- Python 3.6+ (when running Python and PySpark, otherwise not needed)

Check JDK 1.8 is installed

• Check the JDK version installed on your machine:

Open the command window
Type the following command to check your java version : java -version

• If JDK 1.8 is not installed, follow the JDK installation steps mentioned below.

Install JDK 1.8

• Download JDK 1.8 for windows using the link below:

– https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

• Install java by double clicking on the downloaded exe file

• After installation, make sure that java 1.8 is in the path:

Open a new command window
Type the following command to check your java version : java -version

Note: If you have multiple versions of Java installed on you system, you can update the PATH using the steps outlined
in either of the links below:

• https://javatutorial.net/set-java-home-windows-10

• https://www.java.com/en/download/help/path.xml

Note: With the above steps, you would have Fire Insights running locally on your laptop. It would not be able to
submit jobs to a Spark cluster. For that, Fire Insights has to be installed on the edge node of the cluster.

winutils.exe

winutils.exe is needed for running Apache Spark/Hadoop on windows machines. Follow the below steps to setup
winutils.exe on your machine:

- Download winutils.exe from https://github.com/steveloughran/winutils

• winutils.exe can be directly downloaded from link below:

2.1. Installation 11

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://javatutorial.net/set-java-home-windows-10
https://www.java.com/en/download/help/path.xml

Sparkflows Documentation, Release 0.0.1

• https://github.com/steveloughran/winutils/blob/master/hadoop-2.7.1/bin/winutils.exe

• Create hadoop folder in Your System : C:\hadoop.

• Create bin folder in hadoop directory : C:\hadoop\bin.

• Copy the downloaded winutils.exe to the bin directory : C:\hadoop\bin\winutils.exe.

• Add a new Environment Variable.

– HADOOP_HOME = C:\hadoop.

• Update the System Environment Variable PATH by adding : %HADOOP_HOME%\bin.

• Guide to setting Environment Variables on Windows

https://www.architectryan.com/2018/08/31/how-to-change-environment-variables-on-windows-10/

Troubleshooting

Running into an exception when saving files

org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 33.0 failed 1 times,
most recent failure: Lost task 1.0 in stage 33.0 (TID 131, localhost): java.io.IOException: (null) entry in
command string: null chmod 0644

If you run into an exception like above, then there is problem with the setup of winutils.exe.

2.1.5 Windows Installation Steps

Fire Insights can be installed to run independenly on Windows.

Installation Steps of Fire Insights with H2 DB

• Download the fire tgz file from:

– https://www.sparkflows.io/download OR

12 Chapter 2. Installation

https://github.com/steveloughran/winutils/blob/master/hadoop-2.7.1/bin/winutils.exe
https://www.architectryan.com/2018/08/31/how-to-change-environment-variables-on-windows-10/
https://www.sparkflows.io/download

Sparkflows Documentation, Release 0.0.1

– https://www.sparkflows.io/archives

• Unpack the downloaded tgz file. Below are some tools which can be used for it:

WinRar : https://www.rarlab.com/download.htm
WinZip : https://www.winzip.com
7-Zip : https://www.7-zip.org/download.html

• Create H2 DB:

cd <fire install_dir>
.\create-h2-db.bat

• Launch Fire Server:

cd <fire install_dir>
.\run-fire-server.bat start

• Open your web browser and navigate to:

<machine_name>:8080

• Login with:

admin/admin or test/test

Note: Two user accounts come preconfigured with Fire Insights.

• admin/admin

• test/test

You may change these usernames and passwords in Fire under the menu Administration/Users

Stopping the Fire Server

Stop the Fire Server with the below:

2.1. Installation 13

https://www.sparkflows.io/archives

Sparkflows Documentation, Release 0.0.1

.\run-fire-server.bat stop

Stopping Fire Helper Processes

Stop Fire helper processes with the below:

.\run-fire.bat stop

2.1.6 Python Installation on Linux - Redhat/CentOS

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire
Insights use Python 3.7+.

Check if Python 3.7+ is Installed

Use the below commands:

python --version
python3.7 --version

Install Python 3.7 (if not installed)

Some References for Installing Python:

• CentOS : https://tecadmin.net/install-python-3-7-on-centos/

Prerequisites

Python installation requires the GCC compiler to be available on the machine. Use the following command to install
the prerequisites for installing Python.

yum install gcc openssl-devel bzip2-devel libffi-devel zlib-devel

Download and extract the downloaded package

• Download python from below Link

– https://www.python.org/downloads/

– https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz

Download and untar:

wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz
tar xzf Python-3.7.0.tgz

14 Chapter 2. Installation

https://tecadmin.net/install-python-3-7-on-centos/
https://www.python.org/downloads/
https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz

Sparkflows Documentation, Release 0.0.1

Compile Python source code

Compile the Python source code on your system using altinstall:

cd Python-3.7.0
./configure --enable-optimizations
make altinstall
python3.7 --version

Create Python virtual environment & Activate it

Create Python virtual environment & Activate it:

python3.7 -m venv venv
source venv/bin/activate
python --version

Upgrade pip version

Upgrade pip version with 20.0 or above:

pip install pip --upgrade

Install dependency for fbprophet package (CentOS 7)

Run below command with sudo privilege

• Install development tool:

yum install -y xz-devel

• Install the CentOS SCL release file:

yum install centos-release-scl

• Install Developer Toolset version 7:

2.1. Installation 15

Sparkflows Documentation, Release 0.0.1

16 Chapter 2. Installation

Sparkflows Documentation, Release 0.0.1

yum install devtoolset-7

• launch a new shell instance using the Software Collection scl tool & Check GCC version:

scl enable devtoolset-7 bash
gcc --version``

• Install fbprophet package:

pip install fbprophet

• Check pip list:

pip list

Reference

2.1. Installation 17

Sparkflows Documentation, Release 0.0.1

18 Chapter 2. Installation

Sparkflows Documentation, Release 0.0.1

Links

• https://linuxize.com/post/how-to-install-gcc-compiler-on-centos-7/

Install Other Packages

Install the required packages:

cd fire-x.y.x/dist/fire
pip install -r requirements.txt

requirements.txt file is available in the installation directory of fire insights:

fire-x.y.x/dist/fire/requirements.txt

Reference

Links

• https://docs.aws.amazon.com/cli/latest/userguide/install-linux-python.html

• https://aws.amazon.com/premiumsupport/knowledge-center/ec2-linux-python3-boto3/

• https://blog.teststation.org/centos/python/2016/05/11/installing-python-virtualenv-centos-7/

Delete a venv

To delete a virtual environment, follow below steps:

source venv/bin/activate
pip freeze > requirements.txt
pip uninstall -r requirements.txt -y
deactivate
rm -r venv/

Installing pip & wheel

• yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

• yum install python-pip

• yum install python-wheel

Add below in .bash_profile

• export PYSPARK_PYTHON=/usr/bin/python3

• export PYSPARK_DRIVER_PYTHON=/usr/bin/python3

2.1. Installation 19

https://linuxize.com/post/how-to-install-gcc-compiler-on-centos-7/
https://docs.aws.amazon.com/cli/latest/userguide/install-linux-python.html
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-linux-python3-boto3/
https://blog.teststation.org/centos/python/2016/05/11/installing-python-virtualenv-centos-7/
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Sparkflows Documentation, Release 0.0.1

For Ubuntu

• Ubuntu : https://docs.python-guide.org/starting/install3/linux/

2.1.7 Python Installation on MacOS

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire
Insights use Python 3.6+.

Check if Python is Installed

• python –version

• python3 –version

Install Python 3 (if not already there)

• One way to install Python 3 on macOS is by installing Anaconda https://docs.anaconda.com/anaconda/
install/mac-os/

• Use brew install python3

Add below in .bash_profile

• alias python=’python3’

• export PYSPARK_PYTHON=/usr/bin/python3

• export PYSPARK_DRIVER_PYTHON=/usr/bin/python3

Sometimes a soft link to Pythons’s executables is broken for some reason. sudo ln -s /usr/bin/python3.x
/usr/bin/python

Install Other Packages

Install the required python packages for Fire Insights:

• pip install -r requirements.txt

requirements.txt file is available in the installation directory of Fire Insights.

• fire-x.y.x/dist/fire/requirements.txt

2.1.8 Python Installation on Windows

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire
Insights use Python 3.6+.

Below are steps for installing Anaconda.

• Download Anaconda from the below Link

– https://www.anaconda.com/products/individual

– https://www.anaconda.com/products/individual#Downloads

20 Chapter 2. Installation

https://docs.python-guide.org/starting/install3/linux/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/mac-os/
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual#Downloads

Sparkflows Documentation, Release 0.0.1

Once the download completes, run the .exe installer

Click Next to confirm the installation

Agree to the License

Advanced Installation Options screen

It is recommended to not check “Add Anaconda to my PATH environment variable”

2.1. Installation 21

Sparkflows Documentation, Release 0.0.1

Open the Anaconda Prompt from the Windows start menu

At the Anaconda prompt, check the conda --version

Reference Link

• https://problemsolvingwithpython.com/01-Orientation/01.03-Installing-Anaconda-on-Windows/

Create virtual environment using conda

Run below command to Create virtual environment using conda.

• conda create --name venv python=3.7

Activate Virtual environment and Check list of python package

Run Below command to activate and check list of python package available by default.

• conda activate venv

• python --version

• pip list

Install Other Dependent Packages

Install the other required packages:

22 Chapter 2. Installation

https://problemsolvingwithpython.com/01-Orientation/01.03-Installing-Anaconda-on-Windows/

Sparkflows Documentation, Release 0.0.1

2.1. Installation 23

Sparkflows Documentation, Release 0.0.1

• pip install -r requirements.txt

requirements.txt file is available in the installation directory of Fire Insights : fire-
x.y.x/dist/fire/requirements.txt

Install dependency for fbprophet package (Windows 10)

Install pystan:

• conda install pystan -c conda-forge

Install fbprophet:

• conda install -c conda-forge fbprophet

24 Chapter 2. Installation

Sparkflows Documentation, Release 0.0.1

2.1. Installation 25

Sparkflows Documentation, Release 0.0.1

Check the version of fbprophet Installed:

• pip list

Once the above steps have completed successfully, run the below command to ensure everything was setup correctly.

• python ./dist/__main__.py

Enable PySpark Engine in Fire Insights

Login to Fire Insights application and go to configurations and set app.enablePySparkEngine to true and
save the changes. Now you can start using PySpark engine in Fire Insights.

Removing Conda virtual Environment

• conda deactivate

• conda env remove --name name of virtual environment

• Delete those package from exact location.

26 Chapter 2. Installation

Sparkflows Documentation, Release 0.0.1

2.1.9 Python Installation on Ubuntu

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire
Insights use Python 3.7+.

Check if Python 3.7+ is Installed

Use the below commands:

python --version
python3.7 --version

Install Python 3.7 (if not installed)

Some References for Installing Python:

• Ubuntu : https://linuxize.com/post/how-to-install-python-3-7-on-ubuntu-18-04/

Prerequisites

update the packages list and install the packages necessary to build Python source:

sudo apt update

• Install needed dependency:

2.1. Installation 27

https://linuxize.com/post/how-to-install-python-3-7-on-ubuntu-18-04/

Sparkflows Documentation, Release 0.0.1

sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-
→˓dev libssl-dev libsqlite3-dev libreadline-dev libffi-dev wget libbz2-dev``

Download and extract the downloaded package

• Download python from below Link

– https://www.python.org/downloads/

– https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz

Download and untar:

wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz
tar xzf Python-3.7.0.tgz

Next, navigate to the Python source directory and run the configure script which will perform a number of checks to
make sure all of the dependencies on your system are present:

cd Python-3.7.0

• Build & compile:

./configure --enable-optimizations

• Install the Python binaries by running the following command:

28 Chapter 2. Installation

https://www.python.org/downloads/
https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz

Sparkflows Documentation, Release 0.0.1

make altinstall

Note: Do not use the standard make install as it will overwrite the default system python3 binary.

Verify it by typing:

python3.7 --version

Create Python virtual environment & Activate it

Create Python virtual environment & Activate it:

python3.7 -m venv venv
source venv/bin/activate
python --version

Upgrade pip version

Upgrade pip version with 20.0 or above:

pip install pip --upgrade

2.1. Installation 29

Sparkflows Documentation, Release 0.0.1

30 Chapter 2. Installation

Sparkflows Documentation, Release 0.0.1

Install dependency for fbprophet package (Ubuntu 18.04)

• pystan dependency:

pip install pystan

• convertdate dependency:

pip install convertdate

• fbprophet dependency:

pip install fbprophet

• Check pip list:

pip list

Install Other Packages

Install the required packages:

2.1. Installation 31

Sparkflows Documentation, Release 0.0.1

32 Chapter 2. Installation

Sparkflows Documentation, Release 0.0.1

cd fire-x.y.x/dist/fire
pip install -r requirements.txt

requirements.txt file is available in the installation directory of fire insights:

fire-x.y.x/dist/fire/requirements.txt

Delete a venv

To delete a virtual environment, follow below steps:

source venv/bin/activate
pip freeze > requirements.txt
pip uninstall -r requirements.txt -y
deactivate
rm -r venv/

2.1.10 Running Diagnostics

Linux

Fire Insights needs jdk 1.8 to be available

• java -version

java version “1.8.0_101”

Mac OS

Fire Insights needs jdk 1.8 to be available

• java -version

java version “1.8.0_101”

Windows

Fire Insights needs jdk 1.8 to be available

• java -version

java version “1.8.0_101”

2.1. Installation 33

Sparkflows Documentation, Release 0.0.1

34 Chapter 2. Installation

CHAPTER 3

Configuration

3.1 Configuration

3.1.1 Database Setup

Fire stores metadata in a Relational Database. These include:

• Applications

• Dataset Definitions

• Workflows

• Users

• Groups

• Roles

• Dashboards

Below are the details for setting up a database for Fire:

H2 Database

Fire can be setup up to easily run with H2 database. Fire runs H2 in embedded mode. The H2 database is used for
storing the metadata of the DataSets, Workflows, Dashboards, Users, Groups, Roles etc.

More details of the H2 database can be found here : http://www.h2database.com/html/main.html

If you are want to run multiple instances of Fire for high availability, configure Fire to run with MySQL.

Creating/Upgrading the H2 database

Execute the following steps on your CLI:

35

http://www.h2database.com/html/main.html

Sparkflows Documentation, Release 0.0.1

• Mac/Linux:

cd <install_dir>/fire-x.y.z
./create-h2-db.sh

• Windows:

cd <install_dir>\fire-x.y.z
.\create-h2-db.bat

If you would like to use different values for the db, username, password, update them in <install_dir>/
fire-1.4.0/conf/db.properties:

spring.datasource.url = jdbc:h2:file:~/firedb

spring.datasource.username = fire

spring.datasource.password = fire

spring.datasource.driverClassName = org.h2.Driver

Note: firedb is created in the users home directory and the name is firedb.mv.db

Recreating H2 database

If you need to recreate the H2 database, follow the steps below to create a new empty H2 DB:

Stop the running Fire server

Move the existing firedb files to another temp location on your disk

Recreate the H2 DB using the steps in the above section for creating a brand new
→˓empty H2 DB for Fire

MySQL Database

Fire can easily be setup up to run with MySQL

More details of the MySQL database can be found here : https://www.mysql.com/

Install MySQL

• Install MySQL on a machine.

• It might be easier to install it on the same machine you are installing Fire on.

Create the DB for Fire in MySQL

• Create the database for Fire in MySQL

• Let us call it firedb:

36 Chapter 3. Configuration

https://www.mysql.com/

Sparkflows Documentation, Release 0.0.1

create database firedb;

Create the User for Fire in MySQL and grant it Permissions

Create the User for Fire in MySQL:

CREATE user 'fire'@'%' IDENTIFIED BY 'fire';

GRANT ALL PRIVILEGES ON firedb.* TO 'fire'@'%' WITH GRANT OPTION;

• In CREATE user, the user we are creating is fire who is allowed to access the database from anywhere % and
his password is fire.

• Next, this user has been granted all permissions. This, of course can be further restricted based on your use
case.

Configure Fire to connect to MySQL

• Copy db.properties.mysql file into the conf directory as db.properties:

cd fire-x.y.z
cp conf.orig/db.properties.mysql conf/db.properties

• Update the following fields in conf/db.properties based on the values you used in creating the DB for
fire. The below assumes that the database name you created for Fire is firedb. It also assumes that MySQL
has been installed on the same machine as Fire:

Connection url for the database "firedb"

spring.datasource.url=jdbc:mysql://localhost:3306/firedb

spring.datasource.driverClassName=com.mysql.jdbc.Driver

spring.jpa.database=MYSQL

Username and password

spring.datasource.username=fire

spring.datasource.password=fire

Install the MySQL Connector Jar file

• Download the MySQL JDBC driver from http://www.mysql.com/downloads/connector/j/5.1.html

• Extract the JDBC driver JAR file from the downloaded file. For example:

tar zxvf mysql-connector-java-8.0.11.tar.gz

• just copy the path location for `JDBC driver JAR file

• copy the mysql JDBC driver JAR file to the fire-server-lib directory of fire-x.y.z:

3.1. Configuration 37

http://www.mysql.com/downloads/connector/j/5.1.html

Sparkflows Documentation, Release 0.0.1

cd fire-x.y.z
cp /pathlocation of jdbc jar file/mysql-connector-java.jar fire-server-lib

Create the Tables for Fire in MySQL

• Create the tables for Fire in MySQL by executing the create-mysql-db.sh script:

cd fire-x.y.z

./create-mysql-db.sh

Troubleshooting

MySQL has a problem where one of the default users in the user table is '' @ localhost, which winds up denying
all localhost users later in the table. If you are accessing mysql from localhost, assuming Fire and MySQL have been
installed on the same machine, then you need to delete this entry in mysql.user table:

select user, host from user where user = ''

#you should see an entry for this and host equals localhost.

DELETE from user WHERE user = '' AND host = 'localhost';

flush privileges;

#this reloads privileges - important step. otherwise you will get access denied error
→˓even though you log in with the correct user.

Here is a link on stackoverflow that talks about this:

http://stackoverflow.com/questions/1412339/cannot-log-in-with-created-user-in-mysql

Microsoft SQL Server Database

Fire can easily be setup up to run with Microsoft SQL Server.

More details of the Microsoft SQL Server database can be found here : https://www.microsoft.com/en-us/sql-server/
default.aspx

Install Microsoft SQL Server

• Install Microsoft SQL Server on a machine.

• It might be easier to install it on the same machine you are installing Fire on.

Create the DB for Fire in Microsoft SQL Server

• Create the database for Fire in Microsoft SQL Server

• Let us call it firedb:

38 Chapter 3. Configuration

http://stackoverflow.com/questions/1412339/cannot-log-in-with-created-user-in-mysql
https://www.microsoft.com/en-us/sql-server/default.aspx
https://www.microsoft.com/en-us/sql-server/default.aspx

Sparkflows Documentation, Release 0.0.1

CREATE DATABASE firedb;

Create the User for Fire in Microsoft SQL Server and grant it Permissions

Create the User for Fire in Microsoft SQL Server and give it Permissions.

Configure Fire to connect to Microsoft SQL Server

• Copy db.properties.sqlserver file into the conf directory as db.properties:

cd fire-x.y.z
cp conf.orig/db.properties.sqlserver conf/db.properties

• Update the following fields in conf/db.properties based on the values you used in creating the DB for
fire. The below assumes that the database name you created for Fire is firedb. It also assumes that Microsoft
SQL Server has been installed on the same machine as Fire:

Connection url for the database "firedb"

spring.datasource.url=jdbc:sqlserver://localhost:1433;databaseName=firedb

spring.datasource.driverClassName=com.microsoft.sqlserver.jdbc.SQLServerDriver

spring.jpa.database=SQLSERVER

Username and password

spring.datasource.username=fire

spring.datasource.password=fire

spring.jpa.hibernate.dialect=org.hibernate.dialect.SQLServer2008Dialect

Install the Microsoft SQL Server Connector Jar file

• Download the Microsoft SQL Server JDBC driver from https://www.microsoft.com/en-us/download/details.
aspx?id=11774

• Untar the file sqljdbc_6.0.8112.200_enu.tar.gz

• You will get JDBC jar file on untaring sqljdbc42.jar

• Copy the Microsoft SQL Server JDBC driver JAR file to the fire-server-lib directory of fire-x.y.z

Create the Tables for Fire in Microsoft SQL Server

• Tables in Microsoft SQL Server can be created by using the DDL script : db/sqlserver/fire-schema.
sqlserver.sql

• They can also be created by executing the create-sqlserver-db.sh script:

3.1. Configuration 39

https://www.microsoft.com/en-us/download/details.aspx?id=11774
https://www.microsoft.com/en-us/download/details.aspx?id=11774

Sparkflows Documentation, Release 0.0.1

cd fire-x.y.z

./create-sqlserver-db.sh

Aurora MySQL Database

Fire can easily be setup up to run with Aurora MySQL

More details of the Aurora MySQL database can be found here : https://aws.amazon.com/rds/aurora/

Create Aurora MySQL database on AWS

• Login to AWS.

• Create Aurora MySQL Database which is accessible from machine where Fire is running.

Create the DB for Fire in Aurora MySQL

• Create the database for Fire in Aurora MySQL

• Let us call it firedb:

create database firedb;

Create the User for Fire in Aurora MySQL and grant it Permissions

Create the User for Fire in MySQL:

CREATE user 'fire'@'%' IDENTIFIED BY 'fire';

GRANT ALL PRIVILEGES ON firedb.* TO 'fire'@'%' WITH GRANT OPTION;

• In CREATE user, the user we are creating is fire who is allowed to access the database from anywhere % and
his password is fire.

• Next, this user has been granted all permissions. This, of course can be further restricted based on your use
case.

Configure Fire to connect to Aurora MySQL

• Copy db.properties.mysql file into the conf directory as db.properties:

cd fire-x.y.z
cp conf.orig/db.properties.mysql conf/db.properties

• Update the following fields in conf/db.properties based on the values you used in creating the DB for
fire. The below assumes that the database name you created for Fire is firedb. It also assumes that MySQL
has been installed on the same machine as Fire:

40 Chapter 3. Configuration

https://aws.amazon.com/rds/aurora/

Sparkflows Documentation, Release 0.0.1

Connection url for the database "firedb"

spring.datasource.url=jdbc:mysql://Endpoint:3306/firedb

spring.datasource.driverClassName=com.mysql.jdbc.Driver

spring.jpa.database=MYSQL

Username and password

spring.datasource.username=fire

spring.datasource.password=fire

Install the MySQL Connector Jar file

• Download the MySQL JDBC driver from http://www.mysql.com/downloads/connector/j/5.1.html

• Extract the JDBC driver JAR file from the downloaded file. For example:

tar zxvf mysql-connector-java-8.0.11.tar.gz

• just copy the path location for `JDBC driver JAR file

• copy the mysql JDBC driver JAR file to the fire-server-lib directory of fire-x.y.z:

cd fire-x.y.z
cp /pathlocation_of_jdbc_jar_file/mysql-connector-java.jar fire-server-lib

Create the Tables for Fire in Aurora

• Create the tables for Fire in MySQL by executing the create-mysql-db.sh script:

cd fire-x.y.z

./create-mysql-db.sh

Troubleshooting

MySQL has a problem where one of the default users in the user table is '' @ localhost, which winds up denying
all localhost users later in the table. If you are accessing mysql from localhost, assuming Fire and MySQL have been
installed on the same machine, then you need to delete this entry in mysql.user table:

select user, host from user where user = ''

#you should see an entry for this and host equals localhost.

DELETE from user WHERE user = '' AND host = 'localhost';

flush privileges;

#this reloads privileges - important step. otherwise you will get access denied error
→˓even though you log in with the correct user.

3.1. Configuration 41

http://www.mysql.com/downloads/connector/j/5.1.html

Sparkflows Documentation, Release 0.0.1

Here is a link on stackoverflow that talks about this:

http://stackoverflow.com/questions/1412339/cannot-log-in-with-created-user-in-mysql

3.1.2 Connecting to Apache Spark Cluster

Overview

Fire can be configured to submit the spark jobs to run on an Apache Spark Cluster.

• Install Fire on an edge node of your Apache Spark Cluster.

– The edge node has the hadoop/hive/spark configuration files set up.

– Make sure that you are already able to run your spark jobs from this node using spark-submit.

• Update the below configurations under the menu, ‘‘Administration/Configuration‘‘

Note: In order for Fire to connect to the Apache Spark Cluster, it needs to be installed as a user which can impersonate
other users. More details are below in the page. For the rest of the documentation on this page, we assume that it has
been installed as the user sparkflows.

Fire User Setup

The user with which Fire is running has to be a proxy user in HDFS. That way it can impersonate the logged in user.

Below are the steps for setting the Fire user to be a proxy user on HDFS.

Update core-site.xml of Hadoop to allow Fire user to impersonate

https://www.cloudera.com/documentation/enterprise/5-8-x/topics/admin_hdfs_proxy_users.html

• In your core-site.xml file for Hadoop, allow sparkflows user to impersonate other users. Without impersonation
enabled for this user, your Sparkflows application users trying to run jobs against a hadoop cluster would not be
able to do so.

• Also, allow the appropriate groups that the sparkflows users will be able to impersonate belong to.

• In the example below, user sparkflows is allowed to impersonate users from hosts host1 and host2. The
users being impersonated belong to the groups hive,hfs,hadoop,spark. Your permissions are likely
going to be different and more restrictive.

Below is an example:

<property>
<name>hadoop.proxyuser.sparkflows.hosts</name>
<value>host1,host2</value>

</property>

<property>
<name>hadoop.proxyuser.sparkflows.groups</name>
<value>hive,hfs,hadoop,spark</value>

</property>

42 Chapter 3. Configuration

http://stackoverflow.com/questions/1412339/cannot-log-in-with-created-user-in-mysql
https://www.cloudera.com/documentation/enterprise/5-8-x/topics/admin_hdfs_proxy_users.html

Sparkflows Documentation, Release 0.0.1

Cloudera Manager

If you are using Cloudera Manager, you can set the above settings for impersonation in HDFS/Configuration.

Ambari

If you are using Ambari, you can set the above settings for impersonation in HDFS/Configuration under
Custom core-site

3.1. Configuration 43

Sparkflows Documentation, Release 0.0.1

Infer Hadoop Configs

Infer Hadoop Configs button under Administration/Configuration automatically infers some of the configurations of
the cluster from the hadoop config files on the edge node to help with the process. Use it to get the initial set of
configurations.

Fire Configurations for connecting to an Apache Spark Cluster

Below are the configuration details for connecting Fire to an Apache Spark Cluster.

44 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

Pa-
rame-
ter

Value Description

app.runOnClustertrue Indicate to run on the spark cluster. By default it is set to false
app.postMessageURLhttp://localhost:8080/

messageFromSparkJob
Indicate the URL on fire server which receives messages from the spark jobs
running on the cluster. Set localhost to the machine name on which Fire is
running. Replace 8080 with the port number on which Fire is running.

app.sparkSubmitJar/user/centos/fire-
2.1.0/fire-lib/fire-
core-2.1.0-jar-with-
dependencies.jar

fire-lib directory of the Sparkflows install contains the fire core jar used in
submitting the workflows to the Spark cluster. Set it correctly to be the abso-
lute path of the fire core jar.

hdfs.namenodeURIhdfs://localhost:8020 Update the hdfs namenode URI. Set localhost to the machine on which the
namenode is running.

hdfs.namenodeURIfile:// Set it to file:// when the files are on the local filesystem. This can be the case
when HDFS is not there.

hdfs.namenodeURImaprfs:/// Set it to maprfs:/// for mapr.
hive.JDBC_DB_URLjdbc:hive2://localhost:

10000
Update the hive JDBC DB URL if you would be accessing HIVE from Spark-
flows. This is the URL of the HiveServer 2 server.

spark.sql-
context

HIVEContext Set it to either HIVEContext or SQLContext based on whether you want
to use HIVEContext or SQLContext in your job. Use HIVEContext if you
would be accessing the HIVE tables.

spark.masteryarn Set it to yarn for connecting to a spark cluster running YARN
spark.masterspark://spark_master_hostname:portSet it to the spark master URL when connecting to a spark cluster running in

standalone mode. Port is normally 7077.
spark.spark-
submit

spark-submit Spark Submit command for submitting the Spark jobs to the cluster. It can be
spark2-submit for Spark2 CDH clusters. Make sure to provide the full path
or spark-submit should be in the path.

Create New Users in Fire

Fire allows creating multiple users. Create the users in Fire under Administration/Users who would be build-
ing and running workflows.

These users have to exist on HDFS. So ensure that these users Home Directory
are created on HDFS

Also create the home directory for the users on HDFS. The example code below creates the home directory for the
user xyz onto HDFS. It also changes the permission of the directory.

• su - hdfs

• hadoop fs -mkdir /user/xyz

• hadoop fs -chown xyz:hadoop /user/xyz

Setting up PySpark

If running with PySpark the following might need to be added to point PYSPARK to the right version of python on
the cluster machines. Below is an example where python is at /home/ec2-user/venv/bin/python

It is also important that all the users are able to execute the python executable.

spark-env.sh:

3.1. Configuration 45

http://localhost:8080/messageFromSparkJob
http://localhost:8080/messageFromSparkJob
file://
file://
jdbc:hive2://localhost:10000
jdbc:hive2://localhost:10000

Sparkflows Documentation, Release 0.0.1

export PYSPARK_PYTHON=/home/ec2-user/venv/bin/python
export PYSPARK_DRIVER_PYTHON=/home/ec2-user/venv/bin/python

spark-defaults.conf:

spark.yarn.appMasterEnv.PYSPARK_PYTHON=/home/ec2-user/venv/bin/python
spark.yarn.appMasterEnv.PYSPARK_DRIVER_PYTHON=/home/ec2-user/venv/bin/python

3.1.3 Customizing Fire Installation

Below are the details of Configuring Fire for various requirements:

Configuring Max Upload File Size

Fire allows users to upload files into HDFS through their Browser.

The settings which controls it is in conf/application.properties:

max file size
multipart.maxFileSize: 10Mb
multipart.maxRequestSize: 10Mb

Increasing Memory of Fire Server

By default, when the Fire web server is started with run-fire-server.sh, it is given 1.5 GB of memory.

Below is from run-fire-server.sh:

nohup ${JAVA} -server -Djava.ext.dirs=./user-lib/ -Xmx1548m -Xms1356m -
→˓XX:+CMSClassUnloadingEnabled -XX:PermSize=512m -XX:MaxPermSize=512m -jar ./app/fire-
→˓ui-1.3.0.war --spring.config.name=application,db,log4j --spring.config.
→˓location=file:./conf/ &

• In order to increase the amount of memory for the Fire web server, increase the value of -Xmx based
on the amount of memory available on your server.

• For example, you could raise it to 5 GB or 10 GB or more up to 25 GB.

– -Xmx5g

– -Xmx10g

– -Xmx25g

• The increased memory size, if available, allows Fire to handle more requests and return results faster. Of
course, when connected to an Apache Spark cluster, the full jobs are submitted to the Spark cluster through
spark-submit, allowing it to be very scalable and not dependent on the Fire web server.

• The interactive execution of the workflows in the workflow editor, is run within Fire on a small subset of the
data. These interactive executions would benefit from increased memory.

46 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

3.1.4 Configuring HTTPS for Fire Server

You can choose to run the Fire Server either on http or https connection.

The ports for http and https are configured in the file conf/application.properties:

http.port=8080
https.port=8443

HTTP

http://hostname:8080/login

HTTPS

https://hostname:8443/login

keystore.jks

Fire Server comes with a pre-configured keystore in the conf folder of the install.

• conf/keystore.jks

• conf/keystore.properties : Stores the keystore password

Generating New Keystore

You can use the following command for generating a new keystore:

keytool -genkeypair -alias sparkflows -keyalg RSA -validity 365 -keystore keystore.jks

You will be prompted with the following questions and enter something similar to the SAMPLE answers:

Enter keystore password:
Re-enter new password:
What is your first and last name?

[Unknown]: John Smith
What is the name of your organizational unit?

[Unknown]: BigData
What is the name of your organization?

[Unknown]: MyOrg
What is the name of your City or Locality?

[Unknown]: San Francisco
What is the name of your State or Province?

[Unknown]: California
What is the two-letter country code for this unit?

[Unknown]: CA
Is CN=John Smith, OU=BigData, O=MyOrg, L=San Francisco, ST=California, C=CA correct?

[no]: yes
Enter key password for <sparkflows>

(RETURN if same as keystore password): Press the return key or Type and note
→˓down the password

3.1. Configuration 47

http://hostname:8080/login
https://hostname:8443/login

Sparkflows Documentation, Release 0.0.1

Copy the keystore into the Fire installation directory

• Copy the generated keystore.jks file into the conf folder of your installation.

• Update keystore.properties with the new password.

Note: When the keystore is updated, the password also has to be updated in case it changes.

The Fire web server would also have to be restarted for the changes to take effect.

Use keytool commands

Listing entries in Keystore

List entries in keystore:

keytool -list -keystore keystore.jks

Importing a Certificate to an existing Keystore

Importing a Certificate to an existing Keystore:

keytool -import -trustcacerts -alias <Name of Cert> -file <Absolute Path to .crt File>
→˓ -keystore <Absolute Path to Desired Keystore> -storepass <KEYSTORE_PASSWORD>

3.1.5 HTTPS : Importing Self-Signed Certificates

Fire Insights comes with a self-signed certificate. It is contained in conf/keystore.jks.

When using the self-signed certificate, the Browser will complain as it has not been issued by a Certificate Authority.

This warning message can be supressed by importing the self-signed certificate into the Browser inside Trusted
Root Certification Authorities.

Below are the steps for importing self-signed certificate into your Browser.

Export the certificate to your machine

• Got to URL for the HTTPS port.

– https://privateip:8443/login

• Click on Not secure option.

• Click on Certificate.

• View Certificate.

• Click on Details option to see detail information of certificate.

• Click on copy to file option to copy certificate to local machine.

• Select below option and press Next.

• Select the Name & file location of certificate.

48 Chapter 3. Configuration

https://privateip:8443/login

Sparkflows Documentation, Release 0.0.1

3.1. Configuration 49

Sparkflows Documentation, Release 0.0.1

50 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

3.1. Configuration 51

Sparkflows Documentation, Release 0.0.1

52 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

• After upadating the details Success msg will apear.

Next we need to add the exported certificate to the Browser.

Add Certificate to Browser

• Using Google chrome

• Go to below location after opening Google Chrome.

– Settings -> Advanced -> Privacy and Security-> Manage Certificates

• Click on Manage Certificate icon.

• Click on import.

3.1. Configuration 53

Sparkflows Documentation, Release 0.0.1

54 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

• Select certificate from local system, use Trusted Root Certification
Authorities option and press yes to save it.

• Once the above process complete, close the browser and start again and try to login with above URL, It should
work without any warnings.

• Help Url: https://peacocksoftware.com/blog/make-chrome-auto-accept-your-self-signed-certificate

3.1.6 Running on Another Port

There are 2 processes involved when running Fire.

• fire server

• fire

User’s Browser talks with fire server, and in turn fire server talks with fire.

Both fire server and fire processes can be configured to listen on different ports.

Running Fire Server on Another Port

By default the fire server runs on the following ports:

• 8080 (http)

• 8443 (https)

Below are the steps for running fire server on a different port.

• Navigate to the conf folder under Sparkflows install directory

• Open application.properties file:

3.1. Configuration 55

https://peacocksoftware.com/blog/make-chrome-auto-accept-your-self-signed-certificate

Sparkflows Documentation, Release 0.0.1

56 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

– Configure http and https port numbers: Default 8080 for http and 8443 for https

– http.port=8080

– https.port=8443

• In the Fire UI, under Administration/Configuration update the below property with the right port number.

– app.postMessageURL

• Restart Fire Server using one of the commands below depending on the environment (Unix/Linux or Windows)
- run-fire-server.sh start - run-fire-server.bat

Running Fire on Another Port

Fire by default runs on port 8081.

In order to run Fire on a different port:

• Navigate to the conf folder under Sparkflows install directory

– Open application.properties file:

– Configure the http port

– fire.http.port=8081

• Restart Fire using ./run-fire.sh start

3.1.7 YARN Configurations

Fire can submit jobs to a YARN cluster. It can submit the spark jobs to run on YARN in either client or cluster mode.

Client Mode

For configuring to run in client mode, set the following parameter under Administration/Configuration:

spark.deploy-mode : client

In this mode, the spark driver runs on the same machine on which Fire is running. The workflow json file is written
out to the directory /tmp/fire/workflows on the machine on which Fire is running.

Cluster Mode

For configuring to run in cluster mode, set the following parameter under Administration/Configuration:

spark.deploy-mode : cluster

In this mode, the spark driver runs on the spark cluster. The workflow json file is written out onto HDFS in the
directory .fireStaging under the users HOME directory on HDFS.

The spark job reads the workflow json file from HDFS.

3.1. Configuration 57

Sparkflows Documentation, Release 0.0.1

Impersonation

• Normally app.impersonateUsers is set to true so that the jobs are run as the logged in user.

Note: The logged in user into Fire should exist on HDFS

3.1.8 Configuring HTTPS for Fire

Fire server can listen on HTTPS. Fire Server comes with a pre-configured keystore.

Below are the steps for configuring Fire with your keystore and certificates.

Generate a Keystore

You can use the following command for generating the Keystore:

keytool -genkey -keyalg RSA -alias sparkflows -keystore keystore.jks -validity 365 -
→˓keysize 2048 -ext san=ip:< host machine ip address>

You will be prompted with the following questions and enter something similar to the SAMPLE answers:

Enter keystore password:
Re-enter new password:
What is your first and last name?

[Unknown]: John Smith
What is the name of your organizational unit?

[Unknown]: BigData
What is the name of your organization?

[Unknown]: MyOrg
What is the name of your City or Locality?

[Unknown]: San Francisco
What is the name of your State or Province?

[Unknown]: California
What is the two-letter country code for this unit?

[Unknown]: CA
Is CN=John Smith, OU=BigData, O=MyOrg, L=San Francisco, ST=California, C=CA correct?

[no]: yes
Enter key password for <sparkflows>

(RETURN if same as keystore password): Press the return key or Type and note
→˓down the password

Copy the keystore into the Fire installation directory

Copy the generated keystore.jks file into the conf folder of your installation.

Update the keystore password

Update keystore.properties to udpdate the password of the new keystore.jks file:

keystore.password=123456

58 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

Port Number

Fire by default listens on port 8443 for https.

This is configured in the file conf/application.properties:

#Configure http and https port numbers : Default 8080 for http and 8443 for https
http.port=8080
https.port=8443

Finally restart the Fire Server

Restart the Fire server for the changes to take effect:

./run-fire-server.sh stop

./run-fire-server.sh start

3.1.9 Configuring Kerberos

Fire runs with a kerberized Spark cluster.

Steps for configuring Kerberos on Fire

• Generate a keytab for Fire

• Place it in . . . /fire-x.y.z/conf directory:

While this is the recommended location, the keytab file can be placed in any
→˓another directory too.

• Make sure only the user running fire application has access to the keytab. For example:

-r-------- 1 fire staff 436 Jun 29 16:06 hive.keytab

• Go to Administration/Configuration and update the following configurations to enable Kerberos for Fire

Configuration Example Value Details
kerberos.enabled true Set it to true to enable Kerberos for Fire
kerberos.keytab /user/ec2-user/fire.keytab Absolute path of the keytab generated for

Fire
kerberos.principal fire@EXAMPLE.COM Kerberos Principal of the keytab of Fire
ker-
beros.KERBEROS_REALM

EXAMPLE.COM Kerberos Realm

kerberos.KERBEROS_KDC hostname.example.com KDC Server
kerberos.hiveServer2Principal hive/hive2_host@EXAMPLE.COM HIVE Server2 Principal

Steps for generating the keytab for Fire

Below are the steps for generating the keytab file. We have chosen fire as the principal name. But you can have it
as any user you are running Fire with.

• Start kadmin.local and add the new principal fire@EXAMPLE.COM:

3.1. Configuration 59

mailto:fire@EXAMPLE.COM
mailto:hive/hive2_host@EXAMPLE.COM

Sparkflows Documentation, Release 0.0.1

$ kadmin.local

kadmin.local: addprinc -randkey fire@EXAMPLE.COM

WARNING: no policy specified for fire@EXAMPLE.COM; defaulting to no policy
Principal "fire@EXAMPLE.COM" created.

• Create fire keytab file:

kadmin.local: xst -norandkey -k fire.keytab fire@EXAMPLE.COM

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type aes256-cts-hmac-
→˓sha1-96 added to keytab

WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type aes128-cts-hmac-
→˓sha1-96 added to keytab

WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type des3-cbc-sha1
→˓added to keytab WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type arcfour-hmac
→˓added to keytab WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type des-hmac-sha1
→˓added to keytab WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type des-cbc-md5
→˓added to keytab WRFILE:fire.keytab.

• Exit kadmin.local:

kadmin.local: exit

Verifying that the keytab file was correctly created

Below are the steps for verifying the keytab file.

• Ensure that the keytab file was created and it has the right permissions:

$ ls -l fire.keytab

-rw------- 1 root root 382 Jul 24 17:55 fire.keytab

• Further verify the contents of keytab file. A normal keytab file depending on your krb5.conf settings,
looks like this:

$ klist -e -k -t fire.keytab

Keytab name: FILE:fire.keytab

KVNO Timestamp Principal
..
→˓...

(continues on next page)

60 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

1 07/24/16 17:55:07 fire@EXAMPLE.COM (aes256-cts-hmac-sha1-96)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (aes128-cts-hmac-sha1-96)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (des3-cbc-sha1)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (arcfour-hmac)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (des-hmac-sha1)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (des-cbc-md5)

3.1.10 Configuring Pipelines

Fire uses Apache Airflow for executing Pipelines. Hence Airflow has to be installed on the same machine as Fire.

Below are the configurations needed in Fire for Airflow.

Airflow Installation

It explain the steps involved in installing Airflow on Centos and RHEL. Detailed Airflow Install Instructions is at:

https://airflow.apache.org/installation.html

• Login to machine

• Before installing airflow update installed package:

• yum -y update

• Install python-pip and any required packages:

• sudo yum install epel-release

• sudo yum install python-pip

• Check the version of pip that is installed and if reqd upgrade:

• pip -V

• pip install –upgrade setuptools

• Note that for 1.10 you now need to preface install commands or export this env var:

• export SLUGIFY_USES_TEXT_UNIDECODE=yes

3.1. Configuration 61

https://airflow.apache.org/installation.html

Sparkflows Documentation, Release 0.0.1

• Install gcc , gcc-c++ and dependencies for python 2.7

• sudo yum -y install gcc gcc-c++ kernel-devel

• sudo yum -y install python-devel libxslt-devel libffi-devel openssl-devel

• Airflow needs a home, ~/airflow is the default

• export AIRFLOW_HOME=~/airflow

• Install from pypi using pip

• pip install apache-airflow

• To check airflow version

• airflow version

• Generate a Fernet key for Airflow(optional)

• python -c “from cryptography.fernet import Fernet; print(Fernet.generate_key().decode())”

• fgrc0MPUG1n3Q352Fp705A-bysNHX6EFRr7nYFTmXXA=

• update in airflow.cfa

• fernet key: fgrc0MPUG1n3Q352Fp705A-bysNHX6EFRr7nYFTmXXA=

• Initialize the Airflow database

• airflow initdb

• Start the web server, its default port is 8080, If any other application is running on 8080, we can update other
port for airflow

• airflow webserver -p 8090

• Start the scheduler

62 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

• airflow scheduler

• Login in browser

• http://x.y.z.w:8090

3.1.11 Different Default Values on Startup

Overview

Fire has a number of properties under Administration / Configuration. When initially installed they have certain default
values. Administrators can log into Fire through their Browser and update the Properties.

However, there might be cases where you want Fire to come up with different default values for the Configurations
when installed. This enables more automation and the Administrator does not have to go in and manually change the

3.1. Configuration 63

http://x.y.z.w:8090

Sparkflows Documentation, Release 0.0.1

default values.

Steps

Below are the Steps to override the default Configuration values:

• Update the file conf/configuration.properties with the new key/value pairs

Now the default values are populated with the values provided in configuration.properties.

Fire comes with an empty conf/configuration.properties file. You can put in your values into it.

Remove properties from conf/configuration.properties

Fire will continue to take the final values from conf/configuration.properties for any property which is
there in the file.

If you would like Fire not to use any of the properties from conf/configuration.properties, but take it
from the database, then remove or comment out those properties in conf/configuration.properties.

Saving the new values into the DB

When the configuration values are saved, they get updated in the database.

Even if they are removed from configuration.properties, they would have been saved in the database.

3.1.12 Configuring LDAP/OAuth Authentication

Fire Insights supports various types of authencations:

• Database Authentication

• LDAP Authentication

• OAuth Authentication

Database Authentication

Fire Insights can authenticate the user against its own database.

User’s password are stored encrypted.

This is the default authentication mechanism of Fire Insights. Users created in Fire are stored in the database.

LDAP Authentication

Fire Insights can be configured to authenticate the user against LDAP. Users have to be added to Fire, before they can
log into Fire and start using it.

The following configurations have to be set appropriately.

64 Chapter 3. Configuration

Sparkflows Documentation, Release 0.0.1

configuration/authentication/../_assets/installation/ldap-order.png

LDAP Parameters

Table 1: LDAP Parameters
Name of Param-
eter

Description Example

ldap.Order Order in which to authenticate the user. Possible values are
DB, LDAP_DB, DB_LDAP.

ldap.URL The URL of the LDAP server. The URL must
be prefixed with ldap:// or ldaps://. The URL
can optionally specify a custom port, for example:
ldaps://ldap_server.example.com:1636.

ldap://localhost:10389

ldap.Base The distinguished name to use as a search base for
finding users and groups. This should be similar to
‘dc=sparkflows,dc=com’.

dc=sparkflows,dc=com

ldap.UserDn Distinguished name of the user to bind as. This is used to
connect to LDAP/AD for searching user and group informa-
tion. This may be left blank if the LDAP server supports
anonymous binds.

uid=john,ou=development,dc=sparkflows,dc=com

ldap.Password The password of the bind user. xyz
ldap.UserSearchBaseUser Search Base ou=development
ldap.UserSearchFilterThe base filter for searching for users. For Active Directory,

this is typically ‘(objectClass=user)’.
For Active Directory : (ob-
jectClass=user) Other Exam-
ple : (uid={0})

ldap.GroupSearchBaseGroup Search Base ou=groups
ldap.GroupSearchFilterGroup Search Filter For Active Directory : (ob-

jectClass=group) Other Ex-
ample : (member={0})

Note

For ldap.UserSearchFilterwe can use strings like (uid={USERNAME}) In this case {USERNAME} would
be replaced by the real username of the user when searching in LDAP during Add User.

LDAP Certificate

If ldaps is being used, the ldap certificate needs to be imported into cacerts.

For Reference : https://docs.oracle.com/cd/E19509-01/820-3399/ggfrj/index.html

Importing a user from LDAP into Sparkflows

Once LDAP is enabled in Sparkflows, users can be imported into Sparkflows from LDAP.

3.1. Configuration 65

ldap://
ldap://localhost:10389
https://docs.oracle.com/cd/E19509-01/820-3399/ggfrj/index.html

Sparkflows Documentation, Release 0.0.1

• Go to Administration/User

• Click on Add/Sync User

• Enter the username and click on Search

• User details are fetched from LDAP

• Click on Add User to create the user in Sparkflows

User Login

Once LDAP is enabled in Sparkflows, all the authentication for login in Sparkflows are done against LDAP.

Search Order

Sparkflows would search in LDAP and then in its DB. Search order is determined by the parameter ldap.Order.

If it is set to LDAP_DB, it would first search for the User in LDAP and then in its own DB. This allows having the
admin user in the Sparkflows DB if needed, so that all users are not locked out of the system in case LDAP goes down
or ends up with invalid Configurations.

Reference

Below are some great links for reference:

• Active Directory Search Filter Syntax : https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

What if I get locked out

ldap.Order determines the order in which Sparkflows tries to log in the user. In case you are locked out of
Sparkflows and are not able to log in, you can do the following:

• Add the below line to conf/configuration.properties:

ldap.Order=DB

• Then restart the fire server. Now you should be able to log in with your admin account.

Once things are back to normal, you can remove the line you added to configuration.properties and restart
the fire server.

Notes

• Search strings are not case sensitive

OAuth Authentication

Fire Insights supports OAuth Authentication.

66 Chapter 3. Configuration

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

Sparkflows Documentation, Release 0.0.1

Create Users in Fire

First create the user in Fire under Administration/Users.

Log into Fire with the admin user in order to be able to create the New Users.

Configuring OAuth

In order the configure OAuth in Fire Insights, add the OAuth configuration parameters to conf/application.
properties.

Below is an example of configuring OAuth in Fire with Okta.

Okta settings
oauth.client.clientId: 0oadvfdsfsdA7Y68356
oauth.client.clientSecret: YSWFdZf9kfdsfsdfsdfsdnI0SVrswOJpHl
oauth.client.accessTokenUri: https://xyz.okta.com/oauth2/default/v1/token
oauth.client.userAuthorizationUri: https://xyz.okta.com/oauth2/default/v1/authorize
oauth.client.clientAuthenticationScheme: form
oauth.client.scope: openid profile email
oauth.resource.userInfoUri: https://xyz.okta.com/oauth2/default/v1/userinfo

Fire OAuth URL

In order to log in the user into Fire using OAuth, use the following URL:

• http://machine_name:port/login/oauth

This URL will take the user to the OAuth login page. After the user logs in there, the user is redirected back to Fire
and is logged in.

If the user is already logged in, going to the above URL, automatically brings up the Fire page for the user.

3.1.13 HDInsight Integration

Fire Insights runs seamlessly on Azure HDInsight.

Fire can be installed on the master or edge nodes of the cluster.

HDInsights and Ports

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-port-settings-for-services

Linux-based HDInsight clusters only expose three ports publicly on the internet; 22, 23, and 443. These ports are used
to securely access the cluster using SSH and services exposed over the secure HTTPS protocol.

Internally, HDInsight is implemented by several Azure Virtual Machines (the nodes within the cluster) running on
an Azure Virtual Network. From within the virtual network, you can access ports not exposed over the internet. For
example, if you connect to one of the head nodes using SSH, from the head node you can then directly access services
running on the cluster nodes.

To join additional machines to the virtual network, you must create the virtual network first, and then specify it when
creating your HDInsight cluster. For more information, see Extend HDInsight capabilities by using an Azure Virtual
Network

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-extend-hadoop-virtual-network

3.1. Configuration 67

http://machine_name:port/login/oauth
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-port-settings-for-services
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-extend-hadoop-virtual-network

Sparkflows Documentation, Release 0.0.1

Port Configuration

Fire Insights by default listens on ports 8080 and 8443.

On HDInsight, port 8080 generally is already in use. So configure Fire Insights to listen on another port, say 8090.

Edit conf/application.properties:

#Configure http and https port numbers : Default 8080 for http and 8443 for https
http.port=8090
https.port=8443

Open the Port for access

Now the port 8090 needs to be opened to be accessed by the users using their Browser.

• https://stackoverflow.com/questions/45239566/accessing-http-on-custom-port-in-azure-hdinsight-cluster

Add proxy user

Fire needs to impersonate the logged in user.

In Ambari for the HDInsight cluster, add the Fire user in HDFS to be the proxy user.

Suppose Fire is installed as the user fire. Add the below to HDFS/Configuration in Ambari:

hadoop.proxyuser.fire.groups=*
hadoop.proxyuser.fire.hosts=*

Connecting Fire Insights to the HDInsight Cluster

In Fire Insights, under Administration/Configuration, configure the following for it to be able to connect to the HDIn-
sight cluster.

• hdfs.namenodeURI=wasb://

• app.runOnCluster=true

• app.postMessageURL=

• app.sparkSubmitJar=

Clicking on Infer Hadoop Configuration would correctly infer these. Hit Save after that.

3.1.14 MapR Integration

This document describes details when installing Fire Insights on a MapR cluster.

Download Fire Insights

• Download MapR specific binary from : https://www.sparkflows.io/archives

68 Chapter 3. Configuration

https://stackoverflow.com/questions/45239566/accessing-http-on-custom-port-in-azure-hdinsight-cluster
https://www.sparkflows.io/archives

Sparkflows Documentation, Release 0.0.1

Turn off Impersonation

• In Administration / Configuration of Sparkflows:

Turn off impersonation : Set app.impersonateUsers = false
Set maprfs : hdfs.namenodeURI = maprfs:///
Set spark-submit appropriately : spark.spark-submit = /opt/mapr/spark/xyz/bin/
→˓spark-submit

Update http port

• Set http port` to be different in `conf/application.properties if there are other
processes using the specified ports

Fire User

• Fire has to be installed as a user which can submit jobs to the MapR cluster. Say we installed Fire as user mapr:

Create a mapr user in sparkflows and log in as that user
Start using Sparkflows

3.1.15 Upgrading Fire

Stop Fire if it is running

Stop Fire with the below command from the directory in which it is installed:

run-fire-server.sh stop

Download the new fire tgz file

Download Fire tgz file from:

- https://www.sparkflows.io/download OR

- https://www.sparkflows.io/archives

Unpack it

Unpack the tgz file with below on unix/linux:

tar xvf fire-x.y.z.tgz

Upgrade the H2 or MySQL database

• If you have updated the conf/db.properties file, copy it from your old location to the new directory

• Backup your existing H2 db files. By default they are in your home directory as firedb.mv.db

• If you are using MySQL, backup the fire database in MySQL.

3.1. Configuration 69

Sparkflows Documentation, Release 0.0.1

• Execute the following commands on the Command Line to upgrade the Fire database:

cd <install_dir>/fire-x.y.z

./create-h2-db.sh OR ./create-mysql-db.sh

the above command creates or updates the existing db if one already exists

Restart Fire

Restart the Fire Server:

run-fire-server.sh start

3.1.16 Running Apache Spark Standalone

Fire can be run on Spark Standalone cluster. In this case, Hadoop does not need to be installed.

Installing Spark Standalone

• Install Java

– wget –no-cookies –no-check-certificate –header “Cookie: gpw_e24=http%3A%2F%2Fwww.oracle.com%2F;
oraclelicense=accept-securebackup-cookie” “https://download.oracle.com/otn-pub/java/jdk/8u201-b09/
42970487e3af4f5aa5bca3f542482c60/jdk-8u201-linux-x64.rpm”

– yum localinstall jdk-8u201-linux-x64.rpm

– Java -version

Install Scala

• Install Scala

– wget http://www.scala-lang.org/files/archive/scala-2.10.1.tgz

– tar xvf scala-2.10.1.tgz

– sudo mv scala-2.10.1 /usr/lib

– sudo ln -s /usr/lib/scala-2.10.1 /usr/lib/scala

– export PATH=$PATH:/usr/lib/scala/bin (we can add in .bash_profile)

– scala -version

70 Chapter 3. Configuration

https://download.oracle.com/otn-pub/java/jdk/8u201-b09/42970487e3af4f5aa5bca3f542482c60/jdk-8u201-linux-x64.rpm
https://download.oracle.com/otn-pub/java/jdk/8u201-b09/42970487e3af4f5aa5bca3f542482c60/jdk-8u201-linux-x64.rpm
http://www.scala-lang.org/files/archive/scala-2.10.1.tgz

Sparkflows Documentation, Release 0.0.1

Install Apache Spark

• Download Spark

– wget http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-hadoop2.7.tgz

• Extract, create a new directory under the /usr/local called spark and copy the extracted connect into it

– tar xf spark-2.1.0-bin-hadoop2.7.tgz

– mkdir /usr/local/spark

– cp -r spark-2.1.0-bin-hadoop2.7/* /usr/local/spark

• Setup some Environment variables before you start spark-shell (in .bash_profile)

– export SPARK_EXAMPLES_JAR=/usr/local/spark/examples/jars/spark-examples_2.11-2.0.0.jar

– PATH=$PATH:$HOME/bin:/usr/local/spark/bin

• Start you Scala Shell and run Spark

– Go to sparkflows home directory

– cd /usr/local/spark/bin

– ./spark-shell

• Start a standalone master server by executing:

– ./sbin/start-master.sh (from spark home directory)

• Once started, the master will print out a spark://HOST:PORT URL

• You can also find this URL on the master’s web UI,

– http://Master_host_ip:8080/ by default

Setup Spark Slave(Worker) Node

• Go to SPARK_HOME/conf/ directory.

• Edit the file spark-env.sh – Set SPARK_MASTER_HOST

– If spark-env.sh is not present, spark-env.sh.template would be present. Make a copy of spark-
env.sh.template with name spark-env.sh and add/edit the field SPARK_MASTER_HOST. Part of the file
with SPARK_MASTER_HOST

– cp ./conf/spark-env.sh.template ./conf/spark-env.sh

• Add a line in spark-env.sh :

– SPARK_MASTER_HOST=’MASTER_HOST_IP’

3.1. Configuration 71

http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-hadoop2.7.tgz
http://Master_host_ip:8080/

Sparkflows Documentation, Release 0.0.1

Start spark as slave

• Goto SPARK_HOME/sbin and execute the following command.

– ./start-slave.sh spark://MASTER_HOST_IP:7077

Installing Fire

Install Fire on the master node.

• Download Fire Jar from website

– wget https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

– tar xvf fire-x.y.z.tgz

• Go to below directory:

– cd fire-x.y.z

– Update the port of Fire-ui & Fire to 8090 & 8082 as default port 8080 & 8081 is used by standalone spark,
we can chose any other also.

– From fire-x.y.z directory, we need to go conf/application.properties and update the port No.

• Create database & run fire & fire-ui server

– ./create-h2-db.sh

– ./run-fire.sh start

72 Chapter 3. Configuration

https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

Sparkflows Documentation, Release 0.0.1

– ./run-fire-server.sh start

Configuring Fire

Below are the configuration for Fire to submit the jobs to the Spark Standalone Cluster.

• Once The server fire & fire-ui start

– Login to http://Machine_ip:8090/#/dashboard

– With password admin/admin.

– Upload default applications.

– Create a user ec2-user.

– Login with ec2-user

configurations in spark

The following configurations have to be set appropriately

• Go to administration section and open Spark configuration there we need to add Below details in specific setup like below:

– spark.master: spark://Master_host_ip:7077

– spark.deploy-mode: client

– spark.sql-context: SQLContext

– After above updates save the configurations.

Now go to application and try to run any workflows

3.1. Configuration 73

http://Machine_ip:8090/#/dashboard

Sparkflows Documentation, Release 0.0.1

3.1.17 Running Fire as a Service

Fire Insights can be configured to run as a service. This way when the machine reboots, Fire Insights would be
automatically restarted.

Below are the steps for configuring Fire Insights as a service.

74 Chapter 3. Configuration

CHAPTER 4

Authentication

4.1 Authentication

Fire Insights supports various types of authencations:

• Database Authentication

• LDAP Authentication

• OAuth Authentication

4.1.1 Database Authentication

Fire Insights can authenticate the user against its own database.

User’s password are stored encrypted.

This is the default authentication mechanism of Fire Insights. Users created in Fire are stored in the database.

4.1.2 LDAP Authentication

Fire Insights can be configured to authenticate the user against LDAP. Users have to be added to Fire, before they can
log into Fire and start using it.

The following configurations have to be set appropriately.

75

Sparkflows Documentation, Release 0.0.1

LDAP Parameters

Table 1: LDAP Parameters
Name of Param-
eter

Description Example

ldap.Order Order in which to authenticate the user. Possible values are
DB, LDAP_DB, DB_LDAP.

ldap.URL The URL of the LDAP server. The URL must
be prefixed with ldap:// or ldaps://. The URL
can optionally specify a custom port, for example:
ldaps://ldap_server.example.com:1636.

ldap://localhost:10389

ldap.Base The distinguished name to use as a search base for
finding users and groups. This should be similar to
‘dc=sparkflows,dc=com’.

dc=sparkflows,dc=com

ldap.UserDn Distinguished name of the user to bind as. This is used to
connect to LDAP/AD for searching user and group informa-
tion. This may be left blank if the LDAP server supports
anonymous binds.

uid=john,ou=development,dc=sparkflows,dc=com

ldap.Password The password of the bind user. xyz
ldap.UserSearchBaseUser Search Base ou=development
ldap.UserSearchFilterThe base filter for searching for users. For Active Directory,

this is typically ‘(objectClass=user)’.
For Active Directory : (ob-
jectClass=user) Other Exam-
ple : (uid={0})

ldap.GroupSearchBaseGroup Search Base ou=groups
ldap.GroupSearchFilterGroup Search Filter For Active Directory : (ob-

jectClass=group) Other Ex-
ample : (member={0})

Note

For ldap.UserSearchFilterwe can use strings like (uid={USERNAME}) In this case {USERNAME} would
be replaced by the real username of the user when searching in LDAP during Add User.

LDAP Certificate

If ldaps is being used, the ldap certificate needs to be imported into cacerts.

For Reference : https://docs.oracle.com/cd/E19509-01/820-3399/ggfrj/index.html

76 Chapter 4. Authentication

ldap://
ldap://localhost:10389
https://docs.oracle.com/cd/E19509-01/820-3399/ggfrj/index.html

Sparkflows Documentation, Release 0.0.1

Importing a user from LDAP into Sparkflows

Once LDAP is enabled in Sparkflows, users can be imported into Sparkflows from LDAP.

• Go to Administration/User

• Click on Add/Sync User

• Enter the username and click on Search

• User details are fetched from LDAP

• Click on Add User to create the user in Sparkflows

User Login

Once LDAP is enabled in Sparkflows, all the authentication for login in Sparkflows are done against LDAP.

Search Order

Sparkflows would search in LDAP and then in its DB. Search order is determined by the parameter ldap.Order.

If it is set to LDAP_DB, it would first search for the User in LDAP and then in its own DB. This allows having the
admin user in the Sparkflows DB if needed, so that all users are not locked out of the system in case LDAP goes down
or ends up with invalid Configurations.

Reference

Below are some great links for reference:

• Active Directory Search Filter Syntax : https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

What if I get locked out

ldap.Order determines the order in which Sparkflows tries to log in the user. In case you are locked out of
Sparkflows and are not able to log in, you can do the following:

• Add the below line to conf/configuration.properties:

ldap.Order=DB

• Then restart the fire server. Now you should be able to log in with your admin account.

Once things are back to normal, you can remove the line you added to configuration.properties and restart
the fire server.

Notes

• Search strings are not case sensitive

4.1.3 OAuth Authentication

Fire Insights supports OAuth Authentication.

4.1. Authentication 77

https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

Sparkflows Documentation, Release 0.0.1

Create Users in Fire

First create the user in Fire under Administration/Users.

Log into Fire with the admin user in order to be able to create the New Users.

Configuring OAuth

In order the configure OAuth in Fire Insights, add the OAuth configuration parameters to conf/application.
properties.

Below is an example of configuring OAuth in Fire with Okta.

Okta settings
oauth.client.clientId: 0oadvfdsfsdA7Y68356
oauth.client.clientSecret: YSWFdZf9kfdsfsdfsdfsdnI0SVrswOJpHl
oauth.client.accessTokenUri: https://xyz.okta.com/oauth2/default/v1/token
oauth.client.userAuthorizationUri: https://xyz.okta.com/oauth2/default/v1/authorize
oauth.client.clientAuthenticationScheme: form
oauth.client.scope: openid profile email
oauth.resource.userInfoUri: https://xyz.okta.com/oauth2/default/v1/userinfo

Fire OAuth URL

In order to log in the user into Fire using OAuth, use the following URL:

• http://machine_name:port/login/oauth

This URL will take the user to the OAuth login page. After the user logs in there, the user is redirected back to Fire
and is logged in.

If the user is already logged in, going to the above URL, automatically brings up the Fire page for the user.

4.1.4 SSO

Single sign-on (SSO) enables you to authenticate your users using your organization’s identity provider. If your
identity provider supports the SAML 2.0 protocol, you can use Fire Insights SSO to integrate with your identity
provider.

Below are the steps for setting up & configuring OneLogin with Fire Insights.

SAML OneLogin setup

Below are steps to setup SAML 2.0 OneLogin

1. Create an account at one Login

2. SignIn into oneLogin

3. Go to administrator >> Click on applications menu >>

4. Add an app

5. Select an application:

Search application 'SAML Test Connector'
Select the application SAML Test Connector (Advanced).

78 Chapter 4. Authentication

http://machine_name:port/login/oauth

Sparkflows Documentation, Release 0.0.1

4.1. Authentication 79

Sparkflows Documentation, Release 0.0.1

6. Input an application name and save it.

7. Configure the newly created app and add below information:

Audience (EntityID)
Recipient
ACS (Consumer) URL Validator*
ACS (Consumer) URL*
Single Logout URL
Login URL

Fire Insights SAML oneLogin Configuration

Fire Insights can be Configured with SAML 2.0 OneLogin as below.

Go to folder conf/sso.saml.properties file:

Add below information from newly created application in oneLogin:

1. Enable sso in sparkflows:

sparkflows.sp.sso.enable=true

2. Create user locally in application if user doesn’t exist in Fire Insights, otherwise app will show page ‘User not
found’:

sparkflows.sp.auto.user.create=true

3. Metadata url of identity provider.

saml2.idp.metadata-url=https://sparkflows-dev.onelogin.com/saml/metadata/5f5d16a1-
→˓07d1-4167-a305-489d2ee0b18b

80 Chapter 4. Authentication

Sparkflows Documentation, Release 0.0.1

4. Identifier of the SP entity (must be a URI) Audience URI

saml2.sp.entityid=https://localhost:8443/sparkflow/saml/metadata

5. Identifier of the IdP entity (must be a URI)

saml2.idp.entityid=https://app.onelogin.com/saml/metadata/5f5d16a1-07d1-4167-a305-
→˓489d2ee0b18b

6. Algorithm that the toolkit will use on signing process.

saml2.security.signature_algorithm=http://www.w3.org/2001/04/xmldsig-more#rsa-sha1

Note: Make sure to change localhost to your domain name or your ip

SAML okta setup

Below are steps to setup SAML 2.0 okta

1. Create an account at okta

4.1. Authentication 81

Sparkflows Documentation, Release 0.0.1

2. SignIn into okta

3. After login go to home and Click on Admin

4. Click on Developer Console

5. Add an app:

6. Create New App:

7. Select SAML 2.0

8. Input app name and click next:

9. Configure the newly created app and add be-
low information

10. Click finish

Note: Make sure to change localhost to your domain name or your ip

82 Chapter 4. Authentication

Sparkflows Documentation, Release 0.0.1

4.1. Authentication 83

Sparkflows Documentation, Release 0.0.1

84 Chapter 4. Authentication

Sparkflows Documentation, Release 0.0.1

Fire Insights SAML Okta Configuration

Fire Insights can be configured with SAML
2.0 Okta as below.

Go to folder conf/okta.saml.
properties file:

Add below information from newly created
application in oneLogin:

1. Enable sso in sparkflows:

sparkflows.sp.sso.enable=true

2. Create user locally in application if user
doesn’t exist in Fire Insights, otherwise app
will show page ‘User not found’:

sparkflows.
→˓sp.auto.user.create=true

3. Copy Okta config info

Identifier of the SP entity
→˓ (must be a URI) Audience URI
saml2.sp.entityid=https:/
→˓/localhost:8443/
→˓sparkflow/saml/metadata
Algorithm that the toolkit
→˓will use on signing process
saml2.security.
→˓signature_algorithm=http:/
→˓/www.w3.org/2001/
→˓04/xmldsig-more#rsa-sha256

4. Right click on identity provider metadata and
select Copy link address

4.1. Authentication 85

Sparkflows Documentation, Release 0.0.1

#Metadata
→˓url of identity provider
saml2.idp.metadata-
→˓url=https://dev-514411.okta.
→˓com/app/exk6sc27dyq4istqO357/
→˓sso/saml/metadata

5. Capture Issuer url

Note: Make sure to change localhost to your domain name or your ip

86 Chapter 4. Authentication

Sparkflows Documentation, Release 0.0.1

4.1. Authentication 87

Sparkflows Documentation, Release 0.0.1

88 Chapter 4. Authentication

CHAPTER 5

Security

5.1 Security

5.1.1 User Group Role Permission

Fire Insights supports Users, Groups, Roles, Permissions. A User can belong to multiple groups and have multiple
roles.

Each role can have multiple permissions.

Groups

There can be multiple groups in Fire Insights.

Users

Fire Insights supports multiple users. Each user can belong to multiple groups, and also have multiple Roles.

89

Sparkflows Documentation, Release 0.0.1

Permissions

Fire Insights supports the following Permissions. Permissions are associated with Roles.

Title Description
users.manage create, modify & disable user
groups.manage Create, modify & delete the group
roles.manage Create, modify & delete the roles
projects.manage Create, modify & delete the projects
configurations.manage modify diifferent configurations
datasets.view view dataset in specified project
datasets.modify modify datasets in specified project
workflows.view view workflows in specified project
workflows.modify modify workflows in specified project
workflows.execute execute workflow in specified project
apps.modify modify analytics application
apps.execute execute analytics application
apps.view view analytics application

Roles

A user can have multiple Roles. The actions which a user can do depends on the Roles they belong to.

5.1.2 Sharing Projects

A project can be shared with multiple Groups. A Project is visible only to those users who belong to the groups with
whom it has been shared with.

Below, the Project is shared with the DEFAULT group.

The following permissions can be given to a group during sharing of the project.

All users belonging to the group get the associated permissions on the Project.

90 Chapter 5. Security

Sparkflows Documentation, Release 0.0.1

5.1.3 Databricks Security

Users in Fire Insights access Databricks via Databricks Tokens.

Whenever users interact with Databricks in Fire Insights, they have the access which is assigned to the token in
Databricks.

Below diagrams show the integration of Fire Insights with Databricks.

Viewing DB/Tables

In Fire Insights users can view the databases and tables. They are accessed via JDBC from Databricks cluster using
the token.

The same applies if users chose to execute a query to view a few records from the table.

Executing Workflows

When users execute workflows in Fire Insights, they are submitted to the Databricks cluster view the REST API using
the Databricks token. These jobs post back messages to Fire Insights. They use a token generated specifically for the
job to post back the messages.

Databricks Connections

The Databricks cluster details and token are specified in a Connection. The user uses the connections when talking to
Databricks.

Connections can be at the global level or at the Project level. Global level connections are created by the admin user.
Project level connections are created by the Project users.

Fire Insights would also support defining Group level connections.

5.1.4 Admin user

Fire Insights support variety of permissions for Roles. Each user can be assigned one more more Roles.

5.1. Security 91

Sparkflows Documentation, Release 0.0.1

92 Chapter 5. Security

Sparkflows Documentation, Release 0.0.1

Permissions supported by Fire Insights

Below are the permissions supported by Fire Insights.

Title Description
users.manage create, modify & disable user
groups.manage Create, modify & delete the group
roles.manage Create, modify & delete the roles
projects.manage Create, modify & delete the projects
configurations.manage modify diiferent configurations
connections.manage add & modify diifferent connections
datasets.view view dataset in specified project
datasets.modify modify datasets in specified project
workflows.view view workflows in specified project
workflows.modify modify workflows in specified project
workflows.execute execute workflow in specified project
apps.modify modify analytics application
apps.execute execute analytics application
apps.view view analytics application

Permissions for Admin User

In Fire Insights generally the below permissions are associated with Admin features

• users.manage

• groups.manage

• roles.manage

• configurations.manage

An admin user in Fire Insights is one who has users.manage permission.

Admin User Rights

The Admin user gets the following rights.

Operating Fire Insights

In Fire Insights an admin user can do the following administration tasks:

• Configure Fire Insights

• Run Diagnostics

• Manage Users, Groups, Permissions

• Load Sample Projects

5.1. Security 93

Sparkflows Documentation, Release 0.0.1

• View Server Logs

• Cleanup Data

Projects/Data etc

As regards to Projects, the Admin user can do the following:

• View all the Projects

• View the executions of all the workflows

• View the executions of all the Analytical Apps

• Onboarding Analytics Apps for a Customer

– Who creates that Project which will hold the Analytics App? Admin user. Now the admin user
becomes the owner of that Project and be able to see everything.

– Who shares that project with the Group of the Customer? Admin user.

Deleting Users/Groups

In Fire Insights, users and groups cannot be deleted. Users can be made inactive.

Superuser

A user in Fire Insights can be marked to be a super-user. A super-user has all the same rights as the admin user.

Details on the Admin user rights

Diagnostics

The admin user can view detailed informations about Machine environments.

Usage Statistics

The admin user can view Total Users, Groups, Roles, Projects, Workflows & Workflows Executions

94 Chapter 5. Security

Sparkflows Documentation, Release 0.0.1

Runtime Statistics

The admin user can view Total Logged In Users, Total Fire Spark Processes, Total Fire Pyspark Processes & Total
Running Jobs

Sample Projects

The admin user can RELOAD SAMPLE PROJECTS, as by default Fire Insights comes with sample projects contain-
ing different types of workflows & datasets

Global Connections

The admin user can Add Connections which everyone can use and also connections at the Group Level.

Server Logs

The admin user can view Fire Server Logs, Fire Logs, Fire Exception Logs & Fire Pyspark Logs

Cleanup Data

The admin user can Delete old workflow executions for cleaning the DB which is Older than Last 7 days, Older than
Last 30 days, Older than Last 90 days & Delete All Executions

5.1. Security 95

Sparkflows Documentation, Release 0.0.1

96 Chapter 5. Security

CHAPTER 6

Operating Fire Insights

6.1 Operating Guide

6.1.1 Logs in Fire Insights

In Fire Insights there are 2 processes which run:

• fire server

• fire engine

Logs for Fire Web Server

The logs for Fire Web Server go into fireserver.log. The logging level is determined by the properties file
conf/log4j.properties.

Example log4j.properties

How to change the various logging levels

Logs for Fire Engine

The logs for Fire Engine go into fire.log.

6.1.2 Installing JDBC Drivers for Workflows

Fire has JDBC Processors for reading from JDBC sources or writing to JDBC sinks.

In order to connect to a JDBC source like Oracle/DB2 etc. the JDBC driver needs to be installed in Fire.

Below are the steps for installing the JDBC driver into Fire:

97

Sparkflows Documentation, Release 0.0.1

• Download the JDBC jar file

• Copy it into ‘fire-user-lib‘ directory under the Fire installation

• Restart fire

Download the JDBC jar file

Download the JDBC jar file for the Database you are looking to connect to.

Copy it into fire-user-lib

Under the Fire installation directory, there is fire-user-lib directory.

Copy the downloaded JDBC jar file into it.

Stop Fire Processes

Stop the running Fire processes with ./run-fire.sh stop

They will be restarted automatically.

Running Workflows depending on the jars added

When running workflows which depend on the jar file, select the checkbox for that jar file in the Workflow Execution
Page.

Downloading the JDBC jar files

MySQL

• MySQL connector can be downloaded from : https://dev.mysql.com/downloads/connector/j/

• After downloading untar it with : tar xvf mysql-connector-java-5.1.46.tar.gz

• After untaring the jdbc jar file is available in the directory

• Use the jar file (mysql-connector-java-5.1.46.jar) for installation in Fire

PostgreSQL

• PostgresSQL JDBC drivers can be downloaded from : https://jdbc.postgresql.org/download.html

Oracle

• Oracle JDBC drivers can be downloaded from : https://www.oracle.com/technetwork/database/features/jdbc/
jdbc-drivers-12c-download-1958347.html

98 Chapter 6. Operating Fire Insights

https://dev.mysql.com/downloads/connector/j/
https://jdbc.postgresql.org/download.html
https://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html
https://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html

Sparkflows Documentation, Release 0.0.1

JDBC Drivers

When using the JDBC processors, the following can be used for the JDBC Driver. Below are the JDBC URL’s for
some databases:

• MySQL : com.mysql.jdbc.Driver

• PostgreSQL : org.postgresql.Driver

• Oracle : oracle.jdbc.driver.OracleDriver

Example JDBC URL

Below are some example JDBC URL for reading from Relational sources when using the JDBC Processors:

• MySQL : jdbc:mysql://localhost:3306/mydb

• PostgreSQL : jdbc:postgresql://localhost:5432/mydb

6.1.3 Installing JDBC Drivers for Interactive Dashboard

Interactive Dashboard work with JDBC sources. The appropriate JDBC jars have to be installed.

Below are the steps for installing the JDBC driver for Interactive Dashboards:

• Download the JDBC jar file

• Copy it into ‘fire-server-lib‘ directory under the Fire installation

• Restart fire-server

Download the JDBC jar file

Download the JDBC jar file for the Database you are looking to connect to.

Copy it into fire-server-lib

Under the Fire installation directory, there is fire-server-lib directory.

Copy the downloaded JDBC jar file into it.

Restart Fire Server

Restart Fire with ./run-fire-server.sh restart

Fire does not need to be restarted.

Downloading MySQL Connector

• MySQL connector can be downloaded from : https://dev.mysql.com/downloads/connector/j/

• After downloading untar it with : tar xvf mysql-connector-java-5.1.46.tar.gz

• After untaring the jdbc jar file is available in the directory

• Use the jar file (mysql-connector-java-5.1.46.jar) for installation in Fire

6.1. Operating Guide 99

jdbc:mysql://localhost:3306/mydb
jdbc:postgresql://localhost:5432/mydb
https://dev.mysql.com/downloads/connector/j/

Sparkflows Documentation, Release 0.0.1

6.1.4 Running Tesseract in Fire

In order to run Tesseract, perform the below installation steps:

Download & Install the Tesseract Language Data files

• Download and Install the tesseract language data files on each of the worker nodes of the cluster

• Install them in the same directory on each of the worker nodes

– git clone https://github.com/tesseract-ocr/tessdata.git

• Make sure that the tessdata directory is accessible to all the users.

Set TESSDATA_PREFIX as an Environment Variable and restart the Sparkflows server

• Point the environment variable TESSDATA_PREFIX to the tessdata directory

– export TESSDATA_PREFIX=/home/centos/tessdata

• Restart the sparkflows server

• If the above is not done correctly, then the Sparkflows server would exit when any OCR node is run

Include TESSDATA_PREFIX in spark configs when submitting the job

Include the following in spark configs when running workflows containing the OCR node:

• --conf spark.executorEnv.TESSDATA_PREFIX=/home/centos/tessdata

• where the tesseract language data files are in /home/centos/tessdata directory on each of the worker
nodes

Error if TESSDATA_PREFIX is not set correctly

If TESSDATA_PREFIX is not set, the spark program would run into the error below.

• Error opening data file /Users/saudet/projects/bytedeco/javacpp-presets/tesseract/cppbuild/macosx-
x86_64/share/tessdata/eng.traineddata

• Please make sure the TESSDATA_PREFIX environment variable is set to the parent directory of your “tessdata”
directory.

• Failed loading language ‘eng’

• Tesseract couldn’t load any languages!

6.1.5 Running Apache OpenNLP Model Jars in Fire Insights

When running locally

• Create a directory called opennlp-models-1.5 on the local file system

• Download the Apache OpenNLP model jar from : http://opennlp.sourceforge.net/models-1.5/

– eg: wget http://opennlp.sourceforge.net/models-1.5/en-ner-person.bin

• Copy the Apache OpenNLP model jar into the opennlp-models-1.5 directory created

100 Chapter 6. Operating Fire Insights

http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/en-ner-person.bin

Sparkflows Documentation, Release 0.0.1

When running on a Spark cluster

• Copy the model file onto HDFS into a directory called opennlp-models-1.5

• For example /user/centos/opennlp-models-1.5/en-ner-person.bin

• The model file should be accessible by all the users who would use it

6.1.6 Installing/Using OpenNLP model jars

When running locally

• Create a directory called opennlp-models-1.5 on the local file system

• Download the OpenNLP model jar from : http://opennlp.sourceforge.net/models-1.5/

– eg: wget http://opennlp.sourceforge.net/models-1.5/en-ner-person.bin

• Copy the OpenNLP model jar into the opennlp-models-1.5 directory created

When running on a Spark cluster

• Copy the model file onto HDFS into a directory called opennlp-models-1.5

• For example /user/centos/opennlp-models-1.5/en-ner-person.bin

• The model file should be accessible by all the users who would use it

Using OpenNLP model jars

• Specify the path of the jar file in the dialog box of the Open NLP nodes in the workflow

6.1. Operating Guide 101

http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/en-ner-person.bin

Sparkflows Documentation, Release 0.0.1

• For example for the OpenNLPNameFinder node the path can be : /user/centos/opennlp-models-1.5/en-ner-
person.bin

6.1.7 Using Juypter

Jupyter is extensively used by Data Scientists.

Overview

Fire can be used to easily create a downsampled dataset. Fire provides a sample processor for it.

Once the dataset size has been reduced, Data Scientists can model with it in Jupyter.

Once the modeling process is complete, the algorithm can be run on the full data in Fire.

6.1.8 Maintenance Tasks

Cleaning H2 DB

Fire Insights by default uses the H2 embedded database.

It is important to keep the size of the database in control. All the Fire Insights tables are relatively small except those
which store the result of workflow execution.

Cleaning Old Workflow Executions

It is important to regularly delete the old workflow executions in order to keep the size of the H2 DB in control.

• Go to the Administration/Cleanup Data

102 Chapter 6. Operating Fire Insights

Sparkflows Documentation, Release 0.0.1

• Click on Delete old Workflow Executions in order to delete the old workflow executions.

Compact H2 DB File

If the H2 DB file size grows too large (> 3GB), then follow the steps below for compacting it.

By default H2 DB file is in the home folder of the user running Fire Insights. It is named as firedb.mv.db

• Store Fire Insights

• Make a copy of firedb.mv.db file to be safe

• Use the commands below for compacting it

java -cp ~/fire-3.1.0/db/h2/h2-1.4.199.jar org.h2.tools.Shell URL: jdbc:h2:./firedb Driver : org.h2.Driver User : fire
Password : fire

SHUTDOWN COMPACT

Deleting old files

Regularly delete the following folders:

• /tmp/fire/workflowlogs

• /tmp/fire/workflows

6.1.9 Installing MySQL

This document captures the details for installing MySQL on Centos7

Steps for installing MySQL on Centos7

• Check your hostname

To check your hostname run:

hostname
hostname -f

• Update your system

Run below command to update your system:

sudo yum update

• Install wget if its not on your system

You will need wget to complete this guide. It can be installed as follows:

sudo yum install wget

6.1. Operating Guide 103

jdbc:h2:./firedb

Sparkflows Documentation, Release 0.0.1

Install MySQL

MySQL must be installed from the community repository.

• Download and add the repository

Download and add the repository, then update:

wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm
sudo rpm -ivh mysql-community-release-el7-5.noarch.rpm
sudo yum update

• Install MySQL as usual and start the service

Install MySQL as usual and start the service. During installation, you will be asked if you want to accept the results
from the .rpm file’s GPG verification. If no error or mismatch occurs, enter y:

sudo yum install mysql-server
sudo systemctl start mysqld

Harden MySQL Server

• Harden security Concern

Run the mysql_secure_installation script to address several security concerns in a default MySQL installation:

sudo mysql_secure_installation

• To check Existing password generated

To check Existing password generated:

sudo grep 'temporary password' /var/log/mysqld.log

• You can also create new password while installing too.

Using MySQL

The standard tool for interacting with MySQL is the mysql client which installs with the mysql-server package. The
MySQL client is used through a terminal

• Root Login

To log in to MySQL as the root user:

mysql -u root -p

• When prompted, enter the root password you assigned when the mysql_secure_installation script was run

You’ll then be presented with a welcome header and the MySQL prompt as shown below:

mysql>

104 Chapter 6. Operating Fire Insights

Sparkflows Documentation, Release 0.0.1

To Provide access from remote pcs

Inorder to Access MySQL from Remote PC, run below command:

CREATE USER 'root'@'%' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' WITH GRANT OPTION;
FLUSH PRIVILEGES;

NOTES * The Port on which MySQL Running ie 3306, should be accessible from target machine.

Create a New MySQL User and Database

In the example below, testdb is the name of the database, testuser is the user, and password is the user’s password:

create database testdb;
create user 'testuser'@'localhost' identified by 'password';
grant all on testdb.* to 'testuser' identified by 'password';

Create a Sample Table

• Log back in as testuser

Login with testuser:

mysql -u testuser -p

• Create a sample table

Create a sample table called customers. This creates a table with a customer ID field of the type INT for integer
(auto-incremented for new records, used as the primary key), as well as two fields for storing the customer’s name:

use testdb;
create table customers (customer_id INT NOT NULL AUTO_INCREMENT PRIMARY KEY, first_
→˓name TEXT, last_name TEXT);

Reset the MySQL Root Password

If you forget your root MySQL password, it can be reset.

• Stop the current MySQL server instance

Stop the current MySQL server instance, then restart it with an option to not ask for a password:

sudo systemctl stop mysqld
sudo mysqld_safe --skip-grant-tables &

• Reconnect to the MySQL server

Reconnect to the MySQL server with the MySQL root account:

mysql -u root

• Use the following commands to reset root’s password

Use the following commands to reset root’s password. Replace password with a strong password:

6.1. Operating Guide 105

Sparkflows Documentation, Release 0.0.1

use mysql;
update user SET PASSWORD=PASSWORD("password") WHERE USER='root';
flush privileges;
exit

• Restart MySQL

Then restart MySQL:

sudo systemctl start mysqld

MySQL JDBC Driver

Download the MySQL JDBC driver from http://www.mysql.com/downloads/connector/j/5.1.html

Extract the JDBC driver JAR file from the downloaded file. For example:

tar zxvf mysql-connector-java-8.0.11.tar.gz

mysql-connector-java.jar

106 Chapter 6. Operating Fire Insights

http://www.mysql.com/downloads/connector/j/5.1.html

CHAPTER 7

Quick Start Guide

7.1 Quickstart Guide

The quickstart gets you started with Fire Insights.

Let’s get started!

7.1.1 Step 1: Create Project

Before you can start creating a workflow, you will need to create a ‘Project’. Project is a bucket where all your artifacts
such as datasets, workflows, dashboards etc. related to a project would reside. Projects are equivalent to workspaces
in IDEs.

From the landing page of Fire Insights, click on “Create Application” to create a new application.

Specify name and description, and click on “Create/Update” button. The new application is created and it is now ready
to use.

7.1.2 Step 2 : Upload Data Files

Every workflow needs data to work on. As a next step, you will upload a CSV file that you want to process in your
workflow.

107

Sparkflows Documentation, Release 0.0.1

If you have your data in CSV file, click on “Data Browsers” and select “HDFS”. Your home directory will be displayed.
Initially, it will be empty as you have not uploaded any file.

Click on “Upload File” button. Choose one or more CSV files that you want to upload.

After selecting the files, click “Upload All”.

In order to use CSV files in workflow, Fire Insights requires that you wrap them in datasets. In the next step, you will
create datasets from the files you have just uploaded.

7.1.3 Step 3 : Create Dataset

Before any data can be used in a workflow, it needs to be wrapped in a dataset. If you uploaded CSV files in the
previous step, in this step you will wrap them in a dataset.

The steps involved in creating a dataset are:

• Open the Application where you want to create dataset

• Click on “Datasets” tab

• Click on “Create” and choose “Datasets”

• Select your dataset type and enter the fields in the dialog

• Update the schema of the dataset

• Click “Save”

When you open your application, all existing datasets specific to the application are displayed in the Datsets tab.

Click on “Create” and choose “Dataset” from the dropdown.

In the pop-up choose “CSV” and then click “OK”.

Fill in the required fields as below.

• Name : Name of the new dataset

• Description : Description of the new dataset

108 Chapter 7. Quick Start Guide

Sparkflows Documentation, Release 0.0.1

7.1. Quickstart Guide 109

Sparkflows Documentation, Release 0.0.1

• Has Header Row : Indicate whether the dataset has a header row specifying the name of the columns or not

• Delimiter : Indicates the delimiter to be used between the fields in the data

• Path : Path for the location of the file or directory containing the data files for the dataset

Now click on “Update dataset/schema” to update the schema of the dataset. Sample data for the dataset will be
displayed followed by the schema.

In the example below, a dataset is created from a housing.csv file. It is a comma separated file with a header row
specifying the names of the various columns.

If the data file did not have a header row, Fire Insights will give standard column names of “C0, C1” etc.

You can update the column names in the schema based on your data.

Now click “Save’ to save the new dataset and you are ready to use it in your workflows.

110 Chapter 7. Quick Start Guide

Sparkflows Documentation, Release 0.0.1

7.1.4 Step 4 : Create Workflow

After you have created the datasets, you can start building workflows to process them.

A typical workflow takes one or more dataset, cleans them and joins them, and creates an enriched dataset. After the
enriched dataset is created, you can add additional processors to build machine learning models.

At a high level,creating a workflow involves the following steps:

• Open the Application where you want to create your workflow

• Click “Workflows” tab

• Create empty workflow

• Add processors

• Save workflow

Application

Open the application where you want to create your new workflow.

Workflows Tab

Click “Workflows” tab to view the list of workflows already in the application. The workflow list will be empty if no
workflows have been created earlier.

Create Empty Workflow

Click “Create” button and choose the type of workflow you want to create. In the “Create Workflow” page, enter a
name, category and description of the workflow. Category is used to group various workflows. For instance, if you
have several workflows for customer reports, you can group them by specifying “Customer Reports” category.

Click “Save” to save the empty workflow.

7.1. Quickstart Guide 111

Sparkflows Documentation, Release 0.0.1

Add Processors

After you have saved the empty workflow, you can start adding processors to process the datasets that you had defined
earlier. Click on the processors on the left hand side pane. This will make the processor appear on the workflow
canvas. Add other procesors,configure and connect them as needed. Two processors can be connected by clicking on
the yellow box in the first processor and dragging it to the second processor.

Save Workflow

Once you are satisfied with your workflow, save the workflow by clicking on ‘Save’ button.

Each time the workflow is saved, a new version of workflow is created.

7.1.5 Step 5 : Execute Workflow

After you have created a workflow, it is time to execute it and view the results.

Executing a workflow involves the following steps:

• Go to Application page where you want to execute the workflow

• Click “Workflows” tab

• Click on the play button

112 Chapter 7. Quick Start Guide

Sparkflows Documentation, Release 0.0.1

• Specify parameter(if any)

• Click on Execute

Application page

Open the application where you have created the workflow to be executed.

Workflows

Click “Workflows” tab to view the list of workflows in the application.

Click on the Play Button

Against each workflow there are a list of icons under “Actions” column for performing various actions on a specific
workflow.

Click “Play” icon under “actions” column to execute the workflow.

Execute workflow page

Specify any paramters for your workflow.

7.1. Quickstart Guide 113

Sparkflows Documentation, Release 0.0.1

Execute Workflow

Once you have specified the parameters, click on “Execute” button. The results of execution are streamed back into
your browser.

7.1.6 Step 6 : Create Dashboard

Dashboards allow you to display the output of multiple workflows in one place.

The steps involved in creating a dashboard are:

• Go to Dashboard tab

• Click on Create New Dashboard

• Drag and drop selected Nodes from the workflows into the Dashboard canvas

• Save the Dashboard

Dashboards

Selecting Dashboard tab will take to Dashboard page.

114 Chapter 7. Quick Start Guide

Sparkflows Documentation, Release 0.0.1

Create Dashboard

This would open up the Dashboard Designer Page.

Name Dashboard

Give a name to your dashboard. You can also add a description for the new dashboard.

Build Dashboard

On the left hand side of the Dashboard Designer, the list of workflows would show up. With each workflow, the nodes
inside the workflow would be displayed.

Nodes inside the workflow can be dragged and dropped onto the dashboard to make them part of the dashboard.

In the dashboard below we have added two nodes to the dashboard.

7.1. Quickstart Guide 115

Sparkflows Documentation, Release 0.0.1

Save Dashboard

Finally save the dashboard.

In order to view the dashboard, click on the ‘View’ button.

View Dashboard

Click on the ‘View’ button to view the dashboard.

The dashboard shows the content from the latest execution of the workflow.

If the workflow has never been executed, the dashboard would not show anything.

116 Chapter 7. Quick Start Guide

CHAPTER 8

User Guide

8.1 User Guide

8.1.1 Datasets

Fire Insights allows you to define your DataSets. These DataSets are then used in Workflows as data sources. DataSet
sources can be local file system when running in local mode, or HDFS & HIVE when running on a Spark cluster.

Schema

• DataSets have Schema defined for them. This allows Fire Insights to read and create a DataFrame out of it. The
DataFrame is then used for transforms, machine learning etc.

File formats

• Sparkflows supports various File formats and is able to infer the schema. These include CSV/TSV,
Parquet, Avro, JSON, XML files.

• Sparkflows also supports creating datasets from HIVE tables. This is not necessary as in the Workflows HIVE
Processors can be directly connected to specific HIVE tables (instead of creating a Dataset in Fire for them).

Dataset Listing Page

When you open any application, all existing Datasets specific to the application are displayed in the Datasets tab.

117

Sparkflows Documentation, Release 0.0.1

Creating New Datasets

You can define a New Dataset by clicking on the Create Dataset button in the Dataset page.

It will bring up the dialog box below. Select the format of the file for which the new Dataset is being created.

Entering Field Details

Below are the details of the fields in the Create Dataset page:

• NAME : Name of the New Dataset we are creating.

• DESCRIPTION : Description of the New Dataset.

• HAS HEADER ROW : This is used for CSV/TSV files. It indicates whether the dataset has a header row
specifying the name of the columns or not.

• DELIMITER : Delimiter field is also used for CSV/TSV files. It indicates the delimiter to be used between the
fields in the data.

• PATH : It defines the location of the file or directory containing the data files for the Dataset. It can either point
to a single file, or to a directory containing a set of files. All the files have to have the same schema.

Updating the Schema of the Dataset

You can update the Schema of the Dataset by clicking on Update Sample Data/Schema. It would display
sample data for the dataset followed by the Schema inferred by Fire Insights.

118 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

In this example, the data file did not have a header row. So Fire gave it standard column names of C0, C1 etc.

You can update the column names in the schema based on your data.

Saving the New Dataset

Click on the Save button to save the New Dataset created.

8.1.2 Workflows

Creating Workflows

Fire Insights enables users to define end-to-end workflows for data pipelining leveraging pre-packaged nodes for
common ETL and Machine Learning models. Workflows are then saved and executed to produce results. Sparkflows
provides a a very intuitive and user friendly editor to achieve the same.

Define New Workflow

Click on ‘Create New Workflow’ for creating a New Workflow, It supports two engines - spark & pyspark. It will open
the Workflow Editor where the workflow can be created.

8.1. User Guide 119

Sparkflows Documentation, Release 0.0.1

Adding New Nodes to the Workflow

• Workflows editor has a list of Nodes menu on the LHS. Clicking on any of the Nodes creates it in the workspace.

Creating Edges

• Nodes can be connected by edges.

• Click on the orange box and drag to the next node to create an edge between them.

Deleting Edges

• Edges can be deleted by double clicking on them.

Saving Workflow

• Give the workflow a name.

• Click on the Save button to create the new workflow.

View Workflows

You can view the workflows by going to the Workflows Page inside specific applications.

Executing Workflows

Fire Workflows can be executed in the following ways:

• Interactively within the User Interface

• Submitting the workflows using spark-submit through the command line

• Scheduling for execution with your scheduler of choice

Interactively within the User Interface

Workflows can be executed from the browser by going into the Execute page of the workflow.

120 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

Executing Workflows with spark-submit

Workflows are saved as text files in JSON format. Workflows can be submitted to be run on the cluster with spark-
submit:

spark-submit --class fire.execute.WorkflowExecuteFromFile --master yarn --
→˓deploy-mode client --executor-memory 1G --num-executors 1 --executor-cores
→˓1 fire-core-1.4.2-jar-with-dependencies.jar --postback-url http://
→˓<machine>:8080/messageFromSparkJob --job-id 1 --workflow-file
→˓kmeans.wf

In the above:

For providing extra variables to the workflow, the following parameters can be added to spark-submit:

--var name1=value1 --var name2=value2 --var name3=value3

In the workflow, these variables can be used with $name1 $name2 Specific nodes make use of the variables by substi-
tuting $name with the value provided for the name.

For running the workflow in debug mode, add the following parameters:

--debug true

Workflow JSON

In Sparkflows, workflows are saved as JSON Strings.

The View JSON Workflow page of the Workflow displays the JSON representations of the workflow.

Scheduling Workflow execution with Scheduler of choice

Since Fire workflows can be submitted with spark-submit, you can use your scheduler of choice for scheduling the
execution of the workflows.

• Click on Schedule Button of Workflow we want to schedule

8.1. User Guide 121

Sparkflows Documentation, Release 0.0.1

122 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

• Click on Tab Schedule New Job for Workflow

• Update the scheduled timing & email notifications after success & failure of workflow as per our
requirments.

• Click on OK to save the changes.

Debugging Workflows

Many times it is helpful to be able to debug the workflows. One easy way is to check the debug checkbox in the UI
when executing the workflow.

Running in debug mode does a few things:

• Performs a count() after executing each Processor. This makes it easier to track errors. It takes out Sparkflows
lazy execution from the picture.

• Displays the number of records processed at each stage.

• Display more information, for each SQL etc. which are being executed.

8.1. User Guide 123

Sparkflows Documentation, Release 0.0.1

Passing Parameters to Workflows

Fire Insights runs the spark jobs with spark-submit. It takes in the workflow JSON as a parameter. There are
multiple ways to pass extra parameters to the workflow. If the same parameter is specified multiple times, the order of
precendence in which they are applied is as shown below:

• Through Program Parameters passed during Workflow Execution

• By specifying the parameters in the Workflow Editor

• Through a Parameter Processor in the workflow

• A Node creating a variable during execution time

Through Program Parameters in Fire during Workflow Execution

Key/Value pairs can be passed to Fire during Workflow Execution. An example of it is --var doctor=1 These
Key/Value pairs would override any Key/Value pair passed through the Parameter Processor in the workflow.

Below is a screenshot:

By specifying the parameters in the Workflow Editor

Parameters can be specified in the Workflow Editor. They can be specified in the following format:

They can be passed with --var name1=value1 --var name2=value2

Through a Parameter Processor in the Workflow

A Parameter Processor can be added to the workflow. It allows passing key/value pairs to the workflow.

A Processor creating a variable during execution time

A Processor can also create a parameter during run time. A Processor creates a new variable and puts it into the
JobContext.

jobContext.nodeGeneratedParameters.put(variable, “”+count);

This parameter can then be later used by another Processor.

For example NodeCount puts the count of records into a variable in the Job Context.

NodeAssert uses this variable when evaluating expressions.

124 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

Through --var parameters with spark-submit

Fire Insights workflow can also be directly executed on the cluster with spark-submit.

In this case, extra parameters can be passed with --var:

spark-submit --class fire.execute.WorkflowExecuteFromFile --master yarn --
→˓deploy-mode client fire-core-3.1.0-jar-with-dependencies.jar --postback-url
→˓http://<machine>:8080 --job-id 1 --workflow-file kmeans.wf --var
→˓name1=value1 --var name2=value2

In the workflow, these parameters can be used with $name1 $name2

Specific nodes make use of the parameters by substituting $name with the value provided for the name.

An example would be : --var id=3

When specifying the expression in the RowFilter Node we can use : id > $id

In the above $id would be replaced with 3.

Specifying --var parameters for all in Sparkflows User Interface

Sparkflows also allows specifying the –var parameters to be passed to all the jobs submitted through Sparkflows.
Below is the screen under Administration/Configuration.

In the above, app.vars parameter allows specifying a space separated list of name=value pairs.

Each of these are passed to the jobs submitted by Sparkflows with --var name=value

Workflow Execution Results

The results of Workflow Execution are streamed into the Browser as they are executed and displayed in rich Format.
A workflow may run for a very long time.

The results of past executions can also be viewed in the Workflow Executions page.

8.1.3 Visualizations

Visualization Processors

There are a number of Nodes/Processors in Fire which produce rich visualizations.

8.1. User Guide 125

Sparkflows Documentation, Release 0.0.1

126 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

These Processors can be added to any workflow and are applied to the data.

Visualization Processors include:

• Graph Values

• Geo

• Group by Column

• Weekday Distribution

• Monthly Distribution

• Yearly Distribution

• Heatmaps

• Tables

Batch Dashboards

Fire allows you to create Dashboards.

Processors in Fire can output data in Tables, Charts, Maps and Simple Strings. Dashboards allow combining the output
of various processors into one User Interface.

For example we might want to output a chart of number of bike rentals per hour, another by per day and another map
displaying the total number of bike rentals per city for the day. Dashboards can combine all these into one view.

Creating Dashboards

• For creating Dashboards, drag and drop the required processors from the workflows into the Dashboard Canvas.

• When the corresponding workflows are run, the output is stored by Fire into the relational store. These get
displayed into the dashboard.

Editing Dashboards

Editing Dashboards is like creating dashboards, except that you click the edit button to edit the corresponding Dash-
board.

Viewing Dashboards

Once a Dashboard has been created you can view it, by clicking on the View button.

8.1. User Guide 127

Sparkflows Documentation, Release 0.0.1

Streaming Dashboards

• Fire allows you to create Streaming Workflows.

• Streaming workflows have a mini-batch duration - say 30 seconds.

• In this case, the output in the Dashboards get updated every 30 seconds as new data come in.

Interactive Dashboard

Fire allows you to create interactive Dashboard.

Fire allows us to create New Dataset using JDBC data type from MYSQL DB & use datasets in creating charts &
dashboard.

Creating I-Dashboard

• For creating I-Dashboard, Create JDBC datasets if not available.

You can define a New Dataset by clicking on the Create Dataset button in the Dataset page.

It will bring up the dialog box below. Select the format of the file for which the new Dataset is being created.

128 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

Entering Field Details

Below are the details of the fields in the Create Dataset page:

• NAME : Name of the New Dataset we are creating.

• DESCRIPTION : Description of the New Dataset.

• CATEGORY : category of the New Dataset.

• JDBC DRIVER : Enter JDBC DRIVER.

• JDBC URL : Enter JDBC URL for MYSQL DB.

• USER : username for MYSQL DB.

• PASSWORD : password for MYSQL DB.

• DB : Database for MYSQL DB.

• TABLE : Table for MYSQL.

Updating the Schema of the Dataset

You can update the Schema of the Dataset by clicking on Update Sample Data/Schema. It would display
sample data for the dataset followed by the Schema inferred by Fire Insights.

You can update the column names in the schema based on your data.

Saving the New Dataset

Click on the Save button to save the New Dataset created.

8.1. User Guide 129

Sparkflows Documentation, Release 0.0.1

Interactive Dashboard

Click on Interactive Dashboard tab in the same application where you have created JDBC Dataset.

Click on chart tab & select Choose a JDBC dataset, there you will find all JDBC datasets created under your
application.

Select any JDBC dataset for which you want to create chart & select CREATE NEW

It will take you to new page, as below

Select the chart type, you want to see chart

Selected Bar chart & updated column for x & y axis and add some filter

Add NAME, DESCRIPTION & save it

Once you save it, the chart will appear in chart list page

Similarly you can create different chart using specified chart type

Now using existing chart, you can create new dashboard

Select Dashboard tab & Click on CREATE DASHBOARD

it will take us to New Dashboard page

Using drag & drop you need to add chart in canvas, Add NAME, DESCRIPTION & SAVE it.

Once the Dashboard got saved successfully, it will show in dashboard list page from where you can view, edit & delete
it.

Exporting Visuals

Fire Insights enables you to export the output, dashboards and visuals in various ways.

130 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

8.1. User Guide 131

Sparkflows Documentation, Release 0.0.1

Exporting dashboard

Since Fire Insights is Browser based end to end, its easy to export the pages as PDF files.

• Go to dashboard under your application where you have created batch dashboard

• On clicking on view option, able to visualize etc. added in that dashboard, there you will have Export option,
Click on that.

It will Export the whole batch dashboard in pdf format on local machine.

Exporting output

Once the workflow successfully completed, the output result can be exported.

• Go to application page where you created workflow & successfully executed.

Clicking on Executions tab the latest workflow execution will show in list page.

On action icon you can see view result, it will take to next page.

On opening above link, able to view result of specific workflow submitted & have Export option through which you
can export result in local machine in pdf format & view that.

132 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

8.1. User Guide 133

Sparkflows Documentation, Release 0.0.1

8.1.4 Scheduling

Fire allows you to schedule workflows by time to be executed.

Scheduling Workflows

Fire allows you to schedule workflows to be run at regular intervals.

Scheduling New Workflow

The workflows page displays the list of various workflows.

Under Action column, there is an icon to schedule any given workflow.

Clicking on the icon takes you to a page for creating new schedules for the workflow. Clicking on Schedule New Job
for Workflow opens the dialog for creating a new schedule.

Viewing Workflows Scheduled

Scheduled/By Time page displays the various workflows scheduled.

Editing a Scheduled Workflow

You can edit a schedule by clicking on the edit icon, updating the new values and saving it.

Viewing Results of Workflow Executions

When workflows are scheduled, they are executed by Fire at the specified schedule.

The results of the execution of the workflows can be viewed in the Workflow Executions Page. This allows us to view
the results of past execution, logs of the run etc.

134 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

Deleting a Scheduled Workflow

Go to the Scheduled/By Time page. It would display the list of scheduled workflows.

Click on the delete icon next to any schedule workflow to delete the schedule.

Notifications & Alerts

Users in general like to be alerted when a job completes or fails, specially in Big Data where Jobs can run for hours
together.

Email Notifications/Alerts when Executing Workflows

When executing the workflows, you can specify email addresses for receiving emails when the workflow fails or
succeeds.

Email Notifications/Alerts when Scheduling Workflows

When scheduling the workflows, you can specify email addresses for receiving emails when the workflow fails or
succeeds.

8.1. User Guide 135

Sparkflows Documentation, Release 0.0.1

136 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

SMTP Configurations

Administrator has to set up the SMTP configurations under Administration/Configuration

Triggering Workflows by Event

Workflow Executions can be triggered by sending an event to a Kafka Topic.

Fire can be configured to poll for events from those topics.

Use Case

The kind of use cases this can handle are:

• A job loads data into HIVE

• Now the job wants to trigger another workflow

• It pushes an event to a Kafka Topic to trigger the workflow

Event Format

Events which are pushed to Kafka are string with the fields separated by | (pipe).

Below is the format of the event.

Type|Value|Spark Submit Configs|Extra Jar Files|Program Parameters|Emails on Success|Emails on Failure

• Type : Type determines the kind of data in the Value column

– 0 : workflow id

– 1 : workflow name

– 2 : workflow uuid

• Value : This defines the value. Values are based on the Type used:

– ID of the workflow

8.1. User Guide 137

Sparkflows Documentation, Release 0.0.1

– Name of the workflow

– UUID of the workflow

• Spark Submit Configs : Extra Spark Submit configurations to be applied when running the Spark Job.

• Extra Jar files : Extra jar files to use in spark-submit.

• Program parameters : Extra program parameters if any.

– Program Parameters are passed to the workflow. Example : --var key1=value1.

• Email on Success : email addresses to send Success email on Job Completion.

• Email on Failure : email addresses to send Failure email on Job Failure.

Example Events

• 0|5| | | |success@sparkflows.io|failure@sparkflows.io

In the above example:

• 0 : Trigger by workflow id

• 5 : Workflow id to trigger

• success@sparkflows.io : Email address to send regarding success of the workflow

• failure@sparkflows.io : Email address to send regarding failure of the workflow

Configuring Fire to listen for Events from the Kafka Topic

Fire has to be configured to listen for Events from the Kafka Topic. Each user can configure their own. The Jobs
would be fired as a user who configured it.

8.1.5 Export / Import of Applications

Fire enables you to export your Applications and download them to your computer.

It then also enables you to import your Applications back into any instance of Fire.

This is useful when you need to move/copy your Application from one environment to another.

Exporting Applications

Fire allows you to export Applications and download them to your computer.

Below are the steps for exporting Applications in Fire.

Go to the Applications Page

138 Chapter 8. User Guide

mailto:success@sparkflows
mailto:success@sparkflows.io
mailto:failure@sparkflows.io

Sparkflows Documentation, Release 0.0.1

Select the Applications you want to export

• Select the Applications you would like to export.

• Then click on the Export button.

• In the dialog box which comes up, select whether you want to export workflows or datasets or both.

• Fire will now export the selected applications and download them to your computer.

Importing Applications

Fire allows you to import Applications. Below are the steps for importing Applications in Fire.

8.1. User Guide 139

Sparkflows Documentation, Release 0.0.1

Go to the Applications Page

• Click on the Import button.

• Choose the zip file from your computer to Import from. You would have previously downloaded this zip file
from Fire during the export process.

• Select the name of the Application which you would like to import from the zip file. Fire would display all the
available Applications in your zip file.

Select the Options for importing the Application

There are two options when importing Applications:

• Import to a New Application

– In this case, the selected Application would be imported as a new Application in Fire Insights.

• Import to an Existing Application

When importing to an existing Application, there are 3 possible methods to choose from:

• Create new workflows and datasets when matching UUID’s found.

• Overwrite datasets and workflows if matching UUID found.

140 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

• Delete all workflows and datasets in the selected Application and create the imported workflows and datasets as
new ones.

On Success

On successful import of the Application into Fire Insights, the success dialog is displayed along with the details of the
import.

8.1.6 Data profiling

Fire Insights allows you to clean the datasets using dataset profile.

Below are the steps for Data Profiling in Fire.

Go to the Applications Page

Go to application page where you need to create dataset or already have existing.

select dataset tab.

Select a dataset & under action icon choose Dataset profile.

Once you Click on Dataset profile, it will take us to next page.

Click on RUN DATA PROFILING option

Once you click on above option, will get notifications about process is getting started.

Once the execution process completed, after refresh the status will updated to green, if its completed and check its
execution result in RHS

8.1. User Guide 141

Sparkflows Documentation, Release 0.0.1

142 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

8.1.7 Pipeline

Fire supports Pipelines. Pipelines allow running workflows in a defined order.

Pipeline List

The Pipeline tab displays the list of Pipelines for the current Application.

Creating a Pipeline

Each Application now allows creating Pipelines.

Below is an example Pipeline with 3 Workflows.

Executing a Pipeline

Pipelines can be executed like workflows. When a Pipeline is executed, its execution is submitted to Airflow.

The Pipeline tab displays the list of Pipelines for the current Application.

8.1. User Guide 143

Sparkflows Documentation, Release 0.0.1

Clicking on the Execute Action icon opens the Pipeline Execute Page.

Pipeline Execution

Once a Pipeline is fired, its details are visible in Pipeline Executions.

8.1.8 OCR with Tesseract

In order to run Tesseract, the below Installation steps have to be performed.

Download & Install the Tesseract Language Data files

• Download and Install the tesseract language data files for Version 3.X on each of the worker nodes of the cluster:

https://github.com/tesseract-ocr/tessdata/releases
wget https://github.com/tesseract-ocr/tessdata/archive/3.04.00.tar.gz

• Install them in the same directory on each of the worker nodes:

git clone https://github.com/tesseract-ocr/tessdata.git

Include TESSDATA_PREFIX in spark configs when submitting the job

• Include the following in spark submit configs when running workflows containing the OCR node:

144 Chapter 8. User Guide

Sparkflows Documentation, Release 0.0.1

--conf spark.executorEnv.TESSDATA_PREFIX=/home/ec2-user/tessdata

• Where the tesseract language data files are in /home/ec2-user/tessdata directory on each of the worker
nodes

Error if TESSDATA_PREFIX is not set correctly

If TESSDATA_PREFIX is not set, the spark program would run into the error below:

Error opening data file /Users/saudet/projects/bytedeco/javacpp-presets/tesseract/
→˓cppbuild/macosx-x86_64/share/tessdata/eng.traineddata
Please make sure the TESSDATA_PREFIX environment variable is set to the parent
→˓directory of your "tessdata" directory.
Failed loading language 'eng'
Tesseract couldn't load any languages!

The above error would be in the Job logs. If yarn is being used it would be in the yarn logs:

yarn logs -applicationId job_application_id

When the job is being executed, Fire displays the job_application_id in the browser.

8.1. User Guide 145

Sparkflows Documentation, Release 0.0.1

146 Chapter 8. User Guide

CHAPTER 9

Web App User Guide

9.1 Analytical Apps User Guide

9.1.1 Creating Analytics App

Fire Insights enables you to create Analytics Apps.

Below is the process for creating a new Analytics App.

• Go to APPLICATIONS / ANALYTICS APPS

• Click on “Create Analytics App”

• Add mandatory fields i.e. “Name”, “select notebook”

• Click on add stage button to add different stages

• Click “Save” Or “Publish”

Go to Analytics Apps

When you go to ANALYTICS APPS under APPLICATIONS all existing analytics app are displayed. Where you can
EDIT, VIEW and DELETE existing analytics app.

147

Sparkflows Documentation, Release 0.0.1

Click on Create Analytics App

Fill in the required fields as below.

• Name : Name of the new analytics app

• category : Category of the new analytics app

• Description : Description of the new analytics app

• Execution Type: : Select execution type i.e notebook and select notebook from the available notebook list

“Save” or “Publish” the analytics app before adding stages.

9.1.2 Adding Stages

Click on “Add stages” button to add a new stage. Select stage type and enter the stage name.

• You can rearrange the stages by dragging and dropping.

• You can EDIT, VIEW and REMOVE stages.

Examples for adding various Stages

1 : Upload Stage

• In upload stage we will first add column component and divide in two columns

• In first column add file component to choose files to upload to databricks. In this component in File tab in
“STORAGE” select “Base64”

148 Chapter 9. Web App User Guide

Sparkflows Documentation, Release 0.0.1

• In other column we will add one textfield to add “DESTINATION PATH” where the browse file should get
uploaded. Set its property name to destinationPath.

• Add upload button and set action to event. Set the button event name to upload.

• Also add next button to go to next stage and perform actions depending upon event. Set the event name as next
for the next button.

Click on “DONE” or “SAVE” to save added components for that stage

2 : Parameters Stage

• In parameters stage we can add select, text-field, select boxes, buttons etc components

For example:

• First we will add column component and divide it in two columns

• Then, lets add select boxes example in first column by adding select boxes component. In this component in
Data tab add all possible values you want to add.

9.1. Analytical Apps User Guide 149

Sparkflows Documentation, Release 0.0.1

150 Chapter 9. Web App User Guide

Sparkflows Documentation, Release 0.0.1

• Then, lets add select example in the second column by adding select component. In this component in Data tab
add all possible values you want to add.

• Now, lets add column component in the bottom and divide into two columns for adding back and next button.

• Add back button in first column to go to back stage and perform actions depending upon event, where we will
add event name as back.

• Add next button in second column to go to next stage and perform actions depending upon event. Set its event
name as next. We can also add CUSTOM CSS CLASS like float-right, float-left etc

Click on “DONE” or “SAVE” to save the added components for that stage.

3 : Run Stage

• In run stage we will execute the notebook with all parameters added in the App.

• Let’s first add title in page if needed with “html element” component like below.

9.1. Analytical Apps User Guide 151

Sparkflows Documentation, Release 0.0.1

• Now, lets add column component in the bottom and divide it into two columns for adding the back and run
buttons.

• Add back button in first column to go to back stage and perform actions depending upon event. Set its event
name as back.

• Add next button in second column to go to next stage and perform actions depending upon event. Set its add
event name as execute. We can also can add CUSTOM CSS CLASS like float-right, float-left etc

Click on “DONE” or “SAVE” to save added components for that stage

9.1.3 Integrating with Databricks Notebook

The Web App in Fire Insights can trigger a Notebook in Databricks.

Fire Insights passes 2 parameters to the Notebook:

• postback-url

152 Chapter 9. Web App User Guide

Sparkflows Documentation, Release 0.0.1

• job-id

Add wheel file to your Databricks Notebook

Add the wheel file to your Databricks Notebook. This is to enable using the Fire Insights API’s for sending data to it.

Outputing details to Fire Insights

The Databricks Notebook can output text, tables and charts to be dispalyed in Fire Insights.

Below are the examples for it.

Create a RestWorkflowContext Object

First create a RestWorkflowContext for communicating with Fire Insights Server

jobId = dbutils.widgets.get("job-id")
webserverURL = dbutils.widgets.get("postback-url")

print(webserverURL)
print(jobId)

from fire_notebook.output.workflowcontext import RestWorkflowContext

restworkflowcontext = RestWorkflowContext(webserverURL, jobId)

Outputing Text

Below is how to output text to Fire Insights

restworkflowcontext.outStr(9, "Test String")

Outputing PySpark Dataframe as Table

The below code outputs the contents of PySpark Dataframe to Fire Insights as a table

from pyspark.sql.types import *

schema = StructType([StructField("c1", DoubleType())\

(continues on next page)

9.1. Analytical Apps User Guide 153

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

,StructField("c2", IntegerType())])
test_list = [[0.0, 2], [1.0, 4], [2.0, 8], [3.0, 16], [4.0, 32], [5.0, 64], [6.0,
→˓128]]
df = spark.createDataFrame(test_list,schema=schema)
restworkflowcontext.outDataFrame(9, "PySpark Dataframe", df)

Outputing Pandas Dataframe as Table

The below code outputs the contents of Pandas Dataframe to Fire Insights as a table

list of strings
lst = ['Geeks', 'For', 'Geeks', 'is',

'portal', 'for', 'Geeks']

Calling DataFrame constructor on list
df = pd.DataFrame(lst, columns=['name'])
print(df)

restworkflowcontext.outPandasDataframe(9, "Names", df)

Outputing CHART

Output the chart in fire by selecting x & y column and Different type of chartType: COLUMNCHART, BARCHART
& LINECHART

from pyspark.sql.types import *

schema = StructType([StructField(“c1”, DoubleType()) ,StructField(“c2”, IntegerType())])

test_list = [[0.0, 2], [1.0, 4], [2.0, 8], [3.0, 16], [4.0, 32], [5.0, 64], [6.0, 128]]

df = spark.createDataFrame(test_list,schema=schema)

restworkflowcontext.outDataframeChart(title= “Example Chart”, x_column = “c1”, y_columns = [“c2”],
chart_type =”LINECHART”, df = df, numRowsToDisplay = 10)

Outputing HTML

Below is how to output html to Fire Insights

htmlstr1 = "<h3>You can view HTML code in notebooks.</h3>"

restworkflowcontext.outHTML(9, title="Example HTML", text = htmlstr1)

Outputing Plotly

Below is how to output plotly to Fire Insights

import plotly.graph_objs as go
import plotly

(continues on next page)

154 Chapter 9. Web App User Guide

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

test = plotly.offline.plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])],
output_type='div',

include_plotlyjs=False)
example_plotly = f'{test}'

restworkflowcontext.outPlotly(9, title="Example Plotly", text = example_plotly)

9.1.4 Running Analytics App

Once the Analytics App has been created, they can be executed.

Below are the steps for executing an Analytics App.

Click on Analytics App Name

Go through the various Stages

Examples of the various Stage Pages

1 : Upload

• Browse files you want to upload to databricks.

• Add destination path of dbfs where you want to upload choose file.

• If added path is not there in dbfs then it will first create the folder in dbfs and then upload the file.

• Then, click on upload button to upload to DBFS and see the csv file data in tabular format.

9.1. Analytical Apps User Guide 155

Sparkflows Documentation, Release 0.0.1

156 Chapter 9. Web App User Guide

Sparkflows Documentation, Release 0.0.1

• You can browse dbfs and check if the file uploaded successfully.

• Click on “NEXT” button to go to next stage.

2 : Parameters

• Select the parameters of your interest

• If you click on “BACK” or “NEXT” button the selected value will remain as it is and you can change it if needed

• Click on “NEXT” button to move to next page

3 : Run

• In this stage you will execute the Analytics App with the added parameters in the earlier stages.

• You can click on back button and change the value and run Analytics App again.

• Click on “RUN” button to execute the app and view the results.

9.1. Analytical Apps User Guide 157

Sparkflows Documentation, Release 0.0.1

158 Chapter 9. Web App User Guide

CHAPTER 10

Data Science

10.1 Machine Learning User Guide

10.1.1 Feature Generation

Feature generation is the process of creating new features from one or multiple existing features, potentially for using
in statistical analysis. This process adds new information to be accessible during the model construction and therefore
hopefully result in more accurate model.

Table 1: Fire Insights provides a number of processors for Feature Gen-
eration. These include:

Title Description
DateToAge Convert Date to Age
CaseWhen Based on the value, convert it to another value
Scala Write Scala code in Spark for generating new Features
SQL Write SQL code for generating new features
StopWOrdRemover Removes Stop Words
Tokenizer Tokenizes a string into Tokens
OneHotEncoder Applies one hot encoding
TF/IDF Finds the TF and IDF
IndexString Converts a column containg String to numeric values

10.1.2 Feature Selection

In machine learning and statistics, feature selection, also known as variable selection, attribute selection or variable
subset selection, in the process of selecting a subset of relevant features (variables, predictors) for use in model con-
struction. Feature selection techniques are used for several reasons:

• simplification of models to make them easier to interpret by researchers/users

• shorter training times

159

Sparkflows Documentation, Release 0.0.1

• to avoid the curse of dimensionality

• enhanced generalization by reducing overfitting (formally, reduction of variance)

• https://en.wikipedia.org/wiki/Feature_selection

Apache Spark has the following Feature Selectors. Fire Insights provides them as Processors to be easily used in the
workflows:

Feature Selection Processors in Fire Insights

Table 2: Apache Spark based Feature Selection Processors in Fire In-
sights

Title Description
VectorSlicer VectorSlicer is a transformer that takes a feature vector and outputs a new feature

vector with a sub-array of the original features. It is useful for extracting fea-
tures from a vector column. VectorSlicer accepts a vector column with specified
indices, then outputs a new vector column whose values are selected via those
indices.

RFormula RFormula selects columns specified by an R model formula. RFormula produces
a vector column of features and a double or string column of label. Like when
formulas are used in R for linear regression, string input columns will be one-hot
encoded, and numeric columns will be cast to doubles. If the label column is of
type string, it will be first transformed to double with StringIndexer. If the label
column does not exist in the DataFrame, the output label column will be created
from the specified response variable in the formula.

ChiSqSelector ChiSqSelector stands for Chi-Squared feature selection. It operates on labeled
data with categorical features. ChiSqSelector uses the Chi-Squared test of inde-
pendence to decide which features to choose. It supports five selection methods:
numTopFeatures, percentile, fpr, fdr, fwe

More details regarding the Feature Selectors in Spark can be found at:

https://spark.apache.org/docs/2.2.0/ml-features.html#feature-selectors

• VectorSlicer

• RFormula

• ChiSqSelector

VectorSlicer

VectorSlicer is a transformer that takes a feature vector and outputs a new feature vector with a sub-array of the original
features. It is useful for extracting features from a vector column. VectorSlicer accepts a vector column with specified
indices, then outputs a new vector column whose values are selected via those indices. There are two types of indices,

Integer indices that represent the indices into the vector, setIndices().

String indices that represent the names of features into the vector, setNames(). This requires the vector column to have
an AttributeGroup since the implementation matches on the name field of an Attribute.

Specification by integer and string are both acceptable. Moreover, you can use integer index and string name simulta-
neously. At least one feature must be selected. Duplicate features are not allowed, so there can be no overlap between
selected indices and names. Note that if names of features are selected, an exception will be thrown if empty input
attributes are encountered.

160 Chapter 10. Data Science

https://en.wikipedia.org/wiki/Feature_selection
https://spark.apache.org/docs/2.2.0/ml-features.html#feature-selectors

Sparkflows Documentation, Release 0.0.1

RFormula

RFormula selects columns specified by an R model formula. Currently Spark supports a limited subset of the R
operators, including ‘~’, ‘.’, ‘:’, ‘+’, and ‘-‘. The basic operators are:

• ~ separate target and terms

• – concat terms, “+ 0” means removing intercept

• – remove a term, “- 1” means removing intercept

• : interaction (multiplication for numeric values, or binarized categorical values)

• . all columns except target

Suppose a and b are double columns, we use the following simple examples to illustrate the effect of RFormula:

• y ~ a + b means model y ~ w0 + w1 * a + w2 * b where w0 is the intercept and w1, w2 are coefficients.

• y ~ a + b + a:b - 1 means model y ~ w1 * a + w2 * b + w3 * a * b where w1, w2, w3 are coefficients.

RFormula produces a vector column of features and a double or string column of label. Like when formulas are used
in R for linear regression, string input columns will be one-hot encoded, and numeric columns will be cast to doubles.
If the label column is of type string, it will be first transformed to double with StringIndexer. If the label column does
not exist in the DataFrame, the output label column will be created from the specified response variable in the formula.

ChiSqSelector

ChiSqSelector stands for Chi-Squared feature selection. It operates on labeled data with categorical features. ChiSqS-
elector uses the Chi-Squared test of independence to decide which features to choose. It supports five selection
methods: numTopFeatures, percentile, fpr, fdr, fwe. * numTopFeatures chooses a fixed number of top features accord-
ing to a chi-squared test. This is akin to yielding the features with the most predictive power. * percentile is similar
to numTopFeatures but chooses a fraction of all features instead of a fixed number. * fpr chooses all features whose
p-values are below a threshold, thus controlling the false positive rate of selection. * fdr uses the Benjamini-Hochberg
procedure to choose all features whose false discovery rate is below a threshold. * fwe chooses all features whose
p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate
of selection. By default, the selection method is numTopFeatures, with the default number of top features set to 50.
The user can choose a selection method using setSelectorType.

10.1.3 Clustering

Clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are
more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data
mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern
recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.

• https://en.wikipedia.org/wiki/Cluster_analysis

10.1. Machine Learning User Guide 161

https://en.wikipedia.org/wiki/Cluster_analysis

Sparkflows Documentation, Release 0.0.1

Clustering Processors in Fire Insights

Table 3: Apache Spark based Clustering Processors in Fire Insights
Title Description
Gaussian Mixture A Gaussian Mixture Model represents a composite dis-

tribution whereby points are drawn from one of k
Gaussian sub-distributions, each with its own probabil-
ity. The spark.ml implementation uses the expectation-
maximization algorithm to induce the maximum-
likelihood model given a set of samples.

KMeans k-means is one of the most commonly used clustering
algorithms that clusters the data points into a predefined
number of clusters. The MLlib implementation includes
a parallelized variant of the k-means++ method called
kmeans||.

LDA LDA is implemented as an Estimator that supports both
EMLDAOptimizer and OnlineLDAOptimizer, and gen-
erates a LDAModel as the base model.

Table 4: H2O based Clustering Processors in Fire Insights
Title Description
KMeans K-Means falls in the general category of clustering al-

gorithms. Clustering is a form of unsupervised learning
that tries to find structures in the data without using any
labels or target values. Clustering partitions a set of ob-
servations into separate groupings such that an observa-
tion in a given group is more similar to another obser-
vation in the same group than to another observation in
a different group.

Clustering Algorithms in Apache Spark

Apache Spark provides a number of Algorithms for Clustering.

https://spark.apache.org/docs/latest/ml-clustering.html

• K-means

• Latent Dirichlet allocation (LDA)

• Bisecting k-means

• Gaussian Mixture Model (GMM)

• Power iteration clustering (PIC)

• Streaming k-means

K-means

https://spark.apache.org/docs/latest/ml-clustering.html#k-means

162 Chapter 10. Data Science

https://spark.apache.org/docs/latest/ml-clustering.html
https://spark.apache.org/docs/latest/ml-clustering.html#k-means

Sparkflows Documentation, Release 0.0.1

k-means is one of the most commonly used clustering algorithms that clusters the data points into a predefined number
of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||. The
implementation in spark.mllib has the following parameters:

k is the number of desired clusters. Note that it is possible for fewer than k clusters to be returned, for example,
if there are fewer than k distinct points to cluster. - maxIterations is the maximum number of iterations to run. -
initializationMode specifies either random initialization or initialization via k-means||. - runs This param has no effect
since Spark 2.0.0. - initializationSteps determines the number of steps in the k-means|| algorithm. - epsilon determines
the distance threshold within which we consider k-means to have converged. - initialModel is an optional set of cluster
centers used for initialization. If this parameter is supplied, only one run is performed.

Latent Dirichlet allocation (LDA)

https://spark.apache.org/docs/latest/ml-clustering.html#latent-dirichlet-allocation-lda

LDA is implemented as an Estimator that supports both EMLDAOptimizer and OnlineLDAOptimizer, and generates
a LDAModel as the base model. Expert users may cast a LDAModel generated by EMLDAOptimizer to a Distribut-
edLDAModel if needed.

Latent Dirichlet allocation (LDA) is a topic model which infers topics from a collection of text documents. LDA can
be thought of as a clustering algorithm as follows:

• Topics correspond to cluster centers, and documents correspond to examples (rows) in a dataset.

• Topics and documents both exist in a feature space, where feature vectors are vectors of word counts (bag of
words).

• Rather than estimating a clustering using a traditional distance, LDA uses a function based on a statistical model
of how text documents are generated.

LDA supports different inference algorithms via setOptimizer function. EMLDAOptimizer learns clustering using
expectation-maximization on the likelihood function and yields comprehensive results, while OnlineLDAOptimizer
uses iterative mini-batch sampling for online variational inference and is generally memory friendly.

LDA takes in a collection of documents as vectors of word counts and the following parameters (set using the builder
pattern):

• k: Number of topics (i.e., cluster centers)

• optimizer: Optimizer to use for learning the LDA model, either EMLDAOptimizer or OnlineLDAOptimizer

• docConcentration: Dirichlet parameter for prior over documents’ distributions over topics. Larger values en-
courage smoother inferred distributions.

• topicConcentration: Dirichlet parameter for prior over topics’ distributions over terms (words). Larger values
encourage smoother inferred distributions.

• maxIterations: Limit on the number of iterations.

• checkpointInterval: If using checkpointing (set in the Spark configuration), this parameter specifies the fre-
quency with which checkpoints will be created. If maxIterations is large, using checkpointing can help reduce
shuffle file sizes on disk and help with failure recovery.

All of spark.mllib’s LDA models support:

• describeTopics: Returns topics as arrays of most important terms and term weights

• topicsMatrix: Returns a vocabSize by k matrix where each column is a topic

10.1. Machine Learning User Guide 163

https://spark.apache.org/docs/latest/ml-clustering.html#latent-dirichlet-allocation-lda

Sparkflows Documentation, Release 0.0.1

Bisecting k-means

Bisecting K-means can often be much faster than regular K-means, but it will generally produce a different clustering.

Bisecting k-means is a kind of hierarchical clustering. Hierarchical clustering is one of the most commonly used
method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally
fall into two types:

• Agglomerative: This is a “bottom up” approach: each observation starts in its own cluster, and pairs of clusters
are merged as one moves up the hierarchy.

• Divisive: This is a “top down” approach: all observations start in one cluster, and splits are performed recursively
as one moves down the hierarchy.

Bisecting k-means algorithm is a kind of divisive algorithms. The implementation in MLlib has the following param-
eters:

• k: the desired number of leaf clusters (default: 4). The actual number could be smaller if there are no divisible
leaf clusters.

• maxIterations: the max number of k-means iterations to split clusters (default: 20)

• minDivisibleClusterSize: the minimum number of points (if >= 1.0) or the minimum proportion of points (if <
1.0) of a divisible cluster (default: 1)

• seed: a random seed (default: hash value of the class name)

Gaussian mixture

A Gaussian Mixture Model represents a composite distribution whereby points are drawn from one of k Gaussian
sub-distributions, each with its own probability. The spark.mllib implementation uses the expectation-maximization
algorithm to induce the maximum-likelihood model given a set of samples. The implementation has the following
parameters:

• k is the number of desired clusters.

• convergenceTol is the maximum change in log-likelihood at which we consider convergence achieved.

• maxIterations is the maximum number of iterations to perform without reaching convergence.

• initialModel is an optional starting point from which to start the EM algorithm. If this parameter is omitted, a
random starting point will be constructed from the data.

Power iteration clustering (PIC)

Power iteration clustering (PIC) is a scalable and efficient algorithm for clustering vertices of a graph given pair-
wise similarities as edge properties, described in Lin and Cohen, Power Iteration Clustering. It computes a pseudo-
eigenvector of the normalized affinity matrix of the graph via power iteration and uses it to cluster vertices. spark.mllib
includes an implementation of PIC using GraphX as its backend. It takes an RDD of (srcId, dstId, similarity) tuples
and outputs a model with the clustering assignments. The similarities must be nonnegative. PIC assumes that the
similarity measure is symmetric. A pair (srcId, dstId) regardless of the ordering should appear at most once in the
input data. If a pair is missing from input, their similarity is treated as zero. spark.mllib’s PIC implementation takes
the following (hyper-)parameters:

• k: number of clusters

• maxIterations: maximum number of power iterations

164 Chapter 10. Data Science

Sparkflows Documentation, Release 0.0.1

• initializationMode: initialization model. This can be either “random”, which is the default, to use a random
vector as vertex properties, or “degree” to use normalized sum similarities.

Streaming k-means

When data arrive in a stream, we may want to estimate clusters dynamically, updating them as new data arrive.
spark.mllib provides support for streaming k-means clustering, with parameters to control the decay (or “forgetful-
ness”) of the estimates. The algorithm uses a generalization of the mini-batch k-means update rule. For each batch of
data, we assign all points to their nearest cluster, compute new cluster centers, then update each cluster

10.1.4 Regression

Regression analysis is a set of statistical processes for estimating the relationships between a dependent variable
(often called the ‘outcome variable’) and one or more independent variables (often called ‘predictors’, ‘covariates’, or
‘features’). The most common form of regression analysis is linear regression, in which a researcher finds the line (or
a more complex linear function) that most closely fits the data according to a specific mathematical criterion.

• https://en.wikipedia.org/wiki/Regression_analysis

10.1. Machine Learning User Guide 165

https://en.wikipedia.org/wiki/Regression_analysis

Sparkflows Documentation, Release 0.0.1

Apache Spark

Table 5: Apache Spark based Regression Processors in Fire Insights
Title Description
Linear regression LinearRegression analysis is a set of statistical pro-

cesses for estimating the relationships between a depen-
dent variable and one or more independent variables.

Generalized linear regression Contrasted with linear regression where the output is
assumed to follow a Gaussian distribution, generalized
linear models (GLMs) are specifications of linear mod-
els where the response variable Yi follows some distri-
bution from the exponential family of distributions

Decision tree regression Decision trees and their ensembles are popular methods
for the machine learning tasks of classification and re-
gression. Decision trees are widely used since they are
easy to interpret, handle categorical features, extend to
the multiclass classification setting, do not require fea-
ture scaling, and are able to capture non-linearities and
feature interactions.

Random forest regression Random forests are ensembles of decision trees. Ran-
dom forests combine many decision trees in order to re-
duce the risk of overfitting.

Gradient-boosted tree regression Gradient-Boosted Trees (GBTs) are ensembles of deci-
sion trees. GBTs iteratively train decision trees in order
to minimize a loss function.

Survival regression Survival Analysis is a set of statistical tools, which ad-
dresses questions such as ‘how long would it be, before
a particular event occurs’; in other words we can also
call it as a ‘time to event’ analysis.

Isotonic regression Isotonic regression is the technique of fitting a free-
form line to a sequence of observations under the fol-
lowing constraints: the fitted free-form line has to be
non-decreasing everywhere, and it has to lie as close to
the observations as possible.

Regression Algorithms in Apache Spark

https://spark.apache.org/docs/latest/ml-classification-regression.html#regression

• Linear regression

• Decision tree regression

• Random Forest regression

• Gradient-boosted tree regression

• Survival regression

• Isotonic regression

166 Chapter 10. Data Science

https://spark.apache.org/docs/latest/ml-classification-regression.html#regression

Sparkflows Documentation, Release 0.0.1

Scikit Learn

Table 6: Scikit Learn based Regression Processors in Fire Insights
Title Description
Ridge regression Ridge regression addresses some of the problems of Or-

dinary Least Squares by imposing a penalty on the size
of the coefficients. The ridge coefficients minimize a
penalized residual sum of squares

Lasso regression The Lasso is a linear model that estimates sparse coeffi-
cients. It is useful in some contexts due to its tendency
to prefer solutions with fewer non-zero coefficients, ef-
fectively reducing the number of features upon which
the given solution is dependent.

Gradient Boosting regression GB builds an additive model in a forward stage-wise
fashion; it allows for the optimization of arbitrary differ-
entiable loss functions. In each stage a regression tree is
fit on the negative gradient of the given loss function

Random forest regression A random forest is a meta estimator that fits a number of
classifying decision trees on various sub-samples of the
dataset and uses averaging to improve the predictive ac-
curacy and control over-fitting. The sub-sample size is
always the same as the original input sample size but the
samples are drawn with replacement if bootstrap=True
(default).

Regression Algorithms in Scikit Learn

https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression-and-classification

• Ridge regression

• Lasso regression

• Gradient Boosting regression

• Random Forest regression

Linear Regression

The interface for working with linear regression models and model summaries is similar to the logistic regression case.

When fitting LinearRegressionModel without intercept on dataset with constant nonzero column by “l-bfgs” solver,
Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but
different from LIBSVM.

Generalized linear regression

Contrasted with linear regression where the output is assumed to follow a Gaussian distribution, generalized linear
models (GLMs) are specifications of linear models where the response variable Yi follows some distribution from the
exponential family of distributions.

Spark’s GeneralizedLinearRegression interface allows for flexible specification of GLMs which can be used for various
types of prediction problems including linear regression, Poisson regression, logistic regression, and others.

10.1. Machine Learning User Guide 167

https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression-and-classification

Sparkflows Documentation, Release 0.0.1

Decision tree regression

Decision trees are a popular family of classification and regression methods.

Decision tree builds regression or classification models in the form of a tree structure. It breaks down a dataset into
smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The final
result is a tree with decision nodes and leaf nodes. A decision node (e.g., Outlook) has two or more branches (e.g.,
Sunny, Overcast and Rainy), each representing values for the attribute tested. Leaf node (e.g., Hours Played) represents
a decision on the numerical target. The topmost decision node in a tree which corresponds to the best predictor called
root node. Decision trees can handle both categorical and numerical data.

Random Forest Regression

Random forests are a popular family of classification and regression methods.

Random forests or random decision forests are an ensemble learning method for classification, regression and other
tasks that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode
of the classes (classification) or mean prediction (regression) of the individual trees. Random decision forests correct
for decision trees’ habit of overfitting to their training set.

Gradient - boosted Tree Regression

Gradient-boosted trees (GBTs) are a popular regression method using ensembles of decision trees.

Gradient boosting is a machine learning technique for regression and classification problems, which produces a pre-
diction model in the form of an ensemble of weak prediction models, typically decision trees. It builds the model in
a stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary
differentiable loss function.

Survival Regression

In spark.ml, we implement the Accelerated failure time (AFT) model which is a parametric survival regression model
for censored data. It describes a model for the log of survival time, so it’s often called a log-linear model for survival
analysis. Different from a Proportional hazards model designed for the same purpose, the AFT model is easier to
parallelize because each instance contributes to the objective function independently.

Isotonic Regression

Isotonic regression or monotonic regression is the technique of fitting a free-form line to a sequence of observations
under the following constraints: the fitted free-form line has to be non-decreasing (or non-increasing) everywhere, and
it has to lie as close to the observations as possible.

Isotonic regression has applications in statistical inference. For example, one might use it to fit an isotonic curve to
the means of some set of experimental results when an increase in those means according to some particular ordering
is expected. A benefit of isotonic regression is that it is not constrained by any functional form, such as the linearity
imposed by linear regression, as long as the function is monotonic increasing.

Another application is nonmetric multidimensional scaling, where a low-dimensional embedding for data points is
sought such that order of distances between points in the embedding matches order of dissimilarity between points.
Isotonic regression is used iteratively to fit ideal distances to preserve relative dissimilarity order.

Software for computing isotone (monotonic) regression has been developed for the R statistical package, the Stata
statistical package and the Python programming language

168 Chapter 10. Data Science

Sparkflows Documentation, Release 0.0.1

10.1.5 Classification

In machine learning and statistics, classification is the problem of identifying to which of a set of categories (sub-
populations) a new observation belongs.

• https://en.wikipedia.org/w/index.php?search=Clssification+in+machine+learning&title=Special%3ASearch&
go=Go&ns0=1

Apache Spark MLlib

Table 7: Apache Spark based Classification Processors in Fire Insights
Title Description
Logistic Regression Logistic regression is a popular method to predict a cat-

egorical response. It is a special case of Generalized
Linear models that predicts the probability of the out-
comes.

Decision tree classifier Decision trees and their ensembles are popular methods
for the machine learning tasks of classification and re-
gression. Decision trees are widely used since they are
easy to interpret, handle categorical features, extend to
the multiclass classification setting, do not require fea-
ture scaling, and are able to capture non-linearities and
feature interactions.

Random forest classifier Random forests are ensembles of decision trees. Ran-
dom forests combine many decision trees in order to re-
duce the risk of overfitting.

Gradient-boosted tree classifier Gradient-Boosted Trees (GBTs) are ensembles of deci-
sion trees. GBTs iteratively train decision trees in order
to minimize a loss function.

Multilayer perceptron classifier Multilayer perceptron classifier (MLPC) is a classifier
based on the feedforward artificial neural network.

Naive Bayes Naive Bayes classifiers are a family of simple proba-
bilistic, multiclass classifiers based on applying Bayes’
theorem with strong (naive) independence assumptions
between every pair of features.

Classification Algorithms in Spark MLlib

https://spark.apache.org/docs/latest/ml-classification-regression.html#classification

• Logistic Regression

• Decision tree classifier

• Random forest classifier

• Gradient-boosted tree classifier

• Multilayer perceptron classifier

• Linear Support Vector Machine

• One-vs-Rest classifier

• Naive Bayes

10.1. Machine Learning User Guide 169

https://en.wikipedia.org/w/index.php?search=Clssification+in+machine+learning&title=Special%3ASearch&go=Go&ns0=1
https://en.wikipedia.org/w/index.php?search=Clssification+in+machine+learning&title=Special%3ASearch&go=Go&ns0=1
https://spark.apache.org/docs/latest/ml-classification-regression.html#classification

Sparkflows Documentation, Release 0.0.1

Scikit Learn

Table 8: Scikit Learn based Classification Processors in Fire Insights
Title Description
Logistic Regression Classifier In the multiclass case, the training algorithm uses the

one-vs-rest (OvR) scheme if the ‘multi_class’ option
is set to ‘ovr’, and uses the cross-entropy loss if the
‘multi_class’ option is set to ‘multinomial’.

Gradient Boosting classifier GB builds an additive model in a forward stage-wise
fashion; it allows for the optimization of arbitrary differ-
entiable loss functions. In each stage n_classes _ regres-
sion trees are fit on the negative gradient of the binomial
or multinomial deviance loss function.

Random forest classifier A random forest is a meta estimator that fits a number
of decision tree classifiers on various sub-samples of the
dataset and uses averaging to improve the predictive ac-
curacy and control over-fitting. The sub-sample size is
always the same as the original input sample size but the
samples are drawn with replacement if bootstrap=True
(default).

Classification Algorithms in Scikit Learn

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

• Logistic Regression

• Gradient-boosting classifier

• Random Forest classifier

Fire Insights provides processors for the above Algorithms.

Logistic Regression

Logistic regression is a popular method to predict a categorical response. It is a special case of Generalized Linear
models that predicts the probability of the outcomes. In spark.ml logistic regression can be used to predict a binary
outcome by using binomial logistic regression, or it can be used to predict a multiclass outcome by using multinomial
logistic regression. Use the family parameter to select between these two algorithms, or leave it unset and Spark will
infer the correct variant.

Multinomial logistic regression can be used for binary classification by setting the family param to “multinomial”. It
will produce two sets of coefficients and two intercepts.

When fitting LogisticRegressionModel without intercept on dataset with constant nonzero column, Spark MLlib out-
puts zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIB-
SVM.

Decision tree classifier

Decision tree learning is one of the predictive modeling approaches used in statistics, data mining and machine learn-
ing. It uses a decision tree to go from observations about an item to conclusions about the item’s target value.

170 Chapter 10. Data Science

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

Sparkflows Documentation, Release 0.0.1

Tree models where the target variable can take a discrete set of values are called classification trees; in these tree
structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels.
Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees.

In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. In
data mining, a decision tree describes data (but the resulting classification tree can be an input for decision making).

Random forest classifier

Random forests or random decision forests are an ensemble learning method for classification, regression and other
tasks that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode
of the classes or mean prediction of the individual trees.

Gradient-boosted tree classifier

Gradient boosting is a machine learning technique for regression and classification problems, which produces a pre-
diction model in the form of an ensemble of weak prediction models, typically decision trees.It builds the model in a
stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary
differentiable loss function.

The idea of gradient boosting originated in the observation that boosting can be interpreted as an optimization al-
gorithm on a suitable cost function. Explicit regression gradient boosting algorithms were subsequently developed
simultaneously with the more general functional gradient boosting perspective. It later introduced the view of boost-
ing algorithms as iterative functional gradient descent algorithms. That is, algorithms that optimize a cost function
over function space by iteratively choosing a function (weak hypothesis) that points in the negative gradient direction.
This functional gradient view of boosting has led to the development of boosting algorithms in many areas of machine
learning and statistics beyond regression and classification.

Multilayer perceptron classifier

A multilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN). The term MLP is used
ambiguously, sometimes loosely to refer to any feedforward ANN, sometimes strictly to refer to networks composed of
multiple layers of perceptrons (with threshold activation). Multilayer perceptrons are sometimes colloquially referred
to as “vanilla” neural networks, especially when they have a single hidden layer.

An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Except for
the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learning
technique called backpropagation for training. Its multiple layers and non-linear activation distinguish MLP from a
linear perceptron. It can distinguish data that is not linearly separable.

Naive Bayes

In machine learning, naïve Bayes classifiers are a family of simple “probabilistic classifiers” based on applying Bayes’
theorem with strong (naïve) independence assumptions between the features. They are among the simplest Bayesian
network models.

It remains a popular (baseline) method for text categorization, the problem of judging documents as belonging to one
category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With
appropriate pre-processing, it is competitive in this domain with more advanced methods including support vector
machines. It also finds application in automatic medical diagnosis.

10.1. Machine Learning User Guide 171

Sparkflows Documentation, Release 0.0.1

Naïve Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (fea-
tures/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-form ex-
pression,which takes linear time, rather than by expensive iterative approximation as used for many other types of
classifiers.

10.1.6 Prediction

Prediction is to identify data points purely on the description of another related data value. It is not necessarily related
to future events but the used variables are unknown. Prediction derives the relationship between a thing you know and
a thing you need to predict for future reference.

Prediction refers to the output of an algorithm after it has been trained on a historical dataset and applied to new data
when forecasting the likelihood of a particular outcome, such as whether or not a customer will churn in 30 days. The
algorithm will generate probable values for an unknown variable for each record in the new data, allowing the model
builder to identify what that value will most likely be.

The word “prediction” can be misleading. In some cases, it really does mean that you are predicting a future outcome,
such as when you’re using machine learning to determine the next best action in a marketing campaign. Other times,
though, the “prediction” has to do with, for example, whether or not a transaction that already occurred was fraudulent.
In that case, the transaction already happened, but you’re making an educated guess about whether or not it was
legitimate, allowing you to take the appropriate action.

What is Prediction?

• Predicting the identity of one thing based purely on the description of another, related thing

• Not necessarily future events, just unknowns

• Based on the relationship between a thing that you can know and a thing you need to predict

Why are Predictions Important?

Machine learning model predictions allow businesses to make highly accurate guesses as to the likely outcomes of
a question based on historical data, which can be about all kinds of things – customer churn likelihood, possible
fraudulent activity, and more. These provide the business with insights that result in tangible business value. For
example, if a model predicts a customer is likely to churn, the business can target them with specific communications
and outreach that will prevent the loss of that customer.

Predictor => Predicted

• When building a predictive model, you have data covering both

• When using one, you have data describing the predictor and you want it to tell you the predicted value

Usual Examples

• Predicting levels of sales that will result from a price change or advert.

• Predicting whether or not it will rain based on current humidity

• Predicting the colour of a pottery glaze based on a mixture of base pigments

• Predicting how far up the charts a single will go

• Predicting how much revenue a book of debt will bring

172 Chapter 10. Data Science

Sparkflows Documentation, Release 0.0.1

Techniques

Most prediction techniques are based on mathematical models:

• Simple statistical models such as regression

• Non-linear statistics such as power series

• Neural networks, RBFs, etc

• All based on fitting a curve through the data, that is, finding a relationship from the predictors to the predicted

10.1.7 Model Evaluation

Model evaluation aims to estimate the generalization accuracy of a model on future (unseen/out-of-sample) data.

Evaluation Processors in Fire Insights

Table 9: Apache Spark based Evaluation Processors in Fire Insights
Title Description
NodeRegressionEvaluator Evaluator for regression, which expects two input

columns: prediction and label. Regression analysis is
used when predicting a continuous output variable from
a number of independent variables.

NodeBinaryClassificationEvaluator Evaluator for binary classification, which expects two
input columns: rawPrediction and label. Binary classi-
fiers are used to separate the elements of a given dataset
into one of two possible groups (e.g. fraud or not fraud)
and is a special case of multiclass classification.

NodeMulticlassClassificationEvaluator Evaluator for multiclass classification, which expects
two input columns: score and label. A multiclass clas-
sification describes a classification problem where there
are M>2 possible labels for each data point (the case
where M=2 is the binary classification problem)

• https://heartbeat.fritz.ai/introduction-to-machine-learning-model-evaluation-fa859e1b2d7f

Machine learning continues to be an increasingly integral component of our lives, whether we’re applying the tech-
niques to research or business problems. Machine learning models ought to be able to give accurate predictions in
order to create real value for a given organization.

While training a model is a key step, how the model generalizes on unseen data is an equally important aspect that
should be considered in every machine learning pipeline. We need to know whether it actually works and, conse-
quently, if we can trust its predictions. Could the model be merely memorizing the data it is fed with, and therefore
unable to make good predictions on future samples, or samples that it hasn’t seen before?

In this article, we explain the techniques used in evaluating how well a machine learning model generalizes to new,
previously unseen data. We’ll also illustrate how common model evaluation metrics are implemented for classification
and regression problems using Python.

Model Evaluation Techniques

The above issues can be handled by evaluating the performance of a machine learning model, which is an integral
component of any data science project.

10.1. Machine Learning User Guide 173

https://heartbeat.fritz.ai/introduction-to-machine-learning-model-evaluation-fa859e1b2d7f

Sparkflows Documentation, Release 0.0.1

Methods for evaluating a model’s performance are divided into 2 categories: namely, holdout and Cross-validation.
Both methods use a test set (i.e data not seen by the model) to evaluate model performance. It’s not recommended
to use the data we used to build the model to evaluate it. This is because our model will simply remember the whole
training set, and will therefore always predict the correct label for any point in the training set. This is known as
overfitting.

Holdout

The purpose of holdout evaluation is to test a model on different data than it was trained on. This provides an unbiased
estimate of learning performance.

In this method, the dataset is randomly divided into three subsets:

1)Training set is a subset of the dataset used to build predictive models.

2)Validation set is a subset of the dataset used to assess the performance of the model built in the training phase.
It provides a test platform for fine-tuning a model’s parameters and selecting the best performing model. Not all
modeling algorithms need a validation set.

3)Test set, or unseen data, is a subset of the dataset used to assess the likely future performance of a model. If a model
fits to the training set much better than it fits the test set, overfitting is probably the cause.

The holdout approach is useful because of its speed, simplicity, and flexibility. However, this technique is often
associated with high variability since differences in the training and test dataset can result in meaningful differences
in the estimate of accuracy.

Cross-Validation

Cross-validation is a technique that involves partitioning the original observation dataset into a training set, used to
train the model, and an independent set used to evaluate the analysis.

The most common cross-validation technique is k-fold cross-validation, where the original dataset is partitioned into
k equal size subsamples, called folds. The k is a user-specified number, usually with 5 or 10 as its preferred value.
This is repeated k times, such that each time, one of the k subsets is used as the test set/validation set and the other
k-1 subsets are put together to form a training set. The error estimation is averaged over all k trials to get the total
effectiveness of our model.

For instance, when performing five-fold cross-validation, the data is first partitioned into 5 parts of (approximately)
equal size. A sequence of models is trained. The first model is trained using the first fold as the test set, and the
remaining folds are used as the training set. This is repeated for each of these 5 splits of the data and the estimation of
accuracy is averaged over all 5 trials to get the total effectiveness of our model. As can be seen, every data point gets
to be in a test set exactly once and gets to be in a training set k-1 times. This significantly reduces bias, as we’re using
most of the data for fitting, and it also significantly reduces variance, as most of the data is also being used in the test
set. Interchanging the training and test sets also adds to the effectiveness of this method.

• https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

Model Evaluation in Fire Insights

10.1.8 Model Persistence

Save / Load Model allows you to save your model to files and load them later in order to make predictions.

Fire Insights allows you to save the ML Model created. The ML Models can be loaded in the same or other workflows
to be used for scoring. The ML Models can also be downloaded from HDFS Browse Page.

The ML models can be saved into the following locations:

174 Chapter 10. Data Science

https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

Sparkflows Documentation, Release 0.0.1

• HDFS : when Fire Insights is connected to a Hadoop Cluster

• S3 : when Fire is configured and connected to AWS.

• Local Machine FileSystem : when Fire is running in local mode

In order to save onto S3, the model path can be provided as s3://models/priceprediction

Persisting SparkML Models

Spark ML Models

Spark ML models are saved into a directory with multiple files in it. Fire Insights has processors for saving and loading
the Spark ML models.

Save Model processor

NodeModelSave processor, saves the given Apache Spark ML model at the given location.

ML Save Workflow

Load Model processor

10.1. Machine Learning User Guide 175

Sparkflows Documentation, Release 0.0.1

ML Load Workflow

Persisting H2O Models

H2O Models

H2O Models can be saved in binary format or in MOJO format. Fire Insights has processors for saving and reading
them back.

Save H2o Model processor

H2OModelSave Processor saves the H2O model at the specified path in the binary format.

Load H2o Model processor

H2OModelLoad Processor loads the H2O model in binary format from the specified path.

More details of saving and loading the H2O Models is available here:

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/save-and-load-model.html

176 Chapter 10. Data Science

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/save-and-load-model.html

Sparkflows Documentation, Release 0.0.1

Save and Load H2O Workflow

Below is a workflow, which saves the generated H2O model on the file system.

Below is a workflow, which load back the saved model and used in batch scoreing.

Persisting Scikit Learn Models

Scikit-Learn models are persisted with pickle. Fire Insights has processors for saving and loading the pickle files.

More details of the pickle format is available here:

https://scikit-learn.org/stable/modules/model_persistence.html

10.1.9 Model Serving

Fire Insights allows you to save your models. These models can be saved to:

• HDFS : when running on a Hadoop Cluster

• S3 : when running on AWS

• ADLS : when running on Azure

• Local file system : when running on your laptop or independent machine

Once these models are saved, they can be served in various ways.

10.1. Machine Learning User Guide 177

https://scikit-learn.org/stable/modules/model_persistence.html

Sparkflows Documentation, Release 0.0.1

Scoring with Workflows

Fire Insights enables you to build workflows. Workflows provide for reading data, transforming them and also creating
machine learning models. Fire Insights supports a number of ML frameworks including Scikit Learn, H2O, Spark ML,
Keras etc.

Models built with the workflows can be saved onto the File System. The models can then be scored with another
workflow.

Data Preparation and Scoring Environments

The workflows built with Fire Insights can run on a variety of environments. These include:

• Standalone machine

• AWS - EMR

• Azure - HDInsights

• Databricks

• Cloudera

In any of these environments, Fire Insights does not need to be installed for model scoring. When running on Stan-
dalone machine, scoring can be performed with running java/python using the supplied jar/wheel files and the work-
flow json.

When running on clusters, scoring can be performed with spark-submit using the supplied jar/wheel files and the
workflow json.

Workflow Patterns for Scoring Models

There are a few patterns by which Fire Insights enables Data Preparation/Feature Engineering and Model Scoring.

• One workflow for Data Preparation/Feature Engineering, another for Model Training and the third for Model
Scoring

• One workflow for Data Preparation/Feature Engineering plus Model Training. And another workflow for Data
Preparation/Feature Engineering plus Model Scoring.

Using 3 Workflows

In this pattern, one workflow is built to read in the input datasets, perform Data Preparation and also Feature Engi-
neering. This workflow prepares the input datasets to be used for Training and also Scoring and saves it to the File
System.

The second workflow reads in the prepared data, builds the model and then save it to the File System.

The third workflow also reads in the prepared data, reads in the ML model and then scores the input data. The result
of scoring can be saved to the File System, Relational Database, Cassandra, MongoDB, HIVE etc.

Using 2 workflows

In this pattern, one workflow is built to read in the input datasets, perform Data Preparation/Feature Engineering and
then finally build the ML Model.

178 Chapter 10. Data Science

Sparkflows Documentation, Release 0.0.1

For the second workflow, the first workflow is cloned with one click, and the model nodes are removed from the
workflow. They are replaced with nodes which read in the model and then score the datasets.

Serving Spark MLlib Models

Fire Insights creates Apache Spark MLlib models. These models get saved as files on the File System.

NoveModelSave saves the Spark ML models as files. It uses the Spark interfaces to save the model.

Once the SparkML model is saved, they can be loaded and used in scoring. Fire Insights enables saving both Spark
ML models and pipelines.

Batch Model Scoring:

By using NodeModelLoad & selecting the particular type of model to be loaded, the model would be loaded in the
workflow and it can be used for scoring the input data.

Online Scoring with Kafka and Spark Streaming:

Scalable messaging platform like Kafka to send newly acquired data to a long running Spark Streaming process. The
Spark process can then make a new prediction based on the new data.

Serving H2O Models

H2O allows you to persist the models you have built to either a Plain Old Java Object (POJO) or a Model ObJect,
Optimized (MOJO).

Fire Insights has the following processors for persisting the H2O Models.

• H2OMojoSave

• H2OModelSave

10.1. Machine Learning User Guide 179

Sparkflows Documentation, Release 0.0.1

Once the H2O model is saved, they can be used for serving.

H2O-generated MOJO and POJO models are intended to be easily embeddable in any Java environment. The only
compilation and runtime dependency for a generated model is the h2o-genmodel.jar file produced as the build output
of these packages.

We can use our H2OModelLoad or H2OMojoLoad to make a batch prediction, real-time prediction using Spark
Streaming, Kafka or Storm. Or you can expose your model as a REST API.

https://h2o-release.s3.amazonaws.com/h2o/rel-ueno/2/docs-website/h2o-docs/pojo-quick-start.html

Serving H2O MOJO models

The below page on the H2O website gives details on serving a MOJO model.

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/productionizing.html#step-2-compile-and-run-the-mojo

Serving H2O POJO models

The details for serving a POJO models is described in this page.

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/productionizing.html#building-a-pojo

1 import java.io.*;
2 import hex.genmodel.easy.RowData;
3 import hex.genmodel.easy.EasyPredictModelWrapper;
4 import hex.genmodel.easy.prediction.*;
5

6 public class main {
7 private static String modelClassName = "gbm_pojo_test";
8

9 public static void main(String[] args) throws Exception {
10 hex.genmodel.GenModel rawModel;
11 rawModel = (hex.genmodel.GenModel) Class.forName(modelClassName).newInstance();
12 EasyPredictModelWrapper model = new EasyPredictModelWrapper(rawModel);
13

14 RowData row = new RowData();
15 row.put("Year", "1987");
16 row.put("Month", "10");
17 row.put("DayofMonth", "14");
18 row.put("DayOfWeek", "3");
19 row.put("CRSDepTime", "730");
20 row.put("UniqueCarrier", "PS");
21 row.put("Origin", "SAN");
22 row.put("Dest", "SFO");
23

24 BinomialModelPrediction p = model.predictBinomial(row);
25 System.out.println("Label (aka prediction) is flight departure delayed: " + p.

→˓label);
26 System.out.print("Class probabilities: ");
27 for (int i = 0; i < p.classProbabilities.length; i++) {
28 if (i > 0) {
29 System.out.print(",");
30 }
31 System.out.print(p.classProbabilities[i]);
32 }
33 System.out.println("");

(continues on next page)

180 Chapter 10. Data Science

https://h2o-release.s3.amazonaws.com/h2o/rel-ueno/2/docs-website/h2o-docs/pojo-quick-start.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/productionizing.html#step-2-compile-and-run-the-mojo
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/productionizing.html#building-a-pojo

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

34 }
35 }

Useful links:

https://medium.com/spikelab/building-a-machine-learning-application-using-h2o-ai-67ce3681df9c

Serving AWS SageMaker models

When the SageMaker models are built in Fire Insights, SageMaker automatically provides a REST endpoint for online
scoring of the models.

The details for it are available here:

• https://aws.amazon.com/blogs/machine-learning/creating-a-machine-learning-powered-rest-api-with-amazon-api-gateway-mapping-templates-and-amazon-sagemaker/

• https://aws.amazon.com/blogs/machine-learning/call-an-amazon-sagemaker-model-endpoint-using-amazon-api-gateway-and-aws-lambda/

Serving Scikit Learn Models

Fire Insights provides the following processors for persisting the Scikit Learn models as pickle files:

• SaveAsPickle

Once the Scikit Learn model is saved, they can be used for serving.

The details for Scikit Learn Model Persistence is available here:

• https://scikit-learn.org/stable/modules/model_persistence.html

Serving Tensorflow Models

Fire Insights provides the following processors for persisting the Tensorflow models:

• NodeSaveKerasModel

• NodeLoadKerasModel

Integration with MLflow

Fire Insights integrates deeploy with Apache MLflow.

Fire Insights can be configured to output the models to MLflow.

10.1. Machine Learning User Guide 181

https://medium.com/spikelab/building-a-machine-learning-application-using-h2o-ai-67ce3681df9c
https://aws.amazon.com/blogs/machine-learning/creating-a-machine-learning-powered-rest-api-with-amazon-api-gateway-mapping-templates-and-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/call-an-amazon-sagemaker-model-endpoint-using-amazon-api-gateway-and-aws-lambda/
https://scikit-learn.org/stable/modules/model_persistence.html

Sparkflows Documentation, Release 0.0.1

182 Chapter 10. Data Science

CHAPTER 11

Time Series

11.1 Time Series Analysis

Time series analysis is a statistical technique that deals with time series data, or trend analysis. Time series data means
that data is in a series of particular time periods or intervals.

https://www.statisticssolutions.com/time-series-analysis/

Fire Insights provides a number of features for Time Series Analysis.

11.1.1 Time Series Feature Engineering

Fire Insights provides a number of Processors for Feature Engineering of Time Series Data. These include:

Table 1: Update New features where needed
Features Description
DateTimeFieldExtract Extracts year, month, day of month, hour, minute, second and week of year from times-

tamp/date columns
Days to holiday Days remaining for next holiday
Days from holiday Days passed after holiday
Time-segmentation Divide data in morning, afternoon, evening, night to get more idea about time based pattern
MovingWindowingFunctionsCalculates the moving values using the given function
WindowingAnalytics Implements window functions is mainly through the operators rolling and expanding
Exponential Mov-
ing Average (EMA)

The Exponential Moving Average (EMA) assigns a greater weight to the most recent price
observations. While it assigns lesser weight to past data, it is based on a recursive formula
that includes in its calculation all the past data in our price series.

DateTimeFieldExtract

Below is the sample workflows which contains DateTimeFieldExtract processor in Fire Insights.

183

https://www.statisticssolutions.com/time-series-analysis/

Sparkflows Documentation, Release 0.0.1

It reads the JetRail Train dataset & use DateTimeFieldExtract processor which create New DataFrame by extracting
Date & Time field and print the result.

DateTimeFieldExtract processor Configuration:

Output result of DateTimeFieldExtract processor:

MovingWindowingFunctions

Below is the sample workflows which contains MovingWindowingFunctions processor in Fire Insights.

It reads the ticker dataset, concatenate the input column, casting specified column to new data type, use Moving-
WindowingFunctions processor which calculates the moving value of selected function of input column and print the
result.

MovingWindowingFunctions processor Configuration:

Output result of MovingWindowingFunctions processor:

184 Chapter 11. Time Series

Sparkflows Documentation, Release 0.0.1

11.1. Time Series Analysis 185

Sparkflows Documentation, Release 0.0.1

11.1.2 Time Series Visualizations

Fire Insights provides a number of Processors for the visualization of the time series data.

Table 2: Update New features where needed
Charts Description
Line Perfect for series of data points to form a continuous line. Example - Represent Daily sales

data.
Bar Bar charts are a fundamental visualization for comparing values between groups of data.

Best way to represent Categorical data.
Scatter Scatter plots are used to observe relationships between variables.
Histogram Histograms are a type of graph that shows the distribution of a dataset. They graph the

percentage or the number of instances of different categories.
Pie Illustrate the percentage breakdown of a small number of data points, then they can be very

effective.

Charts : LineChart

Perfect for series of data points to form a continuous line. Example - Represent Daily sales data

Below is the sample workflows which contains Time Series data and visualize using line chart in Fire Insights.

Configurations for visualization processors in Fire Insight: * Set number of columns want to represent on y axis with
respect to x axis * Set chart type based on data type

Output result of Visualization processor:

Charts : BarChart

186 Chapter 11. Time Series

Sparkflows Documentation, Release 0.0.1

Charts : Scatter

11.1.3 Time Series Modeling

Fire Insights provides a number of Processors for Time Series Modeling. These include:

11.1. Time Series Analysis 187

Sparkflows Documentation, Release 0.0.1

Table 3: Update New features where needed
Models Description
Prophet Prophet is a procedure for predicting time series data based on an additive or multiplicative

model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holi-
day effects. It is best for time series that have strong seasonal effects and several seasons of
historical data. Prophet is robust model to missing data and shifts in the trend, and able to
handles outliers. For more: https://facebook.github.io/prophet/

Arima ARIMA is a model which is used for predicting future trends on a time series data.
It is model that form of regression analysis. For more: https://en.wikipedia.org/wiki/
Autoregressive_integrated_moving_average

XGBoost XGBoost is gradient boosting algorithm. It is also known as ‘regularized boosting‘ tech-
nique - seeks a goot bias-variant trade-off to reduce overfitting allows cross-validation at
each iteration of the boosting process and thus it is easy to get the exact optimum num-
ber of boosting iterations in a single run. For more: https://docs.h2o.ai/h2o/latest-stable/
h2o-docs/data-science/xgboost.html#limitations

LSTM LSTM is special kind of recurrent neural network that is capable of learning long term
dependencies in data. This is achieved because the recurring module of the model has
a combination of four layers interacting with each other. This is a great benefit in time
series forecasting, where classical linear methods can be difficult to adapt to multivariate
or multiple input forecasting problems. For more: https://www.tensorflow.org/tutorials/
structured_data/time_series

Prophet

Below is the sample workflows which contains Prophet processor in Fire Insights.

Equation - y(t)=g(t)+s(t)+h(t)+t,

where:

• Trend g(t): models non-periodic changes

• Seasonality s(t): represents periodic changes

• Holidays component h(t): contributes information about holidays and events

It reads the AirPassengers dataset & use Prophet processor which forecasting of univariate time series data and print
the result.

Prophet processor Configuration:

188 Chapter 11. Time Series

https://facebook.github.io/prophet/
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html#limitations
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html#limitations
https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/structured_data/time_series

Sparkflows Documentation, Release 0.0.1

Output result of Prophet processor:

ARIMA

Below is the sample workflows which contains ARIMA processor in Fire Insights.

• AR (Autoregression): A changing variable that regresses on its own lagged/prior values.

• I (Integrated): Differencing of raw observations to allow for the time series to become stationary

• MA (Moving average): Dependency between an observation and a residual error from a moving average model

In terms of y, the general forecasting equation is:

ŷt = 𝜇 + 1 yt-1 +. + p yt-p — 𝜃1et-1 -. - 𝜃qet-q,

where: * 𝜇→ constant

• 1 yt-1 +. . . + p yt-p → AR terms (lagged values of y)

• 𝜃1et-1 -. - 𝜃qet-q → MA terms (lagged errors)

It reads the AirPassengers dataset & use ARIMA processor which Forecast the airline passengers count, generate a
new column with unique index/value for each row in dataset and print the result.

ARIMA processor Configuration:

Output result of ARIMA processor:

H2OXGBoost

Below is the sample workflows which contains H2OXGBoost processor in Fire Insights.

It reads the UCI_Credit_Card dataset & use H2OXGBoost processor supervised learning algorithm that implements a
process called boosting to yield accurate models and save the model in s3 location.

11.1. Time Series Analysis 189

Sparkflows Documentation, Release 0.0.1

time-series/../../_assets/ml_userguide/arima.PNG

190 Chapter 11. Time Series

Sparkflows Documentation, Release 0.0.1

H2OXGBoost processor Configuration:

H2OMojoSave processor Configuration:

On successful submission of the job, the model get saved to specified locations, you can just view the model at specified
location.

11.1. Time Series Analysis 191

Sparkflows Documentation, Release 0.0.1

192 Chapter 11. Time Series

CHAPTER 12

Tutorials

12.1 Tutorials

12.1.1 Reading - Writing Data

Creating Dataset for CSV Files

When working with data in Fire Insights, the first step is to create a dataset that you plan to process subsequently.
Dataset is a wrapper around your data which makes it easy to handle it in Sparkflows workbench.

When datasets are created, Fire Insights automatically infers the schema using Spark-CSV library from Databricks.

Datasets List

When you open any application, all existing Datasets specific to the application are displayed in the Datasets tab.

Dataset Creation

Choose type of Dataset to Create

Navigate to the “Datasets” tab in your application. Click on the “Create” button and choose “Dataset”. In the pop-up
choose “CSV” and then click “OK”.

193

Sparkflows Documentation, Release 0.0.1

Dataset Details

Clicking “OK” will take you to Dataset Details page where you can enter information about your dataset. In the
screenshot below, we create a dataset from a housing.csv file. It is a comma separated file with a header row specifying
the names of the various columns.

For the housing.csv file, we will fill in the required fields as below.

We specified a name for the dataset we are creating. ‘Header’ is set to true indicating that the file has a header row,
field delimiter is comma and we also specified the path to the file.

Update Sample data/schema

Once we have specified the above, we hit the ‘Update Sample data/schema’ button. This brings up the sample data,
infers the schema and displays it. We can change the column names and also the data types. Format column is used
for specifying the format for date/time fields.

194 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 195

Sparkflows Documentation, Release 0.0.1

Save the Dataset

Clicking the ‘Save’ button creates the new dataset. The dataset is now ready for use in any workflow within the specific
application.

Creating Dataset for AVRO Files

When working with data in Fire Insights, the first step is to create a dataset that you plan to process subsequently.
Dataset is a wrapper around your data which makes it easy to handle it in Sparkflows workbench.

When datasets are created, Fire Insights automatically infers the schema using Spark-Avro library.

Datasets

Dataset Creation

Navigate to the “Datasets” tab in your application where you want to create a new dataset. Click on the “Create”
button and choose “Dataset”. In the pop-up choose “AVRO” and then click “OK”.

Clicking “OK” will take you to Dataset Details page where you can enter information
about your dataset. In the screenshot below, we create a dataset from a sample.avro file.

196 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

We specified a name, category, description &
path of avro file for the dataset we are creat-
ing.

Once we have specified the above, we hit the
‘Update Sample data/schema’ button. This brings up the sample data, infers the schema and displays it. We can change
the column names and also the data types. Format column is used for specifying the format for date/time fields.

Clicking the ‘Save’ button saves the new avro dataset. The avro dataset is now ready for use in any workflow within
the specific application.

Creating Dataset for JSON Files

When working with data in Fire Insights, the first step is to create a dataset that you plan to process subsequently.
Dataset is a wrapper around your data which makes it easy to handle it in Sparkflows workbench.

When datasets are created, Fire Insights automatically infers the schema using Spark-Json library.

Datasets

12.1. Tutorials 197

Sparkflows Documentation, Release 0.0.1

Dataset Creation

Navigate to the “Datasets” tab in your application where you want to create a new dataset. Click on the “Create”
button and choose “Dataset”. In the pop-up choose “JSON” and then click “OK”.

Clicking “OK” will take you to Dataset Details page where you can enter information about your dataset. In the
screenshot below, we create a dataset from a customer.json file.

We specified a name, category, description & path of json file for the dataset we are creating.

Once we have specified the above, we hit the ‘Update Sample data/schema’ button. This brings up the sample data,
infers the schema and displays it. We can change the column names and also the data types. Format column is used
for specifying the format for date/time fields.

Clicking the ‘Save’ button saves the new json dataset. The json dataset is now ready for use in any workflow within
the specific application.

Creating Dataset for Parquet Files

Fire insights supports reading from several file formats including Parquet files. Parquet files have schema embedded
in them. Fire Insights is able to extract schema of Parquet files automatically.

198 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Datasets

The existing datasets are displayed in the DataSets page of specific application.

Dataset Creation

Navigate to the “Datasets” tab in your application where you want to create a new dataset. Click on the “Create”
button and choose “Dataset”. We now create a dataset for people.parquet. It is a parquet file.

In the ‘Create DataSet’ page fill in the required fields as below.

Specify the name of the dataset you are creating.

After specifying name and path, click the ‘Update Sample data schema’ button. This brings up the sample data,
extracts the schema and displays it. Below we see that there are 2 fields : age and name. Age is of type integer and
name is of type string.

Clicking the ‘Save’ button creates the new DataSet for us.

Now you are ready to use the dataset in your workflows.

Creating Dataset from MySQL Table

When working with data in Fire Insights, the first step is to create a dataset that you plan to process subsequently.
Dataset is a wrapper around your data which makes it easy to handle it in Sparkflows workbench.

12.1. Tutorials 199

Sparkflows Documentation, Release 0.0.1

200 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

When datasets are created, Fire Insights automatically infers the schema of the dataset.

Datasets

When you open any application, all existing datasets specific to the application are displayed in the Datasets tab.

Dataset Creation

Navigate to the “Datasets” tab in your application where you want to create a new dataset. Click on the “Create”
button and choose “Dataset”. In the pop-up choose “JDBC” and then click “OK”.

Specify the name of the dataset you are creating and other required parameters such as JDBC DRIVER, JDBC URL,
USER, PASSWORD, DB, & TABLE etc.

Once you have filled in required information, hit ‘Update Sample data/schema’ button. This brings up sample data,
infers the schema and displays it. You can change column names and data types as needed. Format column is used for
specifying the format of date/time fields.

12.1. Tutorials 201

Sparkflows Documentation, Release 0.0.1

Clicking the ‘Save’ button creates the new dataset that can be used in any workflow or Interactive dashboard within
the specific application.

Reading from RDBMS in Workflow

Fire has JDBC Processors for reading from JDBC sources or writing to JDBC sinks.

In order to connect to a JDBC source like MySQL/Oracle/DB2 etc. the JDBC driver needs to be installed in Fire
Insights.

Use the steps here for installing the corresponding JDBC driver for your RDBMS:

• http://docs.sparkflows.io/en/latest/operating/installing-jdbc-drivers.html

Workflow for reading from MySQL

Below is a workflow which reads data from MySQL and saves to a CSV file. It reads in the data from the
dm_product table in MySQL and saves it to a CSV file.

JDBC Processor Configuration

Below are the configuration details of the JDBC Processor. It uses the provided user for reading from the MySQL
database. On clicking on Refresh Schema, Fire gets the schema of the table in MySQL and populates the entries.

202 Chapter 12. Tutorials

http://docs.sparkflows.io/en/latest/operating/installing-jdbc-drivers.html

Sparkflows Documentation, Release 0.0.1

Results of reading from MySQL table

The below screenshot displays some of the records read from the MySQL table by Fire.

Specifying a sub-query

In the configuration of the JDBC node, for db_table anything that is valid in a FROM clause of a SQL query can
be used. For example, instead of a full table we could also use a subquery in parentheses.

More details are available on the Spark Guide : https://spark.apache.org/docs/1.6.0/sql-programming-guide.html#
jdbc-to-other-databases

12.1. Tutorials 203

https://spark.apache.org/docs/1.6.0/sql-programming-guide.html#jdbc-to-other-databases
https://spark.apache.org/docs/1.6.0/sql-programming-guide.html#jdbc-to-other-databases

Sparkflows Documentation, Release 0.0.1

Above we have specified a subquery which selects only the ‘first_name’ from the employees table.

JDBC Drivers

Below are the JDBC URL’s for some databases:

• MySQL : com.mysql.jdbc.Driver

• PostgreSQL : org.postgresql.Driver

• Oracle : oracle.jdbc.driver.OracleDriver

Example JDBC URL

Below are some examples of JDBC URL for reading from Relational sources:

• MySQL : jdbc:mysql://localhost:3306/mydb

• PostgreSQL : jdbc:postgresql://localhost:5432/mydb

Read PDF File

This workflow reads in PDF file from the given location. It then parses its content and creates DataFrame then prints
the results.

204 Chapter 12. Tutorials

jdbc:mysql://localhost:3306/mydb
jdbc:postgresql://localhost:5432/mydb

Sparkflows Documentation, Release 0.0.1

Workflow

Below is the workflow that shows:

• How to read in PDF file from the given location and create the DataFrame from it

• Prints the result

Reading And Parsing PDF File

DatasetPDF processor uses the passed location to download PDF file, parse its content into string and create the
DataFrame.

Processor Configuration

Processor Output

Prints the Results

It prints the result onto the screen.

Reading and Writing from ElasticSearch

Elastic Search is often used for indexing, searching and analyzing datasets. Fire Insights makes it easy to read data
from Elastic Search, clean it and transform it as needed.

12.1. Tutorials 205

Sparkflows Documentation, Release 0.0.1

Elasticsearch-hadoop provides native integration between Elasticsearch and Apache Spark. In the example below we
will first load data from HDFS into Elastic Search and then read it back into Apache Spark from Elastic Search.

If your data is already in Elastic Search, skip to “Workflow for Reading data from Elastic Search”.

Loading data into Elastic Search

Create a new empty workflow. Drag and drop the source dataset from which you want to load data into Elastic Search.
If you don’t have a dataset for the source data, create one.

Once the source processor is on the workflow canvas, drag and drop “SaveElasticSearch” processor in the workflow.
Configure your Elastic Search processor in the dialog box shown below.

After configuring “SaveElasticSearch” processor, connect your data source processor to Elastic Search processor.

The example workflow below reads a Housing dataset which is in CSV format from HDFS. The ‘SaveElasticSearch’
takes in the incoming data and loads it into the Elastic Search Index ‘sparkflows/housing’.

Note: Documentation processor is just for documentation purposes.

206 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Workflow Execution

When the example workflow above is executed, it reads in the dataset from HDFS and saves it into Elastic Search.

Reading data from Elastic Search

Reading data from Elastic Search is easy. Drag and drop ‘ReadElasticSearch’ process into your workflow and config-
ure it. The screenshot below shows the dialog box for the Elastic Search Read processor.

In the dialog above, ‘Refresh Schema’ button infers the schema of the index. Thus it is able to pass down the output
schema to the next processor making it easy to build workflows.

The SQL field specifies the SQL to be used for reading from Elastic Search. It allows you to limit the columns of
interest, and apply where clauses etc.

The Elastic Search processor understands the SQL and translates it into the appropriate QueryDSL. The connector
pushes down the operations directly to the source, where the data is efficiently filtered out so that only the required
data is streamed back to Spark. This significantly increases the query performance and minimizes the CPU, memory
and I/O operations on both Spark and Elastic Search clusters.

The example workflow below reads the data from the sparkflows/housing index in Elastic Search and prints out the
first few lines.

12.1. Tutorials 207

Sparkflows Documentation, Release 0.0.1

208 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Workflow Execution

When the example workflow above is executed, it reads in the index from Elastic Search and displays the first few
lines.

Processing multiple files

This workflow reads in multiple files available in specific directory. It then filters and calculates number of bedrooms
with specific prices and then prints the results.

Workflow

Below is the workflow. It does the following:

• Reads multiple csv files available in specific directory.

• Filters it to calculate number of bedrooms with specific prices.

• Prints the results.

Reading CSV files

It reads multiple CSV files available in specific directory using ReadCSV processor.

Processor Configuration

Processor Output

12.1. Tutorials 209

Sparkflows Documentation, Release 0.0.1

Filter its data

It then filters to calculate number of bedrooms with specific prices using SQL processor.

Processor Configuration

Processor Output

Print the results

It will print the results with the output required after filter aggregation.

Processor Configuration

210 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Output

Saving Data to HIVE

As par of your data pipeline or workflow, you might want to save data to HIVE after it has been read from a data source,
cleaned and transformed. After data is saved in HIVE it can be read from another workflow or accessed through BI
tools such as Tableau.

Cluster vs Standalone Mode

In your workflow, drag and drop a “SaveAsHIVETable” processor. Configure the processor to save your data into
HIVE as a table which can be read later.

Note: Fire Insights can run in cluster mode or in the standalone mode. These settings are in Administra-
tion/Configuration.When connecting to HIVE, Sparkflows must be running in cluster mode on an edge node of a
Hadoop cluster. HIVE settings have to be correctly set under Administration/Configuration-> app.runOnCluster.

The example workflow below, contains “SaveAsHIVETable” processor. It reads Housing dataset and saves it into the
HIVE ‘housing_table’.

When the example workflow is executed, data is written into HIVE table ‘housing_table’.

12.1. Tutorials 211

Sparkflows Documentation, Release 0.0.1

The ‘housing_table’ gets created with the schema of the Housing Dataset.

Writing to Parquet Files

Fire Insights enables you to write your Dataframe to Parquet Files.

Workflow for writing to Parquet file

Below is a workflow example which reads in transaction data. It then writes it out to Parquet files.

212 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

DatasetStructured Processor

Node DatasetStructured creates a Dataframe of your dataset named Transaction Dataset by reading
data from HDFS, HIVE etc. which had been defined earlier in Fire by using the Dataset feature.

As a user you have to select the Dataset of your interest as shown below.

SaveParquet Processor

SaveParquet processor saves the incoming DataFrame into the specified path in Parquet Format. When running on
Hadoop, Parquet files gets saved into HDFS.

The DataFrame might be written as multiple part files in the specified folder, depending on the size and partition of
the DataFrame.

Writing to JSON Files

Fire Insights enables you to write your DataFrame to JSON Files.

Workflow for writing to JSON file

12.1. Tutorials 213

Sparkflows Documentation, Release 0.0.1

Reading From Dataset

Node TransactionDataset creates DataFrame of your dataset named ‘Transaction Dataset’ by reading data from
HDFS, HIVE etc. which had been defined earlier in Fire by using the Dataset feature. As a user you just have to select
the Dataset of your interest and configure the details as shown below.

SaveJSON Processor Configuration

Node SaveJSON saves DataFrame into the specified path in JSON Format. When running on Hadoop, JSON files
gets saved into HDFS.

Reading and Writing from MongoDB

MongoDB is a document database with the scalability and flexibility that you want with the querying and indexing
that you need. Here we are loading data from HDFS and Saving it into MongoDB.

Workflow for Loading data into MongoDB

The below workflow reads in the Sample Dataset which is in CSV format from HDFS.

It then saves the data into MongoDB.

The below diagram shows the dialog box for the SaveMongoDB Processor.

214 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Workflow Execution

When we execute the Workflow, it reads in the dataset from HDFS and loads it into MongoDB.

Workflow for Reading data from MongoDB

The below workflow reads Data in MongoDB.It then prints the data.

The below diagram shows the dialog box for the ReadMongoDB Processor.

In the above dialog, the ‘Refresh Schema’ button infers the schema of the collections. Thus it is able to pass down the
output schema to the next Processor making it easy for us to build the workflow.

Workflow Execution

When we execute the Workflow, it reads in the Sample collection from MongoDB and displays the first few lines.

We see that the Sample data records we wrote to MongoDB in the first workflow is read back now.

12.1.2 Data Exploration

12.1. Tutorials 215

Sparkflows Documentation, Release 0.0.1

216 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Telco Churn Data Exploration

Data Profiling is extremely helpful in understanding the data. Fire Insights provides a number of processors for users
to profile their data.

Workflow for Data Profiling

Below is a workflow which profiles the Telco Churn Dataset.

Input Telco Churn Data

The input dataset looks like below:

Workflow Execution Result

When the above workflow is executed, it produces the below results. The good thing about Fire Insights is that the Data
Profiling runs in a distributed fashion. So, whatever the number of records in the input dataset, it scales seamlessly.

Summary Statistics

Counts by Churned Column

Graph of counts of various attributes for Churned and Not Churned customers

12.1. Tutorials 217

Sparkflows Documentation, Release 0.0.1

218 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Correlation Matrix

12.1.3 Machine Learning

Telco Churn Prediction

Fire Insights enable us to create a Random Forest Model to predict churn and evaluate the results.

The dataset is artificial Churn Data based on claims, similar to real world. It is taken from the following location.

• https://www.sgi.com/tech/mlc/db/

• https://www.sgi.com/tech/mlc/db/churn.all

• https://www.sgi.com/tech/mlc/db/churn.name

Below is the workflow you can use for creating the model for Churn Prediction.

The workflow performs the following steps:

• Reads in the dataset from a tab separated file

• Applies StringIndexer on the field “intl_plan”

• Applies VectorAssembler on the fields we want to model on

• Splits the dataset into (.8, .2)

• Performs Random Forest Classification

12.1. Tutorials 219

https://www.sgi.com/tech/mlc/db/
https://www.sgi.com/tech/mlc/db/churn.all
https://www.sgi.com/tech/mlc/db/churn.name

Sparkflows Documentation, Release 0.0.1

• Performs prediction using the model generated on the remaining 20% dataset

• Finally evaluates the prediction results

In the VectorAssembler, select the fields you
want to include in the model. Only the nu-
meric fields are displayed as VectorAssem-
bler supports only the numeric fields.

You can split the dataset into training and test
datasets. We split it into (.8, .2)

You can use a RandomForestClassifier for
predicting churn. We use 20 trees.

You can predict using the model on the test
dataset.

You can evaluate the quality of our results.

Next, You can execute the workflow.

From the evaluator You get the following re-
sults:

Bike Rental Prediction

This workflow reads in a dataset.It then Predicts the number of bikes to be rented in any
given hour.

220 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset.

• Extracts hour from time using datatype timestamp.

• Calculates Count to datatype double.

• Assembles features for modelling.

• Calculates vectorindexer.

• Splits it.

• GBTRegression.

• Prediction.

• RegressionEvaluator.

• Correlation with columns.

• Summary analysis.

• Calculate count for rental per hour.

• Analyse using Graph.

Reading from Dataset

It reads sample Dataset file.

12.1. Tutorials 221

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Extract hour from time using datatype timestamp

It Extracts hour from time using datatype timestamp using DateTimeFieldExtract Node.

Processor Configuration

Processor Output

222 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Calculate Count to datatype double

It Calculates cast the Count field to datatype double using CastColumnType Node.

Processor Configuration

Processor Output

Assemble features for modelling

It Assembles features columns into a feature vector using VectorAssembler Node.

12.1. Tutorials 223

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Calculate vectorindexer

It identifies categorical features and index them using vectorindexer Node.

Processor Configuration

Processor Output

Split it

It will split our dataset into seperate training and test sets using split Node.

224 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 225

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

GBTRegression

It validates held out test sets in order to know about high confidence using GBTRegres-
sion Node.

Processor Configuration

Processor Output

Prediction

It will make prediction on future data using Prediction Node.

Processor Configuration

Processor Output

RegressionEvaluator

It validates held out test sets in order to know about high confidence using Regres-
sionEvaluator Node.

226 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 227

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Correlation with columns

It will analyse correlation between various columns using Correlation Node.

Processor Configuration

Processor Output

Summary analysis

It visualizes our data to get sense of whether the features are meaningful using Summary
Node.

228 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Calculate count for rental per hour

It calculates count for rental per hour using query with SQL Node.

Processor Configuration

Processor Output

Analyse using Graph

It will analyse graph with bike rental counts and hours of the day using GraphValue Node.

Processor Configuration

Processor Output

12.1. Tutorials 229

Sparkflows Documentation, Release 0.0.1

230 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Farmers Market Prediction

It demonstrate to predict “the number of farmer’s markets in a given zip code” based on
the income and taxes paid in a given area using the past data.It seems plausible that areas
with higher income have more farmer’s markets simply because there is more of a market
for those goods. Of course there are many potential holes in this idea, but that’s part of
the desire to test it.

DataBricks has published a clean approach to build this use case. It feature a Python
notebook that demonstrates how to create ML Pipeline to preprocess a dataset, train a
Machine Learning model, and make predictions.

Using Fire Insights visual designer, you can try to execute this approach visually and
declaratively. This note speaks to that.

As the DataBricks link highlights:

• The first of the two datasets that you can work is the Farmers Markets Directory and
Geographic Data. This dataset contains information on the longitude and latitude, state,
address, name, and zip code of Farmers Markets in the United States. The raw data is
published by the Department of Agriculture. The version on the data that is found in
Databricks (and is used in this tutorial) was updated by the Department of Agriculture on

Dec 01, 2015.

• The second you can work is the SOI Tax Stats - Individual Income Tax Statistics - ZIP
Code Data (SOI). This study provides detailed tabulations of individual income tax return
data at the state and ZIP code level and is provided by the IRS. This repository only has a
sample of the data: 2013 and includes “AGI”. The ZIP Code data show selected income
and tax items classified by State, ZIP Code, and size of adjusted gross income. Data are

based on individual income tax returns filed with the IRS and are available for Tax Years 1998, 2001, 2004 through
2013. The data include items, such as:

– Number of returns, which approximates the number of households

– Number of personal exemptions, which approximates the population

– Adjusted gross income

– Wages and salaries

– Dividends before exclusion

– Interest received

Below is an overview of the workflow. You can create using the Fire Insights Visual
Designer.

12.1. Tutorials 231

Sparkflows Documentation, Release 0.0.1

This workflow was simply created via the drag and drop capabilities of the Fire Insightss
Designer UI. This ability to construct this data processing pipeline (or any DAG - Dis-
tributed Acyclic Graph, for that matter) in a WYSIWYG Plug-and-Play manner is a key
innovation to continue our community’s collective march to on-demand-instant-analytics.
Benefits include:

• It opens up the power of ETL and ML (such pre-packaged functionality is available as a
catalog of “Nodes”) to a wider audience of analysts and semi-technical resources.

• The actual execution can either be local (testing) or can be submitted to a Apache Spark
cluster.

• You can see during the adoption that a single workbench improves collaborative iteration
across data engineers, data scientists and analysts, which in turn accelerates time-to-
market.

• As one might observe, the visual approach doubles up as workflow documentation and
hence contributes to solving the data-lineage problem.

This workflow consists of the following steps:

• Using the DatasetStructured Nodes: Read in the data from 2 different datasets - Farm-
ers_Markets and Income Tax Return Data per Zip Code (both comma separated files:

• Instead of a CSV, one can easily read it from a data-lake or a Persistence Store
(HDFS/RDBMS/NoSQL).

• Using the ColumnFilter node: Filter out the following columns from the Income Tax
Return dataset and pass it to a SQL query node, so we can do further computation.

– State

– Zipcode

– MARS1 - Single Returns

– MARS2 - Joint Returns

– NUMDEP - Number of Dependents

– A02650 - Tota Income Amount

– A00300 - Taxable Interest Amount

– A00900

– A01000

232 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

• Using the SQL Node: Execute the following SQL to get the various aggregates from the
filtered data from the Income Tax Return dataset

– select zipcode, sum(MARS1) as single_returns, sum(MARS2) as joint_returns,
sum(NUMDEP) as numdep, sum(A02650) as total_income_amount, sum(A00300) as
taxable_interest_amount from fire_temp_table group by zipcode

• Using another SQL Node: Extract certain columns from the Farmers_Market dataset
using the below SQL query:

– select cast(zip as int) as zip, count(*) as count from fire_temp_table group by zip

• Using the AllJoin node - Join the two filtered datasets using the following query:

– select a.zipcode , a.single_returns, a.joint_returns, a.numdep, a.total_income_amount,
a.taxable_interest_amount, b.count, b.zip from fire_temp_table1 a LEFT OUTER JOIN
fire_temp_table2 b ON(a.zipcode=b.zip)

• Using the CastColumnType Node - change the column type of the count column from
Long to Double

• Using the ImputingWithConstant node, fill the blanks across all columns with constants.

• Using the VectorAssembler node, concatenate columns single_returns, joint_returns,
numdep, total_income_amount, taxable_interest_amount into a feature vector fea-
ture_vector

• Using Split node: Split the dataset into (.7, .3)

– 70% rows are used for training and 30% are used for prediction

• The model is evaluated based on how it predicts on the remaining 30%.

• Using the LinearRegression Node - Perform LinearRegression:

• This is a Spark MLLib provided algorithm that Sparkflows exposes to you as a plug-and-
play “node”. LinearRegression from SparkML.

• Using Predict Node: Perform prediction using the model generated on the remaining
30% dataset

• Finally evaluate the result using the PrintNRows node.

First Dataset

Column Filter

SQL

Second Dataset

SQL

AllJoin - Join the two datasets

CastColumnType

12.1. Tutorials 233

Sparkflows Documentation, Release 0.0.1

234 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 235

Sparkflows Documentation, Release 0.0.1

236 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

ImputingWithConstant

VectorAssembler

Split

LinearRegression

Predict

12.1. Tutorials 237

Sparkflows Documentation, Release 0.0.1

238 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Print N Rows

Next you can execute the workflow and it come up with predictions for number of farmers
markets in a zip code.

Clustering Houses

This workflow reads in a dataset. It then performs KMeans Clustering on the Housing
Dataset.

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset.

• Prints the results.

• Assembles the features for predictions.

• Splits it.

• Perform KMeans Clustering.

• ML Model save.

• ML Model Load.

• Prediction.

• Print the prediction results.

Reading from Dataset

It reads sample Dataset file.

12.1. Tutorials 239

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Prints the results

It prints the sample dataset file results.

Processor Configuration

Processor Output

Assemble the features for predictions

It assembles the features for predictions using VectorAssembler Node.

240 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 241

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Split it

It splits features of prediction using Split Node.

Processor Configuration

Processor Output

Perform KMeans Clustering

It performs KMeans Clustering on the Housing Dataset using KMeans Node.

Processor Configuration

Processor Output

242 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

ML Model save

It will save ML Model with given path using ModelSave Node.

Processor Configuration

Processor Output

ML Model Load

It will Load ML Model with given path using ModelSave Node.

Processor Configuration

12.1. Tutorials 243

Sparkflows Documentation, Release 0.0.1

Processor Output

Prediction

It predicts features updated using Predict Node.

Processor Configuration

Processor Output

Print the prediction results

It Print the prediction results.

Processor Configuration

244 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 245

Sparkflows Documentation, Release 0.0.1

Processor Output

TFIDF

This workflow reads in a dataset. It then Tokenizes and then performs TF/IDF on text
content.

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset.

• Tokenizes message column.

• Performs TF.

• Performs IDF.

• Prints the results.

Reading from Dataset

It reads sample Dataset file.

Processor Configuration

246 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Output

Tokenizes message column

It Tokenizes message column generated by sample dataset file using Tokenizer Node.

Processor Configuration

Processor Output

Perform TF

It performs TF on text column using HashingTF Node.

12.1. Tutorials 247

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Perform IDF

It performs IDF on text column using IDF Node.

Processor Configuration

Processor Output

Prints the results

It will print the result after performing TF/IDF on text content.

248 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Output

Earthquake Prediction

Objective

As the motivation behind earthquake prediction is to empower crisis measures to decrease
demise and devastation, inability to give notice of a significant earthquake that happens,
or possibly a satisfactory assessment of the hazard, can bring about legitimate risk, or
even political cleansing.

Dataset

Dataset contains 2 columns as below:

• Acoustic_data - Acoustic wave reading

• Time_to_failure - Time remaining before the next earthquake

12.1. Tutorials 249

Sparkflows Documentation, Release 0.0.1

250 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Random Forest Regression Workflow for Earthquake Prediction

Random Forest Regression model belongs to family of bagging regression. It is a su-
pervised learning model that uses ensemble learning method for regression. Ensemble
learning method is a technique that combines predictions from multiple models to make
prediction more accurately than a single model.

Features of Random Forest -

• Aggregates many decision trees

• Prevents overfitting

Prepare data for modeling

Follow workflow arrow

• ZipWithIndex- Creates new feature column from dataframe index as ID

• Group data- Creates new feature column as key obtained by ID divided by length of
data

• Feature Engineering- Groups by data on key to create all statistical measures (min, max,
mean, quartiles etc) as new feature

• Feature Vector - Merge multiple columns to form vector

Data modeling

• Before we create Random Forest Regression model, split data (80:20) into train and test
for performance evaluation.

12.1. Tutorials 251

Sparkflows Documentation, Release 0.0.1

252 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Random Forest Regression

• Sets feature vector corresponding to label(time_to_failure_label).

• Sets number of features for each split node of tree.

• For regression the measure of impurity is variant.

• In random forest, the impurity decrease from each feature can be averaged across trees
to determine the final importance of the variable.

• The maxBins signifies the maximum number of bins used for splitting the features, where
the suggested value is 100 to get better results.

• The maxDepth is the maximum depth of the tree (for example, depth 0 means one leaf
node, depth 1 means one internal node plus two leaf nodes).

• Information gain is calculated by comparing the entropy of the dataset before and after a
transformation.

Model evaluation

• Multiple ways to evaluate regression model such as R square, Root mean square er-
ror(rmse), mean square error(mse)

12.1. Tutorials 253

Sparkflows Documentation, Release 0.0.1

12.1.4 Analytics

Analyze Flights Delays

This workflow reads in a dataset. It then analyzes flights delay with sample datasets and
prints the results.

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset.

• Prints the sample datasets results.

• Column to be cast for new datatype double.

• Column to be cast for new datatype string.

• Updates the column name of datatype string.

• Prints the result of data updating after stringindexer Node.

• Executes the SQL queries with the given conditions.

• Prints the results.

Reading from Dataset

It reads Dataset files.

Processor Configuration

Processor Output

Print the sample datasets results

It prints the sample datasets results.

254 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Column to be cast for new datatype double

It casts for new datatype double using cast-
column type Node.

Processor Configuration

12.1. Tutorials 255

Sparkflows Documentation, Release 0.0.1

Processor Output

Column to be cast for new datatype string

It casts for new datatype string using castcol-
umn type Node.

Processor Configuration

Processor Output

Updates the column name of datatype string

It updates the column name of datatype
string using stringindexer type Node.

256 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 257

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Prints the Results

It prints the result of data updating after
stringindexer Node.

258 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Executes the SQL queries

It executes the SQL queries with the given
conditions.

Processor Configuration

Processor Output

Prints the Results

It prints the results after satisfied condition
by sql queries.

Processor Configuration

12.1. Tutorials 259

Sparkflows Documentation, Release 0.0.1

260 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Output

Distribution Graphs

This workflow reads a CSV file. It then
plots graphs of distribution of data by Week,
Month & Year.

Workflow

Below is the workflow. It does the following:

• Reads a CSV file.

• Distribution of data by Week.

• Distribution of data by Month.

• Distribution of data by Year.

Reading CSV file

It reads CSV files.

Processor Configuration

Processor Output

Distribution of data by Week

It plots graphs of distribution of data by
Week using GraphWeekDistribution Node.

12.1. Tutorials 261

Sparkflows Documentation, Release 0.0.1

262 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Distribution of data by Month

It plots graphs of distribution of data by
month using GraphMonthDistribution Node.

Processor Configuration

Processor Output

12.1. Tutorials 263

Sparkflows Documentation, Release 0.0.1

Distribution of data by Year

It plots graphs of distribution of data by year
using GraphYearDistribution Node.

Processor Configuration

Processor Output

Farmers Markets On Geo Maps

This workflow reads in a dataset. It then
plots number of Farmers Market by City and
by State on a Graph.

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset.

• Executes SQL Query for state count.

• Prints the result after executing query for
state counts.

• Plots Graph for farmers with state counts.

264 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

• Executes SQL Query for city counts.

• Plots Graph for farmers with city counts.

Reading from Dataset

It reads sample Dataset files.

Processor Configuration

Processor Output

12.1. Tutorials 265

Sparkflows Documentation, Release 0.0.1

Execute SQL Query

It Executes SQL Query for state count from
the SQL node.

Processor Configuration

Processor Output

Prints the Results

It prints the results after executing query for
state counts by SQL Node.

266 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Analyze using Graph

It plots Graph for farmers with state counts
using RegionGeoGraph Processor.

Processor Configuration

12.1. Tutorials 267

Sparkflows Documentation, Release 0.0.1

Processor Output

Execute SQL Query

It executes SQL Query for City count from
the SQL node.

Processor Configuration

Processor Output

268 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Analyze using Graph

It plots Graph for farmers with City counts
using RegionGeoGRaph Node.

Processor Configuration

Processor Output

General Payment Data Analysis

This workflow reads in a dataset. It then per-
forms detailed analytics on general payment
dataset.

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset.

• Calculates count transactions by speciality.

12.1. Tutorials 269

Sparkflows Documentation, Release 0.0.1

• Summary of transactions.

• Number of transactions per state.

• Prints the results.

Reading from Dataset

It reads from sample Dataset file.

Processor Configuration

Processor Output

270 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Calculate count transactions by speciality

It will calculate count transactions by spe-
ciality using BarChartCal Node.

Processor Configuration

Processor Output

12.1. Tutorials 271

Sparkflows Documentation, Release 0.0.1

Summary of transactions

It finds stats on amount of each transaction
using Summary Node.

Processor Configuration

Processor Output

Number of transaction per state

It finds number of transactions per state us-
ing SQL Node.

Processor Configuration

Processor Output

Prints the results

It will print the result of output getting from
SQL Node.

272 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 273

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Jetrail Data Analysis

This workflow reads in a dataset. It then cal-
culates the monthly trend in JetRail Dataset
and annalyses using graph.

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset.

• Extracts date time field.

• Calculates count per month.

• Executes query for months.

• Print the results.

• Graphical analysis.

Reading from Dataset

It reads from sample Dataset file.

274 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Extract date time field

It extracts year and month field from date
time field of timestamp using date time field
extract Node.

Processor Configuration

Processor Output

Calculate count per month

It calculates count per month using query by
SQL Node.

12.1. Tutorials 275

Sparkflows Documentation, Release 0.0.1

276 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Execute query for months

It executes query for grouping and selecting
required fields, calculates sum of counts by
SQL Node.

Processor Configuration

Processor Output

Prints the Results

It prints the results after executing SQL Query

align center

width 60%

12.1. Tutorials 277

Sparkflows Documentation, Release 0.0.1

Graphical analysis

It will graphically represent month with
count using GraphValue Node.

Processor Configuration

Processor Output

NYC Taxidata Analysis

This workflow reads in a sample dataset. It
then analyses average speed of taxis at each
hour with sample data and prints the results.

Workflow

Below is the workflow. It does the following:

• Reads data from a dataset.

• Extracts hour from pickup time.

• Calculates the speed per hour.

278 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 279

Sparkflows Documentation, Release 0.0.1

• Calculates the average speed per hour.

• Prints the results.

• Displays average speed per hour on chart.

Reading from Dataset

It reads sample Dataset files.

Processor Configuration

Processor Output

280 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Extract hour from pickup time

It extracts hour from pickup time using date-
timefieldextract Node.

Processor Configuration

Processor Output

Calculate the speed per hour

It calculates the speed per hour using SQL
Node.

12.1. Tutorials 281

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Calculate the average speed per hour

It calculates the average speed per hour using
GroupBy Node.

Processor Configuration

Processor Output

282 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 283

Sparkflows Documentation, Release 0.0.1

Prints the results

It will print the result with the output of
GroupBy Node.

Processor Configuration

Processor Output

Analyze using Chart Graph

It displays average speed per hour on chart
using Graphvalue Node.

Processor Configuration

Processor Output

Transaction Data Analytics

This workflow reads in a dataset. It then
prints the results from the sample dataset and
analyses using graphs.

284 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 285

Sparkflows Documentation, Release 0.0.1

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset.

• It then prints the results from the sample
dataset.

• Analysing using graphs.

Reading from Dataset

It reads Dataset File.

Processor Configuration

Processor Output

Prints the sample Dataset Results

It prints sample Dataset Results.

286 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Analysing using Graph

It helps to analyse using graph with Graph
grouped by column brand and count.

Processor Configuration

Processor Output

12.1.5 Data Preparation

12.1. Tutorials 287

Sparkflows Documentation, Release 0.0.1

Convert To Timestamps

This example converts to timestamp from
the input sample dataset using string to date
Node.

Workflow

Below is the workflow. It does the following:

• Reads data from a sample dataset file.

• Prints sample dataset result.

• Converts sample string to timestamp.

• Prints the expected result.

Reading from Dataset

It reads sample Dataset File.

Processor Configuration

288 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Output

Prints the sample Dataset Results

It prints the results of the sample dataset
available.

Processor Configuration

Processor Output

Convert To Timestamps

It converts To Timestamps using stringtodate
Node.

Processor Configuration

Processor Output

12.1. Tutorials 289

Sparkflows Documentation, Release 0.0.1

290 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Prints the Results

It prints the results after converting to Times-
tamps.

Processor Configuration

Processor Output

Data Validation

This example performs different kinds
of data validation on input dataset
like valid/invalid email,valid/invalid
date,null/not null check etc.

Workflow

Below is the workflow. It does the following:

• Reads data from a CSV file.

• Performs specific validation on specific
columns.

Reading from CSV File

It reads data from a CSV file.

12.1. Tutorials 291

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Performing Validation

It performs different validation on different
columns.

Processor Configuration

Processor Output

Multi-Validation Workflow

This workflow performs multiple validations
on each incoming record

292 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 293

Sparkflows Documentation, Release 0.0.1

• Records which pass validation are output
into the first edge

• Records which fail validation are output into
the seconds edge

Validations

• Ensures that field is greater than or equal to
specified string value

• Ensures that field is less than or equal to
specified string value

• Ensures that field matches given datePattern

• Ensures that the email is valid

• Ensures field length is greater than or equal
to specified length

Workflow

Below is the workflow. It does the following:

• Reads data from a CSV file.

• Performs specific validation on specific
columns.

Reading from CSV File

DatasetCSV processor reads data from a
CSV file.

Processor Configuration

Processor Output

294 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 295

Sparkflows Documentation, Release 0.0.1

String Functions

StringFunctions processor performs
specified operation on the selected column
(i.e. trim function for column ‘name’ in this
case)

Processor Configuration

Processor Output

Performing Validation

ValidationMultiple processor per-
forms different validation on different
columns.

296 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Prints the Valid Records

Processor Output

Prints the Invalid Records

Processor Output

Decision / JSON Parser / SortBy / Empty Dataset

Fire provides the following processors:

• JSON Parser Processor

• Decision Processor

• SortBy Processor

• Empty Dataset Processor

https://www.sparkflows.io/single-post/2018/09/05/New-Processors—Decision-JSON-Parser-SortBy-

12.1. Tutorials 297

https://www.sparkflows.io/single-post/2018/09/05/New-Processors---Decision-JSON-Parser-SortBy

Sparkflows Documentation, Release 0.0.1

Column Filter

This workflow reads in a dataset. It then
filters specified columns from the original
dataset and prints the results.

Workflow

Below is the workflow. It does the following:

• Reads data from a dataset.

• It then filters specified columns from the
original dataset.

• Prints the results.

298 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Reading from Dataset

It reads in the input Dataset File.

Processor Configuration

Processor Output

Column Filter

It filters the selected columns.

Processor Configuration

Processor Output

12.1. Tutorials 299

Sparkflows Documentation, Release 0.0.1

Prints the Results

It prints the first few records onto the screen.

Drop Columns

This workflow reads in a dataset. It
then drops some columns from the original
dataset and prints the results.

Workflow

Below is the workflow. It does the following:

• Reads data from a dataset.

• It then drops some columns from the original
dataset.

• Prints the results.

Reading from Dataset

It reads Dataset File.

Processor Configuration

Processor Output

300 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Drop Columns

It drops the columns whichever we want.

Processor Configuration

Processor Output

Prints the Results

It prints the results after dropping the
columns.

Processor Configuration

Processor Output

12.1. Tutorials 301

Sparkflows Documentation, Release 0.0.1

302 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Drop Rows With Null

This example drops/filters the rows contain-
ing any null values from the input dataset.

Workflow

Below is the workflow. It does the following:

• Reads data from a CSV file.

• Drops rows having any null values in any of
the columns.

Reading from CSV File

It reads data from a CSV file.

Processor Configuration

12.1. Tutorials 303

Sparkflows Documentation, Release 0.0.1

Processor Output

Dropping rows with null

It drops the rows which contain any null
value.

Processor Configuration

Processor Output

304 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Dedup Customers

Data deduplication refers to a technique for
eliminating redundant data in a data set. In
the process of deduplication, extra copies of
the same data are deleted, leaving only one
copy to be stored.

Workflow

Below is the workflow. This workflow does
the following:

• Finds matching records between 2 given
datasets. It first joins them with the column
“State”.

• Then it applies distance algorithms on a
few fields to find the distance between the
records.

Input Datasets

There are 2 input datasets in this case
“Dedup Master Dataset” & “Dedup Error
Dataset” as shown below,

Dataset 1:

Dataset 2:

Join input DataFrames

JoinUsingColumn processor joins the
incoming DataFrames on a join column

12.1. Tutorials 305

Sparkflows Documentation, Release 0.0.1

306 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

“State”. ColumnFilter processor filters
the columns to get the required DataFrame
as shown below:

Data Deduplication

Dedup is used for the problems like entity
resolution or data matching. Entity reso-
lution or data matching is the problem of
finding and linking different mentions of the
same entity in a single data source or across
multiple data sources. Here Levenshtein
Algorithm is used for data Deduplication.
There are more options for Algorithms that

can be used:

• Full matching: Full matching makes use of
all individuals in the data by forming a series
of matched sets in which each set has either
1 treated individual and multiple comparison
individuals or 1 comparison individual and
multiple treated individuals

• Levenshtein: It counts the number of ed-
its (insertions, deletions, or substitutions)
needed to convert one string to the other.

• Jaro-Winkler: The Jaro–Winkler distance is
a string metric measuring an edit distance
between two sequences. Jaro-Winkler are
suited for comparing smaller strings like
words and names.

• Jaccard (3 gram) : This takes consecutive
words and group them as a single object. A
3-gram is a consecutive set of 3 words. Used
for emails or small documents.

• Longest Common Subsequence : If a set
of sequences are given, the longest com-

12.1. Tutorials 307

Sparkflows Documentation, Release 0.0.1

mon subsequence problem is to find a com-
mon subsequence of all the sequences that is
of maximal length used in revision control
systems, such as SVN and Git, for recon-
ciling multiple changes made to a revision-
controlled collection of files.

• Date Difference: Calculates the number of
days between two dates.

• Notional Distance

Dedup Processor Configuration

Dedup Processor Output

Prints the Results

It prints the first few records onto the screen.

308 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Handling Null Values

This example removes null values from the
input dataset.

Workflow

Below is the workflow. It does the following:

• Reads data from a CSV file.

• Replaces null values in certain columns with
constant values.

• Converts certain columns to 0/1 based on
their value. It does it in 3 different ways.

– Using StringIndexer Processor

– Using CaseWhen Processor

– Using FindAndReplaceUsingRegex Proces-
sor

Reading from CSV File

It reads in the CSV file data-with-nulls.csv.

Processor Configuration

Processor Output

Replacing null values

It replaces null values in certain columns
with user defined constant values.

12.1. Tutorials 309

Sparkflows Documentation, Release 0.0.1

310 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Converting to 0/1 using StringIndexer

It converts strings like Y/N to 0/1 for the
specified columns using the StringIndexer
Processor.

Processor Configuration

Processor Output

Converting to 0/1 using CaseWhen

It converts strings like Y/N to 0/1 for the
specified columns using the CaseWhen Pro-
cessor.

Processor Configuration

12.1. Tutorials 311

Sparkflows Documentation, Release 0.0.1

Processor Output

Converting to 0/1 using FindAndReplaceUsingRegex

It converts strings like Y/N to 0/1 for
the specified columns using the FindAn-
dReplaceUsingRegex Processor.

Processor Configuration

Processor Output

312 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Remove Duplicate Rows

This workflow reads CSV file. It then re-
moves duplicate rows from the original CSV
file and prints the results.

Workflow

Below is the workflow. It does the following:

• Reads data from a CSV file.

• It then removes duplicate rows from the orig-
inal CSV file.

• Prints the results.

12.1. Tutorials 313

Sparkflows Documentation, Release 0.0.1

Reading from CSV file

It reads CSV file.

Processor Configuration

Processor Output

Remove Duplicate Rows

It removes Duplicate Rows available.

Processor Configuration

Processor Output

Prints the Results

It prints the results after Removing Duplicate
Rows.

314 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Removing Special Characters

This workflow reads in a dataset. It then re-
moves the special characters from columns
of the original dataset and prints the results.

Workflow

Below is the workflow. It does the following:

• It reads the CSV and creates a DataFrame.

• It find and replaces the special characters
with empty space in the columns

12.1. Tutorials 315

Sparkflows Documentation, Release 0.0.1

• Create new DataFrame containing the rows
that satisfy the given condition (i.e. removes
the rows with empty space)

• Print the specified number of records in the
DataFrame after execution of workflow

Reading from Dataset

DatasetCSV processor reads in the input
Dataset file and creates DataFrame.

Processor Configuration

Processor Output

316 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

To Remove Any Special character in data

FindAndReplaceUsingRegex proces-
sor find and replaces the special characters
with empty space in the columns

Processor Configuration

Processor Output

RowFilter - Remove the rows with empty space

RowFilter processor creates new
DataFrame containing the rows that satisfy

12.1. Tutorials 317

Sparkflows Documentation, Release 0.0.1

the condition provided (For example :
Removes the rows with empty spaces as
shown below)

Processor Configuration

Processor Output

Prints the Results

It prints the first few records onto the screen.

Rename Columns

This workflow reads in a dataset. It then re-
names columns from the original dataset and
prints the results.

Workflow

Below is the workflow. It does the following:

• Reads data from a dataset.

• It then renames columns from the original
dataset.

• Prints the results.

318 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Reading from Dataset

It reads Dataset file.

Processor Configuration

Processor Output

Rename Columns

It renames columns we want.

Processor Configuration

Processor Output

Prints the Results

It prints the results after Renaming Columns.

12.1. Tutorials 319

Sparkflows Documentation, Release 0.0.1

320 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

REST - CSV Reader & Parse

This workflow reads in a dataset from URL.
It then parses the dataset and prints the re-
sults.

Workflow

Below is the workflow. It does the following:

• Reads data from the URL and creates a
DataFrame

• Prints few records

• Splits the string of the input column using
the delimiter

• Creates a new DataFrame containing rows
satisfying the provided condition

• Prints the result

12.1. Tutorials 321

Sparkflows Documentation, Release 0.0.1

Reading from URL

DatasetURLTextFileReader proces-
sor uses the passed URL to download the
data and create the DataFrame.

Processor Configuration

Processor Output

Prints the Records

It prints the first few records onto the screen.

322 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Parsing the DataFrame

FieldSplitter processor parses and
creates new DataFrame by splitting the string
of the input column using the delimiter as
shown below:

Processor Configuration

Processor Output

Row Filter by Index

RowFilterByIndex processor creates a
new DataFrame containing required rows as
shown below:

Processor Configuration

Processor Output

12.1. Tutorials 323

Sparkflows Documentation, Release 0.0.1

Prints the Results

It prints the result onto the screen.

REST Read And Parse JSON

This workflow reads in single record JSON
from the given URL. It then parses the
dataset and prints the results.

Workflow

Below is the workflow that shows:

• How to read in single record JSON from the
given URL and create the DataFrame from it

• Prints the result

Reading from URL And Parsing

DatasetURLSingleRecordJSONReader
processor uses the passed URL to download
single record JSON, parse the dataset and
create the DataFrame.

Processor Configuration

324 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 325

Sparkflows Documentation, Release 0.0.1

Processor Output

Prints the Results

It prints the result onto the screen.

String To Date Timefunctions

This workflow reads a CSV file. It then con-
verts it into stringtodate and then to time-
functions and prints the results.

Workflow

Below is the workflow. It does the following:

• Reads a CSV file.

• It then converts it into stringtodate using
stringtodate Node.

• Convert it into timefunctions using timefunc-
tions Node.

• Prints the results.

Reading from CSV file

It reads Data from CSV file.

Processor Configuration

Processor Output

String to Date

It converts it into stringtodate using stringto-
date Node.

326 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 327

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Time Functions

It converts it into timefunctions using time-
functions Node.

Processor Configuration

Processor Output

Prints the Results

It prints the results after using string to date
timefunctions.

328 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Date-Time Field Extract

Workflow

Below is the workflow. It does the following:

• Reads data from a dataset.

• It creates a new DataFrame by extracting
Year, Month, Day of month, Hour, Minute,
Second fields from “TimeStamp”

• Prints the results.

Reading from Dataset

It reads in the input Dataset File.

12.1. Tutorials 329

Sparkflows Documentation, Release 0.0.1

330 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

tutorials/data-engineering/../../_assets/tutorials/data-engineering/date-time-field-extract/capture2.png

Processor Output

Date-Time Field Extract

It creates a new DataFrame by extracting the
year, month, day of month, hour, minute,
second, week of the year from the timestamp
column.

Processor Configuration

12.1. Tutorials 331

Sparkflows Documentation, Release 0.0.1

Processor Output

Prints the Results

It prints the first few records onto the screen.

Concat Columns

This example concats columns in the input
dataset with the specified separator.

Workflow

Below is the workflow. It does the following:

• Reads data from file present on HDFS.

• Concats the specified columns with specified
separator.

Reading from HDFS File

It reads data from a file present on HDFS.

332 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Concating columns

It concats the specified columns in cofigura-
tion with the specified separator.

Processor Configuration

We need to provide all the desired columns
to be concatenated without any separator
or space, like NameSexAge etc. Columns

12.1. Tutorials 333

Sparkflows Documentation, Release 0.0.1

would get concatenated in same order de-
fined in configuration like Name then Sex
then Age.

Processor Output

Joining Multiple Datasets

Fire Insights allows you to quickly do com-
plex data preparation and ETL on Big Data.

Fire Insights has a number of features for en-
abling it including:

• Reading data from multiple sources

• Cleaning data

• oins, GroupBy, Cube, SQL etc. to transform
data

• Writing results to various sinks

334 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Fire Insights also gives you detailed control
over your Spark jobs with Repartition, Coa-
lesce, Cache etc.

Overview

In this example, we start with 5 datasets, read
them in & understand their schema in the
process, perform data cleaning and then ap-
ply appropriate aggregations and joins.

The cleansed and tranformed datasets are
written to HDFS as CSV files. These dataset
can as well we written as Parquet, Avro,
JSON, XML files or to HIVE/Relational ta-
bles as needed.

Datasets

• facts.dat : Contains fixed length records of
products sold to customers

• geo.csv : Contains mapping of geo ids to geo
names

• product.csv : Contains mapping of product
ids to product names

• customer.csv : Contains mapping of cus-
tomer ids to customer names

• time.csv : Contains mapping of various time
interval ids to corresponding names

Workflow

The workflow achieves the following tasks:

• Parses the facts data and performs various
cleanup operations on it.

• Performs groupby with aggregations opera-
tions and saves it to a file.

• Joins the fact data with various dimensions
to create a large table and saves it to a CSV
file.

The workflow is shown below:

Data Parsing and Cleaning

While the various dimension data is available
as CSV files, the fact data is in fixed field size
format.

12.1. Tutorials 335

Sparkflows Documentation, Release 0.0.1

Each record has a fixed number of charac-
ters. In each record each field consists of
fixed number of characters. The steps for
data parsing and cleaning are as follows:

• Read in the fixed length record

• Filter out invalid records

• Cast some columns to numeric values

Group By and Aggregates

The data is then aggregated and counted and
averages are calculated. It is then saved as
CSV file.

Joins with various Dimension Data

The fact data is then joined with various di-
mension data. These include:

• Geo

• Product

• Customer

• Time

The final dataset is saved as CSV file.

Time Function

There are many instances when you want to
do time-series analysis. Fire Insights pro-
vides Date-Time features with TimeFunc-
tions operator.

336 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Creating additional features from the times-
tamp column helps you to know more about
the data and run modeling algorithms on
them. Fire Insights has NodeTimeFunctions
for creating these time series features.

Dataset

Let us take a Transaction Dataset which is
in CSV format on HDFS. The dataset has a
“DATE” column.

Workflow for applying TimeFunctions

In the example workflow below, additional
date time features are being created from the
date column.

In the above workflow:

• The ‘CSV’ processor reads in the CSV data
from HDFS.

• The ‘StringToDate’ processor converts the
column Date, which is in string format to
‘timestamp’.

• The ‘TimeFunctions’ processor takes in the
timestamp column and then applies various
timefunctions to it to generate additional out-
put columns.

12.1. Tutorials 337

Sparkflows Documentation, Release 0.0.1

The diagram below shows the dialog box
for the TimeFunctions processor. Timestamp
column was selected as input, and various
time functions were applied to it.

Workflow Execution

When the example workflow is executed, ad-
ditional columns are produced for the vari-
ous time functions that were selected.

Split Dataset By Expression

Fire Insights allows you to split incoming
dataframes. Based on your needs, use the
processors described below:

• ‘SplitByExpression’: This processor splits
the incoming dataset based on an expres-
sion. Rows satisfying the expression go into
one dataframe and the rest go into another
dataframe.

• ‘SplitByMultipleExpressions’: This proces-
sor splits the incoming dataset into multiple

338 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

dataframes based on up to five conditional
expressions.The output of each expression is
routed to a separate output path.

• ‘Split’: This processor splits the incoming
dataframe into two based on the percentage
specified for the split. Split processor is es-
pecially useful in machine learning work-
flows.

Workflow

In the example workflow above, ‘Split
By Multiple Expressions’ processor splits
the incoming dataframe into three output
dataframes. The three conditions are on
column c1 - “c1<3” , “c1>=3 and c1<5”,
and “c1>=5”. As mentioned earlier, ‘Split-
ByMultipleExpressions’ can split incoming
dataframe into up to five dataframes.

Output

For the example workflow, the three output
dataframes are shown below:

String Functions

String functions are useful to tranform
strings in your dataframe. The “StringFunc-
tion” processors allows you to apply com-
mon string operations such as ‘trim’, ‘up-
per’, ‘lower’, ‘lefttrim’, ‘righttrim’ etc. to
strings.

12.1. Tutorials 339

Sparkflows Documentation, Release 0.0.1

340 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

In the example below, different string func-
tions are applied to input dataset.

Workflow

The example workflow below, read data
from HDFS/Hive and applies different string
functions on different columns of the dataset.

Read data from HDFS

The “Housing” processor above, reads an ex-
isting dataset on HDFS.

Processor Configuration

Processor Output

Apply string functions

The ‘StringFunctionMultiple’ processor be-
low, converts contents of ‘driveway’ column
to upper case and trims contents of ‘gashw’
column.

12.1. Tutorials 341

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Data Preparation-1

Data preparation is the process of cleaning
and transforming raw data prior to process-
ing and analysis. It is an important step prior
to processing and often involves reformat-
ting data, making corrections to data and the
combining of data sets to enrich data.

Workflow

Below is the workflow. It does the following:

• Reads data from the dataset

• converts a string column to date using the
given date/time format

342 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

• Sets values for the column “State” based on
conditions

• Creates a new DataFrame containing only
rows satisfying given condition

• Prints the results of few records

Reading from Dataset

It reads in the input Dataset File.

Processor Configuration

Processor Output

Convert String to Date

MultiStringToDate converts a string
column to date using the given date/time for-
mat.

12.1. Tutorials 343

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Settings values for required Column

CaseWhen sets values for the required col-
umn based on conditions as shown in exam-
ple below:

Processor Configuration

Processor Output

344 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 345

Sparkflows Documentation, Release 0.0.1

Creating DataFrame with required rows

RowFilter creates a new DataFrame con-
taining only rows required.

Processor Configuration

Processor Output

Prints the Results

It prints the first few records onto the screen.

Data Cleaning

This workflow cleans the input data. It does
the following:

• Handles null values

• Replaces N/Y values etc. with 0/1

Workflow

Below is the workflow. It does the following:

• Reads data from a dataset

346 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

• Handles the null values by imputing the
missing values with the constant value pro-
vided in the specified columns

• Convert Strings to Integer Indexes

• Convert Gender to Integer Values

• Replace Gender and Family with 0/1

Reading from Dataset

DatasetCSV reads in the input Dataset file
and creates DataFrame from it.

Processor Output

Handling Null Values

ReplaceMissingValueWithConstant
processor handles the null values by im-
puting the missing values with the constant
value provided in the specified columns.

Processor Configuration

12.1. Tutorials 347

Sparkflows Documentation, Release 0.0.1

Processor Output

Convert Strings to Integer Indexes

StringIndexer processor encodes a
string type column to a column of label in-
dices.

Processor Configuration

Processor Output

Convert Gender to Integer Values

CaseWhen processor sets values for the
variables based on conditions, as shown be-
low:

348 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 349

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Replace Gender and Family with 0/1

FindAndReplaceUsingRegexMultiple
processor sets values for the variables based
on conditions, as shown below:

Processor Configuration

Processor Output

Prints the Results

It prints the first few records onto the screen.

350 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Titanic Data Cleaning/Wrangling

This workflow shows how to wrangle the Ti-
tanic Dataset with Sparkflows.

Workflow

This workflow performs the following steps:

• Reads the Titanic dataset

• Drops Rows containing Null values

• Filters the Rows for whom Age has not been
specified

• Changes the data type of the Age column to
integer

• Filters rows for persons of age > 30 and who
are female

Reading Titanic dataset

DatasetStructured processor cre-
ates a Dataframe of your dataset named
Titanic Data by reading data from
HDFS, HIVE etc. which had been defined
earlier in Fire by using the Dataset feature.

12.1. Tutorials 351

Sparkflows Documentation, Release 0.0.1

Processor Output

Dropping the rows with null values

DropRowsWithNull processor drops the
rows with null values.

Processor Configuration

tutorials/data-engineering/../../_assets/tutorials/data-engineering/titanic-data-cleaning/capture3.png

Processor Output

352 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Filter by string length

FilterByStringLength processor fil-
ters the rows within the provided string
length

Processor Configuration

Processor Output

Convert Age to Integer

CastColumnType processor performs
conversion of Age to integer type.

12.1. Tutorials 353

Sparkflows Documentation, Release 0.0.1

Processor Configuration

Processor Output

Get Rows of Interest

RowFilter processor filters the data based
on provided conditions as shown below:

Processor Configuration

Processor Output

Prints the results

It prints the first few records onto the screen.

354 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Data Wrangling

Data wrangling is the process of gathering,
selecting, and transforming data to answer
an analytical question. Also known as data
cleaning or “munging”. This workflow reads
in a dataset. It then wrangles the dataset
based on provided conditions and prints the
results.

Workflow

Below is the workflow. It does the following:

• Reads data from a dataset

• It then create new DataFrame based on the
rules provided

• Prints the results

12.1. Tutorials 355

Sparkflows Documentation, Release 0.0.1

Reading from Dataset

DatasetStructured processor creates
a Dataframe of your dataset by reading data
from HDFS, HIVE etc. which had been de-
fined earlier in Fire by using the Dataset fea-
ture.

Processor Output

Data Wrangling

DataWrangling processor creates new
DataFrame after applying the provided rules

Processor Configuration

356 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Processor Output

Prints the Results

It prints the first few records onto the screen.

Profiling-Correlation

This workflow reads in a dataset. It then
creates the correlation analysis and summary
statistics.

Workflow

Below is the workflow. It does the following:

• Reads data from a dataset.

• Perform correlation analysis of the required
columns

• Provide summary statistics of the dataset

12.1. Tutorials 357

Sparkflows Documentation, Release 0.0.1

Performing Correlation analysis

Correlation processor performs corre-
lation analysis on the selected columns as
shown below:

Processor Configuration

Processor Output - Correlation matrix

Processor Output - Correlation Matrix Heat Map

Processor Output - Sample Rows of Input Dataset

Summary Statistics

Summary processor provides summary
statistics of the input dataset.

358 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 359

Sparkflows Documentation, Release 0.0.1

Summary statistics provides useful informa-
tion about sample data. eg: measures of
spread.

It provides a table with number of non-null
entries (count), mean, standard deviation,
and minimum and maximum value for each
numerical column.

Processor Configuration

Processor Output: Summary Statistics

Processor Output: Sample Rows of Input Dataset

Change Data Capture

There are many times when we need to
Change Data Capture.

Below is one way to do CDC with Fire.

360 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Overview

We have streaming events coming in. The
events can be updates to the existing records.
In the final table, we need to publish only the
latest record.

Design

We keep a staging table. This table would
have all the records coming in. We do dedup
at the end of the day and publish it to the final
table.

Let us say that we are getting real time events
of orders. As we get these events we append
it to the staging table. If there are updates
to an order, say an order got cancelled, we
will have multiple records for that order in
the staging table.

There is a final published order table where
there are no duplicates. It gets updated once
a day.

We join the final order table with the staging
table. In doing so we get multiple order en-
tries. We take the one with the latest times-
tamp and drop the others. Then for a given
order we have only one record in the final ta-
ble. We rewrite the final orders table with the
newly calculated records.

12.1.6 Data Quality

12.1. Tutorials 361

Sparkflows Documentation, Release 0.0.1

Data Quality

Data quality is an important aspect whenever
we ingest data. Incomplete or wrong data
can lead to more false predictions by a ma-
chine learning algorithm, we may also lose
opportunities to monetize our data because
of the data issues and business can lose their
confidence on the data.

In sparkflows, user can create the workflow
using Summary, Correlation etc nodes to get
more details about the dataset.

Sample Dataset:
http://eforexcel.
com/wp/downloads-16-sample-csv-files-data-sets-for-testing/

Example:

Workflow

Below is the workflow to do Data Profile.

• Reads data from a sample dataset.

• Summary of the numeric fields.

• Correlation of the fields in dataset

• Verfiy the quality of data in sparkflows Data
Quality tab.

SampleData

Summary

Correlation

Data Quality Page

Summary Results

Correlation Results

362 Chapter 12. Tutorials

http://eforexcel.com/wp/downloads-16-sample-csv-files-data-sets-for-testing/
http://eforexcel.com/wp/downloads-16-sample-csv-files-data-sets-for-testing/

Sparkflows Documentation, Release 0.0.1

12.1.7 Code

SQL Examples in Fire

Fire provides a SQL processer in which SQL
can be written.

Example 1

select bedrooms, avg(lotsize)
→˓as avg_lotsize from fire_
→˓temp_table group by bedrooms

Example 2

select fire_
→˓temp_table.* , case when
→˓fire_temp_table.DEP_DELAY_NEW
→˓> 40 then 1.0 else 0.0 END
→˓as label from fire_temp_table

Scala Examples in Fire

Fire provides a Scala processer in which
Scala code can be written.

Below are a few code examples in Scala.

Calculate count of houses by bathrooms

val outDF = inDF.
→˓groupBy("bathrms").count()
outDF.registerTempTable("outDF")

For each bedroom type, find the house with the lowest price

import org.apache.
→˓spark.sql.expressions.Window
import org.apache.spark.sql._
import org.
→˓apache.spark.sql.functions._
val window = Window.partitionBy(
→˓"bedrooms").orderBy("price")
val rankDF = inDF.withColumn(
→˓"rank", rank() over window)
val lowestPriceDF = rankDF.
→˓filter(col("rank") === 1)

(continues on next page)

12.1. Tutorials 363

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

val outDF = lowestPriceDF.
→˓drop(col("rank"))
outDF.registerTempTable("outDF")

Jar File Execution Example in Fire

Let’s take a scenario where through CI/CD
pipeline, the application jar file is built suc-
cessfully and pushed into the S3 bucket.

Below are steps to execute the jar file:

Step 1: Copy jar file from s3 path to /tmp directory.

aws s3 cp s3://bucket-name/
→˓example-application.jar /tmp

Step 2: Execute jar file from /tmp directory.

java -cp /tmp/example-
→˓application.jar MainClass

In the fire, both steps can be run with
UnixShellCommands Node.

12.1.8 NLP

364 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Name Finder

Fire provides NameFinder Processor to eas-
ily detect named entities and numbers in
text. It takes in a column name in the input
DataFrame containing text. It then detects
the entities and stores them into a new col-
umn.

To be able to detect entities the Name Finder
needs a model. The model is dependent on
the language and entity type it was trained
for.

https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition.cmdline

The OpenNLP project offers a number of
pre-trained name finder models which are
trained on various freely available corpora.
They can be downloaded at the OpenNLP
download page.

http://opennlp.sourceforge.net/models-1.5/

Steps for installing the OpenNLP
models in Fire are covered here :
http://docs.sparkflows.io/en/latest/operating/
installing-opennlp.html

Workflow

Below is a workflow which uses the
NameFinder Processor.

It consists of 3 Processors:

• TextFiles - It reads in the input text file and
creates a row from each line of text.

• OpenNLPNameFinder - It extracts the enti-
ties from each line of text.

• PrintNRows - It prints the first 10 rows of the
result.

12.1. Tutorials 365

https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition.cmdline
http://opennlp.sourceforge.net/models-1.5/
http://docs.sparkflows.io/en/latest/operating/installing-opennlp.html
http://docs.sparkflows.io/en/latest/operating/installing-opennlp.html

Sparkflows Documentation, Release 0.0.1

Textfiles

It reads in the input files from the directory
data/ner-person. It places each line in the
column ‘line’.

Processor Configuration

Processor Output

OpenNLPNameFinder

It extracts entities from the text in the input
column ‘line’ and stores them in the output
column ‘ner’. When running on the Hadoop
Cluster, the model file has to be on HDFS
and users have to have access to it.

PrintNRows

It prints the first 10 rows from the result.

366 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1.9 Streaming

Streaming Analytics Bike Sharing Dataset

Streaming Analytics with Apache Kafka and
Apache Spark Streaming.

At Fire we are obsessed with powering our
users to build amazing data analytics appli-
cations in < 30 mins.

Below we build a Streaming Analytics work-
flow and dashboard. It-

• Reads bike sharing data from Kafka

• Parses the incoming data

• Finds the number of rentals on an hourly ba-
sis

• Displays the results visually in a graph.

DataSet

The dataset contains bike rental info from
2011 and 2012 in the Capital bikeshare sys-
tem, plus additional relevant information.

This dataset is from Fanaee-T and Gama
(2013) and is hosted by the UCI Machine
Learning Repository. It consists of 10877
rows (can be found in /data directory of the
Fire installation). Each record is count of
rentals grouped by a given hour in the past
and environmental factors at that time (sea-

son, holiday, temperature, wind-speed etc.)

Start Kafka and create Topic ‘bike-sharing’

• The quick start guide of Kafka is at : https:
//kafka.apache.org/quickstart

• The steps for Kafka are:

12.1. Tutorials 367

https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart

Sparkflows Documentation, Release 0.0.1

• Download Kafka

• Start zookeeper and Kafka server. You
can also use an existing instance of
Zookeeper/Kafka

• bin/zookeeper-server-start.sh con-
fig/zookeeper.properties

• bin/kafka-server-start.sh con-
fig/server.properties

• Create the topic ‘bike-sharing’

• bin/kafka-topics.sh –create –zookeeper lo-
calhost:2181 –replication-factor 1 –parti-
tions 1 –topic bike-sharing

Send the data file ‘bike_sharing_noheader.csv’ to the Kafka Topic

• bike_sharing_noheader.csv is in the data di-
rectory of the Fire Install

• cat bike_sharing_noheader.csv | bin/kafka-
console-producer.sh –broker-list local-
host:9092 –topic bike-sharing

Workflow

Below is a workflow for Streaming Analytics
of the Bike Sharing dataset.

It consists of 6 Nodes:

• StreamingKafka - It reads in streaming data
from the Kafka topic bike-sharing.

• FieldSplitter - It splits each line in fields.

• StringToDate - Converts the datetime col-
umn into Timestamp type.

• DateTimeFieldExtract : Extracts year,
month, day, hour from the datetime column.

• GraphGroupByColumn - Groups the data on
the hour column, sums it up and display it in
a Graph.

368 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

• PrintNRows : Prints the first 10 records in a
table.

Streaming Kafka

It reads in streaming data from Kafka and
creates a dataframe with one column con-
taining the lines.

FieldSplitter

It splits each line on the separator - comma
- and outputs a new DataFrame with the
columns defined.

StringToDate

It converts the datetime column into new col-
umn of type ‘Timestamp’.

12.1. Tutorials 369

Sparkflows Documentation, Release 0.0.1

DateTimeFieldExtract

It extracts the year, month, day of month and
hour from the datetime_dt column.

GraphGroupByColumn

Aggregates the data on the hour column, and
displays it in a Graph.

Executing the workflow

When the workflow is executed, Fire submits
a spark streaming job to the Spark cluster.
The spark streaming job keeps running and

370 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

processing the incoming from Kafka. Below
are some of the output produced by the job.

Streaming Dashboard

Since we are still very much under 30 min-
utes, we also go ahead and create a Dash-
board for the workflow. Since we have set
the mini-batch duration to be 30 seconds, the
Dashboard would update itself every 30 sec-
onds.

Below is the Dashboard editor. Select the
nodes whose output you want displayed and

12.1. Tutorials 371

Sparkflows Documentation, Release 0.0.1

drag and drop them onto the canvas.

12.1.10 OCR

OCR with Tesseract

https://www.sparkflows.io/single-post/OCR-with-Tesseract-in-Sparkflows

12.1.11 REST API

Python - Infer Spark Cluster Configurations

Below is an example Python program for in-
ferring the Apache Spark cluster configura-
tions using the REST API.

It would infer the cluster configurations with
latest changes and save the new results.

#!/usr/bin/python

import requests

import json

token_url = "http:/
→˓/localhost:8080/oauth/token"

infer_configuration_api_
→˓url = "http://localhost:8080/
→˓api/v1/configurations/infer"(continues on next page)

372 Chapter 12. Tutorials

https://www.sparkflows.io/single-post/OCR-with-Tesseract-in-Sparkflows

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

save_configuration_api_
→˓url = "http://localhost:8080/
→˓api/v1/configurations"

#Step A - resource owner
→˓supplies credential #Resource
→˓owner (enduser) credentials

#input your own username

RO_user = 'admin'

#input your own password

RO_password = 'admin'

#client
→˓(application) credentials

client_id = 'sparkflows'
client_secret = 'secret'

#step B,
→˓C - single call with resource
→˓owner credentials in the
→˓body and client credentials
→˓as the basic auth header
→˓will return#access_token

data = {'grant_type
→˓': 'password','username': RO_
→˓user, 'password': RO_password}

access_
→˓token_response = requests.
→˓post(token_url, data=data,
→˓ verify=False, allow_
→˓redirects=False, auth=(client_
→˓id, client_secret))

print(access_
→˓token_response.headers)
print(access_
→˓token_response.text)

tokens = json.loads(access_
→˓token_response.text)
print("access token:
→˓" + tokens['access_token'])

Step-
→˓ now use the access_token
→˓to call infer configuration
→˓api and its save api.

api_call_headers
→˓= {'Authorization': 'Bearer
→˓' + tokens['access_token']}

(continues on next page)

12.1. Tutorials 373

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

print(api_call_headers)

#infer the hadoop configuration

infer_configuration_
→˓api_response = requests.
→˓get(infer_configuration_
→˓api_url, headers=api_
→˓call_headers, verify=False)
print("
→˓infer configuration response
→˓: "+ infer_configuration_
→˓api_response.text)

#save the hadoop configuration

save_configuration_
→˓api_response = requests.
→˓post(save_configuration_
→˓api_url,infer_configuration_
→˓api_response, headers=api_
→˓call_headers, verify=False)

print(" configuration after
→˓save : "+save_configuration_
→˓api_response.text)

12.1.12 Time Series

Stock Forecasting

Objective

Stock forecasting helps production units to
get an idea about raw material, pricing of
goods, improvement in supply, chain man-
agement and proper control of sales.

Dataset

Dataset contains 4 columns as follows:-

• Date - Date when product was sold

• Store - Store id from where product got sold

• Item - Item id

• Sales - Quantity of product sold

Predict future sales of items at particular
store

374 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Prophet Time Series Modelling Workflow on Multivariate Data

Prophet is a procedure for forecasting time
series data based on an additive model where
non-linear trends fit with yearly, weekly,
daily, seasonality and holiday effects. It
works best with time series that have strong
seasonal effects and several seasons of his-
torical data. Prophet is robust to missing data

and shifts in the trend, and typically handles outliers well.

Node 1 - ReadCSV

• Reads the given CSV file :
store_item_stock_train.csv

• Below are the first 10 rows of data

• Columns contain data as datetype, store and
item which are categorical variables and
sales which is a continuous variable.

12.1. Tutorials 375

Sparkflows Documentation, Release 0.0.1

Node 2 - RowFilter

• Filters data by row with respect to store and
item

Node 3 - Prophet

Used Facebook Prophet to create the ML
model.

General Section of Prophet Model

• Set Date column in DS column field

• Y is the target variable. Set it to the Sales
column

• Set Growth as linear or logistic

• We are using prophet model so it is sufficient
to select seasonality in auto mode

• Set mode of seasonality as additive or multi-
plicative

• Set confidence Interval (0 to 1) which gives
a range of plausible values for the parameter
of interest.

Future Data section of Prophet model

376 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

• FUTURE PERIOD block gives the number
of steps we want to predict

• FREQUENCY can be Monthly or Daily

• Set INCLUDE HISTORY to true for testing
the model and False for production

Node 4 - SQL

General Section of SQL node

• Renames columns forecasted by Prophet

Schema Section of SQL node

• Refreshes Schema and sets data type with re-
spect to columns

Node 5 - JoinUsingSQL

General Section of JoinUsingSQL node

12.1. Tutorials 377

Sparkflows Documentation, Release 0.0.1

• Joins Prediction (from SQL node) and His-
torical Data(from RowFilter node)

Schema Section of JoinUsingSQL node

• Follow the same steps as in Schema Section
of SQL node

Node 6 - SaveCSV

• Sets path where you want to save the final
output

Output Visualization

Graphical representation is the best way to
understand insights from data. It refers to
the use of charts and graphs to visually
display, analyze, clarify, and interpret nu-
merical data, functions and other qualitative
structures.

378 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Below is the workflow for Visualizing it:

Node 1 - ReadCSV

• Reads output CSV which we have saved
from Stock Forecasting.

Node 2 - RowFilter

• Filters dataframe with categorical variables
like store and item

Node 3 - SortBy

• Gives options to sort our Dataset based on
columns in ascending and descending order

12.1. Tutorials 379

Sparkflows Documentation, Release 0.0.1

Node 4 - GraphValue

• Defines labels for X-axis and Y-axis

• Sets columns for X-axis and Y-axis

Graph obtained

• Sales_pred_mean - Blue line

• Sales_pred_lower - Red line

• Sales_pred_upper - Magenta line

• Sales - Yellow line

• Now have a look into graph

Air Passengers Forecasting

Objective

The objective is to develop a time series
model to predict future demand of air pas-

380 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

sengers which helps Airline company to take
decision on aircraft fleet management.

Dataset

Dataset contains 2 columns as follows:-

Month - Month of the year

Passengers - Total number of passengers
travelled in that particular month

Air Passengers Occupancy Prediction

Time Series Modelling Workflow on Univariate Data

The auto_arima work to fit the best
ARIMA(Autoregressive Integrated Moving
Average) model to a univariate time arrange-
ment is indicated by either AIC, AICc, BIC
or HQIC. The capacity plays out an inquiry
(either stepwise or parallelized) over con-
ceivable model requests inside the require-

ments given.

The auto_arima capacity can be overwhelm-
ing. There are a ton of boundaries to tune,
and the result is vigorously subject to vari-
ous themes. In this segment, we spread out
a few contemplations you’ll need to make
when you fit your ARIMA models.

Node 1 - ReadCSV

• Reads the given CSV file : AirPassen-
gers.csv

12.1. Tutorials 381

Sparkflows Documentation, Release 0.0.1

Node 2 - ARIMA

• p - The number of lag observations included
in the model, also called the lag order.

• d - The number of times that the raw obser-
vations are different, also called the degree
of differencing.

• q - The size of the moving average window,
also called the order of moving average.

Not to worry about p,d,q in this case be-
cause we have an interesting model called
- AUTO-ARIMA (Able to select automati-
cally optimal value)

• Y - Target Variable (Passengers Per Month)

• SEASONAL - Automatically True but you
can change as false if you want as non-
seasonal

• SCORING - How do you want to evaluate
your model performance like - MSE, MAE

• FORECAST - Number of steps you want to
forecast

382 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Summary

• The model summary reveals a lot of infor-
mation

Node 3 - ZipWithIndex

• Creates new column from index of Dataset

Node 4 - PrintNRows

• Number of rows you want to print to see the
final result

Final Result

Lets check a few rows of forecasted data by
ARIMA Model

Time Series Feature Engineering

Objective

It is a process of extracting new features
from raw data via data mining techniques.
These features can be used to improve the
performance of models.

12.1. Tutorials 383

Sparkflows Documentation, Release 0.0.1

384 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

Dataset

Dataset contains 4 columns as below:

• Date - Date when product was sold

• Store - Store id from where product got sold

• Item - Item id

• Sales - Quantity of product sold

Create new feature from existing table to im-
prove performance of models

Feature Engineering Workflow

Each column is a feature. But all features
may not produce the best results from mod-
els, so feature engineering plays an impor-
tant role in choosing the right features. A
model will not entirely improve its prescient
force, yet will offer the adaptability to utilize
less unpredictable models that are quicker to

run and more handily.

Moving average

One step moving average

• Moving average is commonly used to
streamline short-period fluctuations in time
series data and feature long-term patterns.

• For one step, window size will be from -1 to
1 for sales data

Seven step moving average

• For seven step, window size will be from -7
to 7 for sales data

• Moving average output

Extract Date Time Features

• Break date and get the year, month, week of
year, day of the month, hour, minute, second,
etc.

• Output of Date Time Features

12.1. Tutorials 385

Sparkflows Documentation, Release 0.0.1

386 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

12.1. Tutorials 387

Sparkflows Documentation, Release 0.0.1

Lags Feature

• Lag is used to make non-stationary data into
stationary data

• Outliers are easily discernible on a lag plot

• acf and pacf plot is used to calcluate best lags

Lag one

• The most commonly used lag is 1, called a
first-order lag

• Window shift is one

Lag seven

• Window shift is seven

New feature data

Anamoly Detection for IOT Devices

Objective

Anomaly detection issue for time arrange-
ment can be planned as discovering excep-
tion information guides relative toward some

388 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

norm or common sign. Our center will be
from a machine persopective, for example,
surprising spikes, level move highlighting
disintegrating soundness of a machine.

Dataset

Dataset contains 4 columns as follows:-

• Datetime - 10 mins time interval of ac-
celerometer data

• 4-Bearings - Contains reading of devices

Anamoly Detection using Prophet Time Series Model Workflow

Prophet is a procedure for forecasting time
series data based on an additive model where
non-linear trends fit with yearly, weekly,
daily, seasonality and holiday effects. It
works best with time series that have strong
seasonal effects and several seasons of his-
torical data. Time-series anomaly detection

is a feature used to identify unusual patterns that do not conform to expected behavior, called outliers.

Data Preprocessing

• Column Filter convert multivariate data into
univariate for prophet model

• Output Univariate data

Data Modeling

• Prophet Model for anomaly detication using
mean as threshold value

General Section of Prophet Model

• Set Datetime column in DS column field

12.1. Tutorials 389

Sparkflows Documentation, Release 0.0.1

390 Chapter 12. Tutorials

Sparkflows Documentation, Release 0.0.1

• Y is the target variable. Set it to the reading
of bearings

• Set Growth as linear or logistic

• We are using prophet model so that it is self-
sufficient to select seasonality in auto mode

• Set mode of seasonality as additive or multi-
plicative

• Set confidence Interval (0 to 1) which gives
a range of plausible values for the parameter
of interest.

Future Data section of Prophet model

• FUTURE PERIOD block gives the number
of steps we want to predict

• SQL set mean column to set threshold

Model prediction

• Threshold to compare anomaly

12.1. Tutorials 391

Sparkflows Documentation, Release 0.0.1

392 Chapter 12. Tutorials

CHAPTER 13

Troubleshooting

13.1 Troubleshooting

13.1.1 Installation

Installation Pre-requisites

Below are the Pre-requisites before installing Fire:

JDK 1.8+ installed on the machine

java and jar have to be in the PATH

If running on an Apache Spark cluster, Apache Spark 1.6+ is needed on the cluster.

3GB+ of RAM available on the machine.

With which user should Fire be installed

If Fire needs to be connected with an Apache Spark cluster the below is needed:

• Fire needs to be installed as a user which can impersonate other users. Impersonation for this user
has to be set up in HDFS configs.

• If you disable impersonation in Fire, then the user with which Fire is installed needs to be able to submit jobs to
the cluster.

More Details are available here : https://www.sparkflows.io/connecting-sparkflows-with-spark-cl

I do not see anything in my browser after I start Fire

Do check in the logs for exceptions and the root cause. On Linux and Mac, the log files are in nohup.out.

393

https://www.sparkflows.io/connecting-sparkflows-with-spark-cl

Sparkflows Documentation, Release 0.0.1

Possible causes are:

• The H2 database was not created and it is failing to the find the table.

• The server did not start properly because some other Application is running on the configured port. The default
configured port for Fire is :8080

The http and https ports for Fire can be updated in conf/application.properties.

Fire UI does not get displayed when I go to :8080. Some other UI is displayed

Fire by default runs on port 8080. It is possible that you have some other application running on
port 8080, and you are seeing its output. In this case, the solution is to run the Fire server on some
other port which is not being used by any other application. Details for running Fire on another port is here :
https://www.sparkflows.io/run-fire-on-different-port

13.1.2 LDAP

Fire can be configured to authenticate the user with LDAP. Below are some ways to troubleshoot the LDAP configu-
rations.

Testing LDAP connection with ldapsearch

It is a good idea to test the ldap environment setup using ldapsearch. This ensures that the machine is setup correctly
for LDAP - it can connect to the LDAP server, the LDAP username and passwords are correct, the SSL certificates are
good if using LDAPS.

Testing Getting User Details from LDAP

• cd to your installation directory

• Create a properties file called ldaptestconfig.properties

Below is an example:

ldap_attributeUserName=myLdapUsername
ldap_Order="DB_LDAP";
ldap_URL="ldap://localhost:10389";
ldap_base="dc=example,dc=com";
ldap_userDn="uid=john,ou=bindusers,dc=example,dc=com";
ldap_password="johnspassword";
ldap_userSearchBase="ou=sparkflow";
ldap_userSearchFilter="(uid={0})";
ldap_groupSearchBase="ou=groups";
ldap_groupSearchFilter="member={0}";

Fetch the user details for the user xyz with the following command:

java -cp app/fire-ui-3.1.0.jar -Dloader.main=fireui.ldap.LDAPTest org.springframework.
→˓boot.loader.PropertiesLauncher xyz

394 Chapter 13. Troubleshooting

https://www.sparkflows.io/run-fire-on-different-port

Sparkflows Documentation, Release 0.0.1

What if I get locked out

ldap.Order determines the order in which Fire tries to log in the user. In case you are locked out of Fire and are
not able to log in, you can do the following:

• Add the below line to conf/configuration.properties

ldap.Order=DB

• Then restart the fire server. Now you should be able to log in with your admin account.

Once things are back to normal, you can remove the line you added to configuration.properties and restart
the fire server.

13.1.3 Upgrade

Missing column: application_id in FIREDB.PUBLIC.ANALYSIS_FLOW_EXECUTION

After I upgrade to the latest Fire Release I get the error : Missing column: application_id in
FIREDB.PUBLIC.ANALYSIS_FLOW_EXECUTION or something similar.

After upgrading the Fire Server, it is important to upgrade the Database Schema.

• Upgrade it by running create-h2-db.sh or create-mysql-db.sh from the Fire install directory.

• This would upgrade your DB schema to the latest.

Otherwise you can run into an error like below, when you start the Fire Server:

Exception in thread "main" org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'entityManagerFactory' defined in class path resource
→˓[org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.
→˓class]:
Invocation of init method failed; nested exception is org.hibernate.
→˓HibernateException:

Missing column: application_id in FIREDB.PUBLIC.ANALYSIS_FLOW_EXECUTION

13.1.4 Dataset

I am getting an error when clicking ‘Update’ button on the Create/Update Dataset page

You may see the error below:

Unable to retrieve schema for this path :: Bad header for field, should start with a
→˓character or _ and can contain only alphanumerics and _ 0:" id 1 "

• This is because one of the column names of the header is not in the right format. In this case the column name
id 1 contains a space.

• Only alphanumerics and _ are permitted in the header and column names.

• If your data does not have a header column, set the Header field to false when defining the Dataset.

13.1. Troubleshooting 395

Sparkflows Documentation, Release 0.0.1

13.1.5 Running Workflows

Getting Exception : ‘User: ec2-user is not allowed to impersonate ec2-user

Sparkflows impersonates the logged in user when submitting the jobs onto the Cluster.

So, the user with which Sparkflows is running has to be configured on HDFS as a proxy user.

Details for allowing the sparkflows user to impersonate other users is available at:

• ../installation-upgrading/connecting-spark-cluster

When running the workflows on my Spark Cluster, results are not showing up in the Browser

This is probably because there is some configuration error. Sparkflows uses spark-submit to submit the jobs to the
cluster. The driver of the spark job posts back results to the Fire server.

• Check out the log for spark-submit for the workflow in /tmp/fire/workflowlogs to find the root cause.
Maybe the spark job is just failing.

• It is also useful to ensure Spark jobs can be submitted to the Cluster from the machine on which Sparkflows is
running with spark-submit. Submit the SparkPi job from spark-examples.jar to test it.

– SparkPi can be run with a command like : spark-submit --class org.apache.spark.
examples.SparkPi --master yarn --deploy-mode client spark-examples.jar
10

– spark-examples.jar is in your Apache Spark install direction on the machine.

• If the Spark job is running successfully (according to the logs), but the results are still not showing up in the
Browser, it could be because the fire spark job is unable to post results back to the Fire web server. You should
see these failures in the logs.

– Under Administration/Configuration, there is the config app.postMessageURL. It determines the Fire
URL to which the results from the spark driver are posted back to the fire server. Ensure that it is set up
correctly.

Getting Exception: org.apache.hadoop.security.AccessControlException: Permission:denied :
user=admin

When running on the Cluster, you are running into the exception below:

org.apache.hadoop.security.AccessControlException: Permission denied: user=admin,
→˓access=WRITE, inode="/user":hdfs:supergroup:drwxr-xr-x

• If the above exception is coming up when running the workflow, then it means that the logged in user does not
exist on HDFS.

• In the above case, the user is logged into Fire as admin. So the jobs submitted by Fire on the cluster is as the
user admin. But the user ‘admin’ does not exist on HDFS.

• Please make sure to log into Fire as a user which exists on HDFS.

When running the example workflows on the Spark Cluster it is not able to find the input files

The example workflows read in input files.

• They have to be on HDFS in the home directory of the logged in user.

396 Chapter 13. Troubleshooting

Sparkflows Documentation, Release 0.0.1

• The data directory which comes with Sparkflows has to be uploaded onto HDFS.

• For example, if the logged in user is john, then the data directory would be on HDFS in the directory /user/
john

Getting Exception : Server returned HTTP response code: 405 for URL: http://10.125.221.72:8080/
messageFromSparkJob

When submitting jobs to the cluster from Fire, you are running into the exception below:

Sending 'POST' request to URL : http://10.125.221.72:8080/messageFromSparkJob

Response Code : 405

java.io.IOException: Server returned HTTP response code: 405 for URL: http://10.125.
→˓221.72:8080/messageFromSparkJob

at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)

at sun.reflect.NativeConstructorAccessorImpl.
→˓newInstance(NativeConstructorAccessorImpl.java:62)

at sun.reflect.DelegatingConstructorAccessorImpl.
→˓newInstance(DelegatingConstructorAccessorImpl.java:45)

at java.lang.reflect.Constructor.newInstance(Constructor.java:423)

at sun.net.www.protocol.http.HttpURLConnection$10.run(HttpURLConnection.java:1944)

at sun.net.www.protocol.http.HttpURLConnection$10.run(HttpURLConnection.java:1939)

Fire submits Spark jobs to the cluster. The spark driver, posts certain results back to the Fire server to be displayed to
the user.

The cause of this error is that the postback-url has not been set correctly - http://10.125.221.72:8080/
messageFromSparkJob

There could be following issues with the URL:

The machine name/IP is wrong. It has to be the machine on which Fire is running.

The port number is wrong. Fire server is running on another port on the machine.

Getting Exception : java.lang.ClassNotFoundException: fire.execute.WorkflowExecuteFromFile

When running the jobs on the cluster, you are running into the exception below.

• The reason for it is that the app.sparkSubmitJar is not set up correctly. Fire comes with a jar file which
gets submitted to the cluster with spark-submit. app.sparkSubmitJar has to correctly point to this jar file.

• You can go under Administration/Configuration to set it up correctly.

Exception:

Warning: Local jar /home/ec2-user/fire-2.1.0/fire-lib/fire-spark_1_6-core-2.1.0-jar-
→˓with-dependencies.jar does not exist, skipping.
java.lang.ClassNotFoundException: fire.execute.WorkflowExecuteFromFile at java.net.
→˓URLClassLoader.findClass(URLClassLoader.java:381) at

(continues on next page)

13.1. Troubleshooting 397

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

java.lang.ClassLoader.loadClass(ClassLoader.java:424) at java.lang.ClassLoader.
→˓loadClass(ClassLoader.java:357) at
java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:348) at
org.apache.spark.util.Utils$.classForName(Utils.scala:177) at
org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$
→˓$runMain(SparkSubmit.scala:688) at
org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:163) at
org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:161) at java.
→˓security.AccessController.doPrivileged(Native Method) at
javax.security.auth.Subject.doAs(Subject.java:422) at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1917)
→˓at
org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:161) at
org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) at org.apache.
→˓spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) at
org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

Getting Exception on HDInsight : No FileSystem for scheme: wasbs

When running the jobs on the cluster, you are running into the exception below.

• The reason for it is that it is not understanding the scheme wasb. In order to fix it, run ./
run-fire-spark-submit.sh start instead of ./run-fire.sh start.

• This enables getting the distribution libraries into the executable.

Exception:

Error : java.io.IOException: No FileSystem for scheme: wasbs at
org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2586) at
org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2593) at
org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:91) at
org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2632)

13.1.6 Fire Server & Workflow Execution Logs

Where do I find the logs of the Fire Server

When running on linux or mac the logs of the Fire Process are in the file fire.log. Logs of the Fire Web Server
are in the file fireserver.log under the directory where Fire has been installed. It would be something like
...../fire-2.1.0

Where do I find the logs of the workflows when running on my Cluster

The logs are in the directory /tmp/fire/workflowlogs on the machine on which the Fire server is running:

Each workflow execution has its own log file.

The json representation of the workflow is in /tmp/fire/workflows when running in YARN client mode.
They are in .fireStaging directory under the users home directory on HDFS when running in YARN
cluster mode.

398 Chapter 13. Troubleshooting

Sparkflows Documentation, Release 0.0.1

13.1.7 Dashboards

When viewing the Dashboard the cells are showing up empty

Dashboards show output of Workflows.

If the corresponding workflow has not executed, the content in the Dashboard would show up as empty.

13.1.8 Kerberos

My cluster is Kerberised. How do I setup Sparkflows for it

The steps to setup Sparkflows on a Kerberised cluster are at:

• ../installation-upgrading/configuration/configuring-kerberos

13.1.9 Python Installation

Python installations from source with version 3.6.5

showing warning message with missing package while restarting pyspark server

showing warning message with missing package while restarting pyspark server:

UserWarning: Could not import the lzma module. Your installed Python is incomplete

Possible Solution

For centos: Install development tool:

sudo yum install -y xz-devel

Recompile python from source code:

cd Python-3.6.5
sudo ./configure --enable-optimizations
sudo make altinstall

13.1. Troubleshooting 399

Sparkflows Documentation, Release 0.0.1

400 Chapter 13. Troubleshooting

CHAPTER 14

Frequently Asked Questions

14.1 FAQ

14.1.1 Scheduling Workflows

How can I schedule the workflows I create ?

Fire Insights saves workflow definitions as JSON files. These workflows are executed through spark-submit.

Fire Insights has a scheduler which allows Workflows to be scheduled at regular intervals.

Since the workflows are submitted with spark-submit, they can also be easily scheduled with Oozie, crontab etc.

14.1.2 Custom Nodes

Does Fire Insights allow me to create my own custom nodes?

Yes, new Nodes can be easily to added to Fire Insights. Develop nodes in Java or in Scala and dop the definition JSON
for the node on the server. The newly added nodes will become visible in the Fire Insights User Interface.

14.1.3 Distributions Supported

What distributions or platforms are supported with Sparkflows?

Sparkflows Fire has been tested with CDH, Hortonworks, MapR, AWS EMR, Apache Spark distributions.

Note: Any cluster with Apache Spark 1.6+ will work fine with Sparkflows.

401

Sparkflows Documentation, Release 0.0.1

Can I run Sparkflows on my Amazon AWS cluster or Microsoft Azure or Google Cloud?

Yes, all Sparkflows needs for successful deployment is a Apache Spark cluster. Sparkflows is deployed on the edge
node of the cluster.

14.1.4 Workflow Export - Import

How does one export/import workflows between instances?

Sparkflows allows workflows to be exported and imported. Workflows are represented as JSON files and hence can
also be checked into github etc. for versioning.

Sparkflows also maintains the version history of the workflows.

14.1.5 Submit Apache Spark Jobs

When running on a Apache Spark cluster how does Sparkflows submit the spark jobs?

Fire Insights uses spark-submit to submit the Apache Spark jobs to the cluster. Hence it is important that spark-submit
work from the machine on which Fire Insights is installed.

14.1.6 Multi User Support

How does the Sparkflows platform handle multi-user support (i.e. Can user 1 see or edit user 2’s
data sources, pipelines, etc)

Sparkflows supports various user types and enables users to easily share datasets and workflows with each other to
foster collaboration.

14.1.7 Data Sources

How does one define a new data source and establish a connection?

Sparkflows platform has various OOTB connectors to HIVE, Flume, Kafka, HBase, Solr. For all other structured or
unstructured datasets on HDFS or CloudBricks, Sparkflows platform can identify the schema on the fly when a new
dataset is created in Sparkflows pointing to a data source. The schema can be updated right there as well. Sparkflows
workflow execution writes a summary of its output to MySQL/Oracle/H2 which is accessible by the users of the
system.

14.1.8 Hadoop Installation Pre-Requisites

Below are the pre-requisites for installing Hadoop:

• Linux

• JDK 1.8 installed

• IPV6 disabled

• Selinux disabled

402 Chapter 14. Frequently Asked Questions

Sparkflows Documentation, Release 0.0.1

Linux

Minimum machine configuration:

• vCPU : 8 vcores

• RAM: 32 GB

JDK

JDK 8 is needed on the Linux Machine. Below are the steps for installing oracle java:

• Install java 8 as the root user

• http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

• wget –no-cookies –no-check-certificate –header “Cookie: gpw_e24=http%3A%2F%2Fwww.oracle.com%2F;
oraclelicense=accept-securebackup-cookie” “https://download.oracle.com/otn-pub/java/jdk/8u201-b09/
42970487e3af4f5aa5bca3f542482c60/jdk-8u201-linux-x64.rpm”

• yum localinstall jdk-8u201-linux-x64.rpm

Ensure that java 8 is installed properly:

• java -version

Set the below in .bash_profile

• export JAVA_HOME=/usr/java/jdk1.8.0_201-amd64/

Disable IPV6

• Edit file /etc/sysctl.conf - vi /etc/sysctl.conf

Add the following lines:

• net.ipv6.conf.all.disable_ipv6 = 1

• net.ipv6.conf.default.disable_ipv6 = 1

Execute the following command to reflect the changes.

• sysctl -p

Selinux

Just ensure that selinux should be disabled so that it cant impact Hadoop performance.

• sudo setenforce 0

To disable it permanently

• edit /etc/selinux/config

SELINUX=disabled

• reboot

14.1. FAQ 403

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://download.oracle.com/otn-pub/java/jdk/8u201-b09/42970487e3af4f5aa5bca3f542482c60/jdk-8u201-linux-x64.rpm
https://download.oracle.com/otn-pub/java/jdk/8u201-b09/42970487e3af4f5aa5bca3f542482c60/jdk-8u201-linux-x64.rpm

Sparkflows Documentation, Release 0.0.1

Steps Involved in Installing Hadoop

• Install bind-utils : Otherwise Cloudera Manager gives host not found

– yum install bind-utils

• Install Cloudera Manager

– cd

– wget https://archive.cloudera.com/cm5/installer/latest/cloudera-manager-installer.bin

– chmod u+x cloudera-manager-installer.bin

– ./cloudera-manager-installer.bin

– Accept Licenses

• Open ports on Linux Machine

– Open the ports 7180 and 8080

After Installation of Cloudera Manager

• go to http://host-ip:7180/

– Log in with admin/admin

– Select Cloudera Express Installation

– For host, give the hostname IP (private IP)

– Install using Parcels

– Include the Kafka parcels

– User : sparkflows (As per as updated on machine while creating Linux Machine)

– Supply the private key

– Install Core with Spark

– Update default Configurations in it.

Add proxy user in HDFS

• Add sparkflows as proxy user in HDFS

– https://www.sparkflows.io/connecting-sparkflows-with-spark-cl

– Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml

* hadoop.proxyuser.sparkflows.hosts

* hadoop.proxyuser.sparkflows.groups

• Restart Cluster services

404 Chapter 14. Frequently Asked Questions

https://archive.cloudera.com/cm5/installer/latest/cloudera-manager-installer.bin
http://host-ip:7180/
https://www.sparkflows.io/connecting-sparkflows-with-spark-cl

Sparkflows Documentation, Release 0.0.1

Create HDFS directory

Create HDFS directory for sparkflows user (we can create as per as requirements)

• sudo su

• su hdfs

• hadoop fs -mkdir /user/sparkflows

• hadoop fs -chown sparkflows:sparkflows /user/sparkflows

Install Spark2

spark2 is installed using CSD or Parcels

• https://www.cloudera.com/documentation/spark2/latest/topics/spark2_installing.html

– cd /opt/cloudera/csd

– sudo su

– wget http://archive.cloudera.com/spark2/csd/SPARK2_ON_YARN-2.1.0.cloudera2.jar

– chown cloudera-scm:cloudera-scm SPARK2_ON_YARN-2.1.0.cloudera2.jar

– chmod 644 SPARK2_ON_YARN-2.1.0.cloudera2.jar

– service cloudera-scm-server restart

Login Again into Cloudera Manager

• In Cloudera Manager:

– Go to Hosts/Parcels

14.1. FAQ 405

https://www.cloudera.com/documentation/spark2/latest/topics/spark2_installing.html
http://archive.cloudera.com/spark2/csd/SPARK2_ON_YARN-2.1.0.cloudera2.jar

Sparkflows Documentation, Release 0.0.1

– Download Spark2

– Distribute Spark2

– Activate Spark2

• Add Spark2 service in Cloudera Manager

– Go to Cluster/Add Service

– Add Spark2 Service

– For dependency select one with HIVE etc.

– Select the host

In YARN increase Container memory to 8GB

• yarn.scheduler.maximum-allocation-mb

• yarn.nodemanager.resource.memory-mb

AFTER INSTALLATION GET CDH TO USE JAVA 8

• In Spark configuration in Cloudera Manager set the below for spark-defaults.conf

– spark.executorEnv.JAVA_HOME=/usr/java/jdk1.8.0_201-amd64/

– then redeploy the client configurations

– Restart the cluster service

Install Sparkflows

• ssh to the machine

• wget https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

• tar xvf fire-x.y.z.tgz

• cd fire-x.y.z

• ./create-h2-db.sh

• ./run-fire.sh start

• ./run-fire-server.sh start

Upload the Fire Insights example data directory onto HDFS

• As sparkflows user

• cd fire-x.y.z

• hadoop fs -put data

406 Chapter 14. Frequently Asked Questions

https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

Sparkflows Documentation, Release 0.0.1

Log into Fire Insights

• http://host-ip:8080/#/dashboard

– Log in with admin/admin

– Create user sparkflows in Sparkflows. Give it admin rights. Add to group default, save it.

– Again Login with sparkflows user.

– Go to Configurations under administration and click on infer hadoop cluster config and save it.

– open spark and update spark2-submit under “spark.spark-submit” and save it.

– Create a workflow and execute it.

14.1. FAQ 407

http://host-ip:8080/#/dashboard

Sparkflows Documentation, Release 0.0.1

408 Chapter 14. Frequently Asked Questions

CHAPTER 15

Administration

15.1 Administration Guide

15.1.1 User Administration

Fire allows you to create and manage

• Users

• Groups

• Roles

These are accessible under the Administration Menu.

Users

• Fire allows you to create and edit users

• Users belong to groups and have roles

• A user can be a designated as a superuser

• The user should exist on HDFS (when running against a Hadoop Cluster). Fire can run independent of a Hadoop
Cluster.

Groups

• Fire allows you to create and edit groups

• Groups allow users to share Datasets, Workflows and Dashboards with other groups

409

Sparkflows Documentation, Release 0.0.1

Roles

• Fire allows you to create and edit roles.

• A role has various permissions associated with it.

Permissions

Fire has the following permissions defined.

410 Chapter 15. Administration

CHAPTER 16

Databricks Integration

16.1 Databricks Guide

16.1.1 Databricks Prerequisites

Below are the Prerequisites for installing Fire Insights on a Databricks Cluster:

Table 1: Below are the Needed Package
Package Description Value
Python
version

python version on Databricks
Cluster

3.6.0 or above

pip version pip version on Databricks
Cluster

20.0 or above

Spark version Spark Version on Databricks
Cluster

2.4

Fire Running
Port

Port on Which Fire is Running Accessible from databricks Cluster

16.1.2 Databricks Integration Steps

Fire Insights integrates with Databricks. It submits jobs to the Databricks clusters using the REST API of Databricks
and have the results displayed back in Fire Insights.

Fire also fetches the list of Databases and Tables from Databricks, making it easier for the user to build their workflows
and execute them. In addition fire displays the list of Databricks clusters running for the user.

Databricks can be running on Azure or on AWS.

• Running Databricks on Azure : https://docs.microsoft.com/en-us/azure/azure-databricks/
quickstart-create-databricks-workspace-portal

• Running Databricks on AWS : https://databricks.com/aws

411

https://docs.microsoft.com/en-us/azure/azure-databricks/quickstart-create-databricks-workspace-portal
https://docs.microsoft.com/en-us/azure/azure-databricks/quickstart-create-databricks-workspace-portal
https://databricks.com/aws

Sparkflows Documentation, Release 0.0.1

Below are the steps for Integrating Fire Insights with your Databricks Clusters.

Install Fire Insights

Install Fire Insights on any machine. The machine has to be reachable from the Databricks cluster.

Upload Fire Core Jar to Databricks

Fire Insights jar has to be uploaded to Databricks. Fire Insights jobs running on Databricks make use of this jar file.

Upload fire-x.y.z/fire-core-lib/fire-spark_2_3-core-3.1.0-jar-with-dependencies.
jar to Databricks. Upload it under Workspace as a Library on to Databricks.

1. Login to Databricks Cluster

2. Click on workspace in the left side pane

3. Create a new Library

4. Upload fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar from your machine by
Clicking on Drop JAR here

5. Once fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar is uploaded, click on
Create

• Check the box with Install automatically on all clusters, in order to avoid installing it man-
ually to every cluster.

Configure the Uploaded Library in Fire Insights

Configure the path of the uploaded fire core jar library in Databricks in Fire Insights.

This has to be done under Administration/Configuration.

412 Chapter 16. Databricks Integration

Sparkflows Documentation, Release 0.0.1

16.1. Databricks Guide 413

Sparkflows Documentation, Release 0.0.1

Configure app.postMessageURL in Fire Insights

Configure app.postMessageURL to be the IP of the machine on which Fire Insights is installed. Jobs running on
Databricks would post back results to Fire Insights using this URL.

Install Databricks JDBC Driver

Fire needs the Databricks JDBC Driver to be installed. Install it in the fire-user-lib and fire-server-lib
folder of the Fire installation.

You can download the Databricks JDBC Driver from the Databricks site :

• https://docs.databricks.com/bi/jdbc-odbc-bi.html

• https://databricks.com/spark/odbc-driver-download

The driver is available as a zip file. eg: SimbaSparkJDBC-2.6.3.1003.zip

• Unzip the downloaded file. It will create a directory like SimbaSparkJDBC-2.6.3.1003

• Copy the jdbc jar file named SparkJDBC4.jar into fire-x.y.z/fire-user-lib and fire-x.y.
z/fire-server-lib

Create your REST API token in Databricks

Create your token in Databricks. It would be used in making REST API calls to Databricks from Fire Insights.

1. Login to your Databricks Account

2. Click on Account icon in right corner top

3. Click on User Settings

4. Click on Generate New Token

5. Add comment & Lifetime(days) for token expiry & Click on Generate

6. Copy the token generated. Click on DONE

Create Databricks Connection in Fire Insights

Create a connection in Fire Insights to Databricks.

It can be created by the Administrator under Administration/Global Connections. These connections are available for
everyone to use.

It can also be created by any user with their Application. In this case, it is only available to the Application and its
users.

• Specify your Databricks Token.

• Specify the Databricks JDBC URL of your cluster in Databricks.

Now we are ready to start using the Databricks Connection in Fire Insights to:

414 Chapter 16. Databricks Integration

https://docs.databricks.com/bi/jdbc-odbc-bi.html
https://databricks.com/spark/odbc-driver-download

Sparkflows Documentation, Release 0.0.1

16.1. Databricks Guide 415

Sparkflows Documentation, Release 0.0.1

• Browse DBFS

• View your Databricks Clusters

• Browse your Databricks Databases & Tables

• Create Workflows which Read from and Write to Databricks

16.1.3 Databricks Python Integration Steps

Fire Insights integrates with Databricks and can submit Python jobs. It submits jobs to the Databricks clusters using
the REST API of Databricks and have the results displayed back in Fire Insights.

Below are the steps for Integrating Fire Insights with your Databricks Clusters for running Python jobs.

Note: The Machine on which Fire Insights is installed should have Python 3.7.0 or above.

Python Installation Steps:

• https://docs.sparkflows.io/en/latest/installation/python-install-linux.html

Install Fire Insights

Install Fire Insights on your machines. The machine has to be reachable from the Databricks cluster.

Upload Fire wheel file to Databricks

Fire Insights wheel file has to be uploaded to Databricks. Fire Insights jobs running on Databricks make use of this
wheel file.

Upload fire-x.y.z/dist/fire-3.1.0-py3-none-any.whl to Databricks. Upload it under Workspace as
a Library on to Databricks under DBFS or even in S3 Bucket which is accessible from the Databricks Cluster.

1. Login to Databricks Cluster

416 Chapter 16. Databricks Integration

https://docs.sparkflows.io/en/latest/installation/python-install-linux.html

Sparkflows Documentation, Release 0.0.1

2. Click on workspace in the left side pane

3. Create a new Library

You can select Library Source as DBFS, Library Type as Python Whl, provide any Library Name field, & add
File Path of fire-3.1.0-py3-none-any.whl located in DBFS.

On Clicking on Create button it will ask to install on specific databricks Cluster, select cluster on which you want
to install.

On Successfull installation of wheel file on Databricks Cluster, it would be displayed under Libraries.

Another option is to upload fire-3.1.0-py3-none-any.whl file to s3 Bucket which is accessible from
Databricks Cluster.

Once you upload fire-3.1.0-py3-none-any.whl file to s3 Bucket, login to Databricks Cluster & inside
Libraries tab.

Install New Library & select DBFS/S3 in Library Source, Python Whl in Library Type and copy paste the location
of python wheel file available in s3 in File Path & Click on Install.

Once it is installed successfully, you can see the python wheel inside Library is up.

16.1. Databricks Guide 417

Sparkflows Documentation, Release 0.0.1

418 Chapter 16. Databricks Integration

Sparkflows Documentation, Release 0.0.1

Install Python dependencies

You need to install the python dependencies required by Fire Insights on the machine by running below Command
from fire-x.y.z/dist/fire/ directory:

pip install -r requirements.txt

Note: Make sure that pip etc. is already installed on that machine

Install dependency for AWS

Copy the jars hadoop-aws and aws-java-sdk to pyspark jar path.

Install any specific package of python, if Need to use in Custom Processors on databricks Cluster aswellas Fire Insights
Machine.

Use the command below to install it on the Fire Insights machine:

pip install scorecardpy

Install it on your Databricks cluster with the below:

* Open a Notebook and attach to Databricks Cluster.

* %sh pip install scorecardpy

Upload Fire workflowexecutedatabricks.py file to DBFS

For Python Job submission to Databricks Cluster.

Upload fire-x.y.z/dist/workflowexecutedatabricks.py, file to DBFS or even S3 Bucket too.

You can UPLOAD it, using DBFS Browser too.

16.1. Databricks Guide 419

Sparkflows Documentation, Release 0.0.1

Configure the Uploaded Library in Fire Insights

Configure the path of the uploaded fire python wheel package file & workflowexecutedatabricks.py under
databricks.pythonFile & databricks.pythonPackages respectively in Fire Insights.

It can be two source either DBFS or S3 path.

If you have Uploaded in DBFS path.

If you have Uploaded in S3 path.

Job Submission using Pyspark Engine

Now You can submit pyspark jobs to Databricks Cluster from Fire Insights.

16.1.4 Databricks User Guide

Browsing Databricks Tables

Fire Insights allows you to Browse your Databricks Databases & Tables.

Go to Data/Databricks DB

It will display the Databricks DB page.

Select the Tables

Once you select the Tables, right click on it to get the query to view the first few records from the table.

Execute the sql query to view records from the table selected.

420 Chapter 16. Databricks Integration

Sparkflows Documentation, Release 0.0.1

16.1. Databricks Guide 421

Sparkflows Documentation, Release 0.0.1

Running DDL Commands

Fire Insights allows you to run DDL commands on Databricks.

With this one can:

• Create New Databases

• Create New Tables

• View the schema of the tables

• And many more

Go to DATABROWSERS/Databricks DB. Then click on DDL.

Databricks has a good page on Creating New Tables:

https://docs.databricks.com/spark/latest/spark-sql/language-manual/create-table.html

Below are example of running DDL

Creating Table

• DDL Statement:

CREATE TABLE `employee` (`id` INT, `name` STRING) USING com.databricks.spark.csv
→˓OPTIONS (`multiLine` 'false', `escape` '"', `header` 'true', `delimiter` ',',
→˓path 'dbfs:/FileStore/tables/employee.csv');

Location of the data could be changed to S3 location.

422 Chapter 16. Databricks Integration

https://docs.databricks.com/spark/latest/spark-sql/language-manual/create-table.html

Sparkflows Documentation, Release 0.0.1

Running SQL

• Select SQL Statement:

select count(*) as count from employee;

Sample Data:

• Select SQL Statement:

select * from employee;

By default first 100 rows of data is displayed.

Drop Table

• Drop Statement:

drop table employee;

Viewing Databricks Clusters

Fire Insights enables you to view your Databricks Clusters. You can also Start and Stop the Databricks clusters from
Fire Insights.

16.1. Databricks Guide 423

Sparkflows Documentation, Release 0.0.1

Go to Data Browsers/Databricks Clusters

It will display the various Databricks Clusters available.

If you want to see Cluster Details, Click on CLUSTER NAME, it will display all informations.

You can also Start and Stop the Databricks clusters from Fire Insights, using ACTIONS button.

Browse DBFS

Fire Insights enables you to browse your DBFS & UPLOAD FILE & Delete file and directory in DBFS.

Go to DATA BROWSERS/DBFS

It will display the Databricks File System list page.

UPLOAD FILE in DBFS

You can upload file in DBFS from local pc.

On clicking on UPLOAD FILE button, it will ask you to select file from local pc and UPLOAD.

On successful UPLOAD, it will show successful informations and file can be viewed inside the folder in DBFS.

424 Chapter 16. Databricks Integration

Sparkflows Documentation, Release 0.0.1

16.1. Databricks Guide 425

Sparkflows Documentation, Release 0.0.1

Delete file and directory in DBFS

You can delete file and directory in DBFS using delete ACTION button.

On successful deletion, it will show successful informations and file can be viewed inside the folder in DBFS.

Reading Databricks Tables

Fire Insights enables you to read from and write to Databricks tables.

Below is a workflow which reads data from the Databricks table xyz. It then processes the data and finally writes out
the result to the Databricks table abc.

Read Databricks table in Workflow

In the workflow use the processor ‘ReadDatabricksTable’. It will allow you to read tables from Databricks.

Then use the other processors in Fire for processing the data read from the Databricks Table.

Workflow

Processor Configurations for ReadDatabricksTable

Refresh schema for processor ReadDatabricksTable

426 Chapter 16. Databricks Integration

Sparkflows Documentation, Release 0.0.1

Processor executions for ReadDatabricksTable

Databricks Workflow execution

Below is the output of executing the above workflow which reads data from a Databricks table.

Writing to Databricks Tables

Fire Insights enables you to write to Databricks tables.

In the workflow use the processor ‘SaveDatabricksTable’. It will allow you to save data to tables to Databricks.

Below is a workflow which writes data to the Databricks table test_save.

Workflow

Processor Configurations for SaveDatabricksTable

16.1. Databricks Guide 427

Sparkflows Documentation, Release 0.0.1

428 Chapter 16. Databricks Integration

Sparkflows Documentation, Release 0.0.1

Databricks Workflow execution

Below is the output of executing the above workflow which saves the data to Databricks table.

• Verify the Table

File Formats

The tables can be saved into CSV, JSON, Parquet and ORC file formats.

If the file format is not specified, the data in tables is stored in Parquet format.

Reading S3 files

https://docs.databricks.com/_static/notebooks/data-import/s3.html

There are two ways in Databricks to read from S3. You can either read data using an IAM Role or read data using
Access Keys.

Databricks recommends leveraging IAM Roles in Databricks.

Fire Insights allows you to browse your Data in S3 and create workflows using them. When the job is submitted to
Databricks, the job reads data from the S3 location and processes them.

16.1. Databricks Guide 429

https://docs.databricks.com/_static/notebooks/data-import/s3.html

Sparkflows Documentation, Release 0.0.1

You can also create external tables in Databricks over data in S3. Fire Insights can process data from Databricks tables.

Accessing S3 buckets from Databricks

This document from Databricks has very good information on the setup for accessing S3 buckets from Databricks.

https://docs.databricks.com/security/credential-passthrough/iam-passthrough.html

Read the data from S3 in Workflow

In Sparkflows, user can read the data from S3 location using processors like ReadCSV, ReadParquet, ReadJson etc.

Workflow

Browse S3 Path and Refresh schema for processor ReadCSV

Workflow executions Results

Writing to S3 files

https://docs.databricks.com/_static/notebooks/data-import/s3.html

Fire Insighs workflows can write data to S3 locations.

430 Chapter 16. Databricks Integration

https://docs.databricks.com/security/credential-passthrough/iam-passthrough.html
https://docs.databricks.com/_static/notebooks/data-import/s3.html

Sparkflows Documentation, Release 0.0.1

Below is an example workflow which writes data to S3. When the workflow is executed, the Dataframe is saved to the
S3 location.

In the dailog box of the save CSV processor the path is specified as s3a://sparkflow-sample-data/write/

Browse S3 specified Path & other parameter for processor SaveCSV

Execution Result

Once the above workflow successfully completed, the save data can be viewed using DATABROWSERS/AWS S3
Location with specified path

16.1.5 Troubleshooting Fire/Databricks Integration

16.1. Databricks Guide 431

Sparkflows Documentation, Release 0.0.1

When the workflow is executed, nothing shows up in Fire

One problem might be that the postbackURL is not configured right in Fire Insights under Administra-
tion/Configuration.

The other problem can be that the machine running Fire Insights is not accessible from the Databricks Cluster. Test
connectivity to the Fire Insights machine from Databricks.

Connectiving from Databricks to Fire postbackURL can be done in Databricks via Notebooks using the telnet com-
mand.

When the workflow is executed, nothing shows up in Fire

Another reason might be that you are using the Databricks High Concurrency cluster. Ensure that you are con-
necting Fire to Databricks Standard cluster.

432 Chapter 16. Databricks Integration

Sparkflows Documentation, Release 0.0.1

When accessing most Databricks pages in Fire, it gives Simba JDBC error

The reason for it is that the Databricks Simba JDBC jar file is not deployed in Fire.

https://docs.sparkflows.io/en/latest/databricks/databricks-installation.html#install-databricks-jdbc-driver

In the workflow editor, it shows ‘Cannot connect to Fire’

Ensure that under Administration/Configuration, app.runOnCluster is set to false.

Checking the cluster logs in Databricks

There are times when it is helpful to look at the Cluster logs in Databricks when running Fire with Databricks.

The following logs under Driver Logs are useful:

• log4j-active.log

Search for WorkflowExecuteDatabricks in the logs to view if the Fire Insights Job is running in Databricks.

java.lang.Exception: An error occurred while initializing the REPL. Please check whether there are conflicting Scala libraries or JARs attached to the cluster, such as Scala 2.11 libraries attached to Scala 2.10 cluster (or vice-versa).
at com.databricks.backend.daemon.driver.DatabricksILoop$class.initSpark(DatabricksILoop.scala:98)

This error can happen when running spark 2.3 version of Fire with spark 2.4 cluster on Databricks. Either upgrade
Fire to spark 2.4 version, or create another Databricks cluster which supports spark 2.3.

Databricks Cluster Versions Support

Databricks Runtime Version Spark Version Scala Version

6.2 2.4.4 2.11

6.3 2.4.4 2.11

6.4 2.4.5 2.11

6.5 2.4.5 2.11

16.1. Databricks Guide 433

https://docs.sparkflows.io/en/latest/databricks/databricks-installation.html#install-databricks-jdbc-driver

Sparkflows Documentation, Release 0.0.1

434 Chapter 16. Databricks Integration

CHAPTER 17

AWS Integration

17.1 AWS Guide

17.1.1 Introduction

Fire Insights is the flagship product from Sparkflows. It is seamlessly integrated with AWS. With Fire Insights you
can perform self-serve data processing, analytics and machine learning on AWS.

Fire Insights integrates with EMR, S3, Redshift, SageMaker, HIVE and Kinesis.

Fire Insights comes with a number of components including:

• Workflow Editor : To create workflows for data processing, analytics and machine learning.

• 260+ Processors : These include reading data from various stores, data processing, machine learning and
visualizations.

• Execution Engine : For executing the workflow on EMR

• Scheduler : For scheduling running the workflows at certain time intervals

Sparkflows Fire Insights can be deployed to an existing Amazon EMR cluster, or you can use one of our CloudForma-
tion templates to set up a new Amazon EMR Cluster. If you use our provided CloudFormation templates we’ll create
an EMR cluster for you or even an EMR cluster and MySQL instance running in RDS, depending on which template
you choose.

Pre-requisites and Requirements

Fire Insights needs EMR for running the workflows. So, you need a running EMR cluster for using Fire Insights.

You also need ssh access to one of the machines of the EMR cluster for installing Fire Insights. This machine is
typically an edge node or a master node of the EMR cluster.

• Getting started with EMR - https://aws.amazon.com/emr/getting-started/

435

https://aws.amazon.com/emr/getting-started/

Sparkflows Documentation, Release 0.0.1

• Opening SSH access to the EMR master node - https://docs.aws.amazon.com/emr/latest/ManagementGuide/
emr-connect-master-node-ssh.html

Architecture

Fire Insights runs on the edge node or one of the master nodes of the EMR cluster. It submits the processing jobs
onto the cluster. By default it runs on port 8080. This port needs to be changed to some port which is available on the
machine as it is in use by default. Lets assume we will use port 8085.

When the jobs are fired onto the EMR cluster, it can read/write data from S3/HDFS/Redshift/Kinesis. It can also fire
Machine Learning modeling jobs to SageMaker.

17.1.2 Planning Guide

This document describes details to help you plan on deploying and using Fire Insights on AWS.

Security

Fire Insights is installed onto the edge node or master node of the EMR cluster. The jobs fired by the users would be
able to access and process data on S3, HDFS, Redshift, Kinesis.

Costs

The main costs involved when using Fire Insights are around the EMR cluster. EMR cluster has master nodes and
workflow nodes.

Pricing for EMR can be found here : https://aws.amazon.com/emr/pricing/

The more processing capacity needed, the larger should be the size of the EMR cluster.

436 Chapter 17. AWS Integration

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-connect-master-node-ssh.html
https://aws.amazon.com/emr/pricing/

Sparkflows Documentation, Release 0.0.1

Fire Insights can also run Machine Learning Modeling jobs onto SageMaker. If this is used, there would be cost asso-
ciated with using AWS SageMaker. Amazon SageMaker Pricing details are here : https://aws.amazon.com/sagemaker/
pricing/

Sizing

EMR cluster normally starts with a mimumum of 1 master node and 2 worker nodes.

We recommend using at least 16GB machines for the master and worker nodes.

As your data volume and the number of concurrent users increases, we recommend increasing the size of the EMR
cluster. Memory for the worker nodes can be increased to 32GB to 64GB to 512GB. Since Apache Spark has the
ability to use as much memory you provide, its a good idea to give it more memory.

Same goes for the number of disks and vcores.

17.1.3 Deployment Guide

Fire can be easily installed on an AWS EMR Cluster. Fire can be installed on the master node of an EMR cluster. It
would then submit the jobs to the EMR cluster.

Below are the overall steps for installing Fire Insights on EMR.

• ssh into the Master node

• Download Fire Insights from https://www.sparkflows.io/download

• Unzip it

• Create H2 Database

• Start Fire

Steps

• Start your EMR cluster on AWS:

Start your EMR cluster on AWS if you do not already have it running.

• Update the inbound rules for the Master Node:

- We would have Fire listening on ports 8085 and 8086
- Fire by default listens on 8080 and 8443. But EMR clusters have other processes
→˓listening on these ports.
- So we will later change it to listen on ports 8085 and 8086
- Update the inbound rules for the Master Node to allow ports 8085 and 8086

• ssh into the Master EMR node as the hadoop user:

ssh -i my.pem hadoop@ec2-xx-yyy-zz-aaa.compute-1.amazonaws.com

• Download the fire tgz file by one of the following options:

– https://www.sparkflows.io/download OR

– https://www.sparkflows.io/archives OR

– wget https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

17.1. AWS Guide 437

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://www.sparkflows.io/download
https://www.sparkflows.io/download
https://www.sparkflows.io/archives
https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

Sparkflows Documentation, Release 0.0.1

• Unpack it:

tar xvf fire-x.y.z.tgz

• Copy hadoop-lzo.jar:

cp /usr/lib/hadoop-lzo/lib/hadoop-lzo.jar /home/hadoop/fire-3.1.0/fire-user-lib

• Configure Fire to listen on ports 8085 and 8086:

- cd <fire install_dir>
- Edit conf/application.properties
- Update the last two lines to below:

http.port=8085
https.port=8086

• Create H2 DB:

Fire stores its metadata into the embedded H2 database. You can also connect it
→˓to an external MySQL database.

cd <fire install_dir>
./create-h2-db.sh

• Launch Fire Server:

cd <fire install_dir>
./run-fire-server.sh start

• Open your web browser and navigate to:

<machine_name>:8085/index.html

• Login with the following default username and password:

username : admin
password : admin

• Connect Fire with the EMR Cluster:

- Go to Administration/Configuration
- Click on 'Infer Hadoop Configs'
- Save

- If your EMR cluster is not running HIVE, update 'spark.sql-context = SQLContext'

• Create the hadoop user in Fire:

- Under Administration/Users, add the 'hadoop' user

Loading Example Workflows

• From the home page of Fire Insights, click on *Load Example Applications*

• Upload the Fire examples data onto HDFS:

438 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

cd <fire install_dir>
hadoop fs -put data /tmp

Install and Running Example Workflows

• Start off with executing the example workflows:

- Fire comes pre-packaged with a number of example workflows
- You can install them by clicking on the 'Install example workflows' link in the
→˓landing page when logged in as the `admin` user.

• Logout from the current session and login again with the ‘hadoop’ user

– Execute the workflows

Adding a new user

Create the home directory on HDFS for the new user.

For example, for user ‘test’:

• hadoop fs -mkdir /user/test

• hadoop fs -chown test:test /user/test

Create the user in Fire Insights if not already created.

Extra configuration for running PySpark

EMR needs extra configurations when running PySpark. In the below the python 3.6 virtual environment is installed
in the directory /home/hadoop/venv

• export SPARK_HOME=/usr/lib/spark/

• export PYSPARK_PYTHON=/home/hadoop/venv/bin/python

• export YARN_CONF_DIR=/etc/hadoop/conf

17.1.4 S3 Integration

Fire Insights allows you to access your files on S3. This page describes S3 integration of Fire.

We recommend controlling access to S3 using IAM Roles.

• Run Fire Insights on an EC2 machine with the appropriate S3 IAM Role.

• Run the EMR cluster with the appropriate S3 IAM Role.

If you are running Fire Insights on a independent machine, you can also use aws configure to set the AWS Access
Key and Secret Access Key on the machine.

AWS CLI S3 Reference : https://docs.aws.amazon.com/cli/latest/reference/s3/ls.html

17.1. AWS Guide 439

https://docs.aws.amazon.com/cli/latest/reference/s3/ls.html

Sparkflows Documentation, Release 0.0.1

Installing aws cli

• http://docs.aws.amazon.com/cli/latest/userguide/installing.html

• pip install awscli –upgrade –user

Configuring AWS access key and password

Run aws configure to configure your credentials on the machine on which Fire Insights is running.

Access S3 in fire-ui

In Fire Insights, you can browse S3 under the menu Browser/AWS S3.

• Click on AWS S3 to view the files on S3.

Protecting Data Using Server Side Encryption

Data encryption settings on S3 buckets: https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.
html

REFERENCE : Creating Access Key & Secret Key

1. You’ll need create a user with programmatic access by following the steps here (https://docs.aws.amazon.com/
IAM/latest/UserGuide/id_users_create.html).

2. Next, you’ll create an IAM policy that defines what this user has access to in your AWS account. It’s important
to only grant this user minimal access within your account. See this documentation for how to create IAM
policies (https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html).

3. Finally, you’ll create an access key and secret key for this user (https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https:
//docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

440 Chapter 17. AWS Integration

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console

Sparkflows Documentation, Release 0.0.1

17.1.5 Testing Fire Insights on AWS

After you have deployed Fire Insights on AWS, it is a good idea to test the things.

Below are a few good steps for achieving it:

• Ensure you can log into the sytem

• View the Sample Applications

• Execute a workflow on EMR

Log into the System

• Log into the system as the hadoop user which you had created during the Deployment process. * http://docs.
sparkflows.io/en/latest/aws/running-on-emr.html

View the Sample Applications

• Go to the ‘‘Applications/List’ page.

• If you loaded the Sample Applications during the deployment process you would see a number of Sample
Applications listed.

• Click on any of them to view their Datasets/Workflows etc.

Execute a workflow on EMR

• From the Applications/Workflows page.

• Click on the Execute icon next to any workflow

• This will open up the Execute page.

• Click on Execute to execute the workflow on the EMR cluster

• The results of execution would get displayed on the page.

17.1.6 Operational Guide

This document describes details for operating Sparkflows when running on AWS.

Onboarding New Users

New users can be created in Sparklows by logging into it. Then go to Administration/Users.

Health Check

The main server process which handles the web requests is fire-ui. This is a long running process and very stable. This
process can be checked for responsiveness for any health checks.

17.1. AWS Guide 441

http://docs.sparkflows.io/en/latest/aws/running-on-emr.html
http://docs.sparkflows.io/en/latest/aws/running-on-emr.html

Sparkflows Documentation, Release 0.0.1

Backup and Recovery

Fire Insights stores the metadata into a Relational Database.

It comes with an embedded H2 database. It scales well for pretty heavy loads and upto 50 users. Sparkflows can be
easily configured to run with an MySQL database.

When running with H2 database, Sparkflows by default stores the db files in the user home directory which is running
Sparkflows. There are 2 files:

• firedb.mv.db

• firedb.trace.db

For backup, just copying these files to a backup location is enough. There is no need to stop Sparkflows. It is a good
idea to copy it to another maching.

When running with MySQL running on the same or different machine, the MySQL database named fire needs to
be backed up.

Routing Maintenance

Apart from backups of the database, Fire does not need much of routine maintenance.

Fire stores the details of the job executions in the relational database. Over time, you may have too many jobs executed.
Deleting old jobs from the Workflow Executions page is a good idea so as not to fill up the database too much. But it
has the ability to handle millions of jobs, so you do not have to worry too much about it.

Support

For support, you can contact Sparkflows at support@sparkflows.io. We will guide you through the process.

Sparkflows can also support you though Zendesk tickets. Get in touch with us for guidance and setup.

17.1.7 Copying files to S3 with aws-cli

There would be times when you want to upload multiple files from your laptop to S3. This document describes the
process for it.

Installing aws-cli on mac

brew install awscli

Configure AWS Credentials

aws configure:

- Enter your awsAccessKeyId
- Entery your awsSecretAccessKey

View S3 Buckets

• aws s3 ls

442 Chapter 17. AWS Integration

mailto:support@sparkflows.io

Sparkflows Documentation, Release 0.0.1

View S3 Directory

• aws s3 ls s3://bucket_name/dir1/

Copy files to S3

Copy all files from local_direcory to s3://bucket-name/dir1:

aws s3 cp local_directory s3://bucket-name/dir1 --recursive

Delete All Files in Directory

• aws s3 rm s3://bucket_name/dir1/ –recursive

Setting Roles and Policies for EMR

In order to be able to access S3 files from the EMR cluster, attach the AmazonS3FullAccess Policy to the EMRDe-
faultRole.

Now the EMR cluster would have access to the S3 buckets.

REFERENCE : Creating Access Key & Secret Key

1. You’ll need create a user with programmatic access by following the steps here (https://docs.aws.amazon.com/
IAM/latest/UserGuide/id_users_create.html).

2. Next, you’ll create an IAM policy that defines what this user has access to in your AWS account. It’s important
to only grant this user minimal access within your account. See this documentation for how to create IAM
policies (https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html).

3. Finally, you’ll create an access key and secret key for this user (https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https:
//docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

17.1.8 Reading/Writing from S3

Fire is fully integrated with AWS S3. The Dataset Processors of Fire, can directly read data from S3 if the policies
allow them to.

Dataset Processors

Dataset Processors include:

• Read CSV

• Read Parquet

• Read JSON

• Read XML

The path specified for reading from S3 would be s3://. . .

17.1. AWS Guide 443

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console

Sparkflows Documentation, Release 0.0.1

Reading from S3

Below is an example Workflow. It reads a CSV file from S3, parses it and prints out the first 10 records.

In the dialog box of the Read CSV processor the path is specified as s3a://sparkflow-sample-data/data/
Clickthru.csv

Writing to S3

Below is an example Workflow. It reads a CSV file and save it to S3 path specified.

In the dailog box of the save CSV processor the path is specified as s3a://sparkflow-sample-data/write/

Execution Result

Once the above workflow successfully completed, the save data can be viewed using DATABROWSERS/AWS S3
Location with specified path

17.1.9 Saving ML Model to S3

444 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

17.1. AWS Guide 445

Sparkflows Documentation, Release 0.0.1

Saving Spark ML Model

Below is an example workflow in sparkflows, where data is read from S3 and the final Spark ML model is saved to S3
location.

Workflow:

Configure ReadCSV

Configure SaveMlModel

Execution Result:

Saving H20 ML Model

Below is an example workflow in sparkflows, where final H20 ML model is saved to S3 location.

Workflow:

Configure Save H20 ML Model

Execution Result:

17.1.10 Fire Integration with HIVE

Fire seamlessly integrates with HIVE when running on AWS.

446 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

17.1. AWS Guide 447

Sparkflows Documentation, Release 0.0.1

448 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

17.1. AWS Guide 449

Sparkflows Documentation, Release 0.0.1

Overview

On AWS, the data normally resides in S3 buckets. HIVE tables are created pointing to data in the S3 buckets.

Details

• Fire would run on the master node of the EMR cluster, or on an Edge node with the cluster contiguration files.

• HIVE can be running on the same EMR cluster on running on another EMR cluster.

• Make sure to have the correct hive-site.xml on the cluster where the Spark jobs are running.

• Fire will automatically pick it up and be able to process it.

Writing to HIVE

Below is a workflow for writing to HIVE.

It reads housing.csv, creates a DataFrame and writes it out to a HIVE table.

17.1.11 Fire Integration with Redshift

Fire is fully integrated with Redshift. Fire has a number of Processors specifically for Redshift.

Redshift Processors

Fire has processors for reading from and writing to Redshift. They include:

• Read Redshift AWS

• Write Redshift AWS

17.1.12 Fire Integration with SageMaker

Fire is fully integrated with AWS SageMaker. Fire provides a number of processors for doing model building with
SageMaker.

You can do Data Preparation and Feature Engineering with Sparkflows doing compute with Apache Spark. Sparkflows
then seamlessly enables you to do your model training and deployment with SageMaker.

The above forms a very powerful combinations for end to end Machine Learning.

Spark Sagemaker Examples

There are a number of SageMaker-Spark examples by AWS here :

• https://github.com/aws/sagemaker-spark

• https://docs.aws.amazon.com/sagemaker/latest/dg/apache-spark-example1.html

450 Chapter 17. AWS Integration

https://github.com/aws/sagemaker-spark
https://docs.aws.amazon.com/sagemaker/latest/dg/apache-spark-example1.html

Sparkflows Documentation, Release 0.0.1

Fire SageMaker Processors

SageMaker Processors include:

• KMeansSageMakerEstimator

• XGBoostSageMakerEstimator

• LDASageMakerEstimator

• LinearLearnerBinaryClassifier

• LinearLearnerRegressor

• PCASageMakerEstimator

• SaveSageMaker

AWS Provided Policies

AWS provides managed policies for SageMaker. Example : AmazonSageMakerFullAccess

Launching EMR

When launching the EMR Cluster make sure that the Role (eg: EMR_EC2_DefaultRole) used has the AmazonSage-
MakerFullAccess policy.

Now that the Roles and Policies are in place, start up your EMR cluser with the EMR_DefaultRole and
EMR_EC2_DefaultRole Roles.

Create New Role

Create a new Role called aws-sagmaker-full-access with the below Policy. It would be used in the Apache Spark job
when accessing SageMaker.

• AmazonSageMakerFullAccess

Use ARN of the new Role in the Workflow

We now use the ARN of the new Role when we use the SageMaker KMeans Estimator Node in the Workflow.

arn:aws:iam::account_id:role/aws-sagemaker-full-access

AWS Instance Types

AWS has various instance types:

• p : GPU Instances

• c : Compute Instances

• r : Memory Optimized Instances

• m : General Instances

Amazon SageMaker Instance Types details are here : https://aws.amazon.com/sagemaker/pricing/instance-types/

17.1. AWS Guide 451

https://aws.amazon.com/sagemaker/pricing/instance-types/

Sparkflows Documentation, Release 0.0.1

Dataset Column Names for Training with Sagemaker

Sagemaker needs the following columns to exist in the Dataset.

• label : label column

• features : features column, this column can also be set

Flow with Sparkflows and AWS

• We do the Data Preparation and Feature Generation in EMR with Sparkflows.

• When Sparkflows invokes the SageMakerEstimator, it calls SageMaker for Training and Deployment.

• Once the model is deployed on SageMaker, the endpoint can be used for realtime predictions.

XGBoost Sagemaker Workflow

Below is a workflow which:

• Reads in a libsvm file as input

• Performs XGBoost Modeling

• Reads in another libsvm file

• Performs predictions with the model built in the previous step

• Prints out the result

XGBoost Configuration

Below are the configuration setup details of the XGBoost Processor.

452 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

Executing the Workflow

Below are the results of executing the workflow.

17.1.13 Fire Integration with Kinesis

This document described Fire integration with Kinesis. Fire uses Apache Spark Structured Streaming Connector from
Qubole.

https://github.com/qubole/kinesis-sql

Install AWS CLI

Install AWS CLI:

17.1. AWS Guide 453

https://github.com/qubole/kinesis-sql

Sparkflows Documentation, Release 0.0.1

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Create an access key and secret key

Create an access key and secret key for the user (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_
access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https:
//docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

Configure AWS CLI

Configure AWS CLI:

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
aws configure region: us-east-1 aws_access_key_id = accesskeyid aws_secret_access_key
→˓= awssecretaccesskey

Create AWS Kinesis Stream

Create AWS Kinesis Stream:

aws kinesis create-stream --stream-name sparkflows_kinesis_test --shard-count 1

Send message to AWS Kinesis from AWS CLI

Sending message to Kinesis:

aws kinesis put-record --stream-name sparkflows_kinesis_test --data file://data.json -
→˓-partition-key uuidgen

Update EMR_EC2_Default_Role

Update EMR_EC2_DefaultRole with AmazonKinesisFullAccess Policy so that our EMR Cluster would have full
access to Kinesis.

Or Create an IAM policy for accessing Amazon Kinesis

Create an IAM policy that defines what this user has access to in your AWS account. It’s important to only grant this
user minimal access within your account. See this documentation for how to create IAM policies (https://docs.aws.
amazon.com/IAM/latest/UserGuide/access_policies_create.html).

Create EMR Cluster with the above Role

When we create the EMR Cluster with the above Role, it would have full access to Amazon Kinesis.

454 Chapter 17. AWS Integration

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Sparkflows Documentation, Release 0.0.1

Pushing data to Kinesis

AWS provides a Kinesis Data Generator. It can be configured for pushing random data in specified format to Kinesis.

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Kinesis Workflow in Fire

Workflows can be easily built in Fire which read data from Kinesis, process them and save the results where needed.

REFERENCE : Creating Access Key & Secret Key

1. You’ll need create a user with programmatic access by following the steps here (https://docs.aws.amazon.com/
IAM/latest/UserGuide/id_users_create.html).

2. Next, you’ll create an IAM policy that defines what this user has access to in your AWS account. It’s important
to only grant this user minimal access within your account. See this documentation for how to create IAM
policies (https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html).

17.1. AWS Guide 455

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Sparkflows Documentation, Release 0.0.1

3. Finally, you’ll create an access key and secret key for this user (https://docs.aws.amazon.com/IAM/latest/
UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https:
//docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

17.1.14 File Watcher with AWS & Sparkflows

Overview

There are many use cases where we have to process the incoming files on S3. This document describes one way to
achieve it with SQS, Lambda and using the REST API of Fire Insights.

Design

The below diagram captures the high level design:

Below is the flow of execution:

• New files arrives on S3 in the directory location /sparklows-file-watcher/raw-data/iot/
2019-08-2201

– In the above design, all the raw data comes into the directory /sparklows-file-watcher/
raw-data

– There are various types of raw data which can come.

– iot is one type of raw data coming in. Each day we receive a number of iot files in the folder /
sparklows-file-watcher/raw-data/iot/yyyy-MM-dd.

– Once all the files for that date have been written to the appropriate folder, a _SUCCESS files is written into
it.

• It triggers an event which is sent to a configured SQS queue.

• Once the event reaches SQS, it triggers an AWS Lambda.

• The AWS Lambda uses the Fire Insights REST API(http://docs.sparkflows.io/en/latest/rest-api-reference/
workflow.html#execute) to execute a workflow to process the new incoming files in the AWS S3 bucket.

• If AWS Lambda fails, it sends the event to DLQ (Dead Letter Queue). It can be further handled from there based
on the requirements.

456 Chapter 17. AWS Integration

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console
http://docs.sparkflows.io/en/latest/rest-api-reference/workflow.html#execute
http://docs.sparkflows.io/en/latest/rest-api-reference/workflow.html#execute

Sparkflows Documentation, Release 0.0.1

Create an SQS Queue

Create an SQS Queue for receiving the events from S3 and triggering the AWS Lambda function.

Below we see the SQS queue : sf-workflow-file-watcher-ql-dev.

It has the below permissions to receive the messages from S3 bucket and invoke the AWS Lambda function.

Configure AWS S3 bucket to generate events

Configure the AWS S3 bucket to send events for the new files coming in to AWS SQS queue.

Below, it looks for the new files with prefix of events and suffix of _SUCCESS. It sends these events to
sf-workflow-file-watcher-ql-dev SQS Queue.

Create the AWS Lambda function

Create the AWS Lambda function to take the SQL Event and kick off the workflow in Fire Insights. This workflow
would process the new files which came in.

First create an IAM role. An example is shown below.

We add 3 Environment variables as shown below. These get used by the Lambda functions in this example.

• SPARKFLOWS_TOKEN or KMS_ARN

• SPARKFLOWS_URL

• WORKFLOW_ID

Instead of the Sparkflows token, users can encrypt the token using KMS and use the kms arn as the Environment
variable and decrypt the token using kms inside the Lamdba.

Upload the jar file for the RequestHandler. It can also be placed into S3 location and the Lambda configured for it.

17.1. AWS Guide 457

Sparkflows Documentation, Release 0.0.1

458 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

WorkflowExecuteHandler

package com.sf.handler

import com.amazonaws.services.lambda.runtime.events.SQSEvent
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage
import com.amazonaws.services.lambda.runtime.{Context, LambdaLogger, RequestHandler}
import com.amazonaws.services.s3.event.S3EventNotification
import com.amazonaws.services.s3.event.S3EventNotification.S3EventNotificationRecord
import com.sf.WorkflowExecute

import scala.collection.JavaConverters._

class WorkflowExecuteHandler extends RequestHandler[SQSEvent, Unit] {

private val token = System.getenv("SPARKFLOWS_TOKEN")
private val sparkflowsURL = System.getenv("SPARKFLOWS_URL")
private val workflowId = System.getenv("WORKFLOW_ID")

def handleRequest(sqsEvent: SQSEvent, context: Context): Unit = {

implicit val logger: LambdaLogger = context.getLogger

logger.log(s"sparkflowsURL: $sparkflowsURL")
logger.log(s"workflowId: $workflowId")

sqsEvent
.getRecords
.asScala.map(sqsMessageToS3Event)
.foreach(_.getRecords.asScala.foreach(processS3Record))

}

private[handler] def sqsMessageToS3Event(sqsMessage: SQSMessage):
→˓S3EventNotification = {

S3EventNotification.parseJson(sqsMessage.getBody)
}

private[handler] def processS3Record(s3EventRecord: S3EventNotificationRecord)
(implicit logger: LambdaLogger): Unit = {

val s3Entity = s3EventRecord.getS3
val inputBucketName: String = s3Entity.getBucket.getName
val inputObjectKey: String = s3Entity.getObject.getUrlDecodedKey
val eventName: String = s3EventRecord.getEventName
val path = s"s3://$inputBucketName/$inputObjectKey".replace("/_SUCCESS", "")

logger.log(s"Event record $eventName; path $path")

val body = s"""
|{
| "workflowId": "${workflowId}",
| "parameters": "--var datapath=${path}"
|}

""".stripMargin

val workflowStatus = WorkflowExecute.executeWorkflow(body, token, sparkflowsURL)

(continues on next page)

17.1. AWS Guide 459

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

logger.log(s"Status of workflow $workflowStatus")
}

}

WorkflowExecute

package com.sf

import com.mashape.unirest.http.Unirest

object WorkflowExecute {

def executeWorkflow(body: String, token: String, sparkflowsHostName: String) = {

val workflow = Unirest.post(s"$sparkflowsHostName/api/v1/workflow/execute")
.header("Content-Type", "application/json")
.header("Cache-Control", "no-cache")
.header("Authorization", s"Bearer $token")
.body(body)
.asString

workflow match {
case s if workflow.getStatus >= 200 && workflow.getStatus <= 300 => workflow.

→˓getBody
case f => throw SubmissionFailedException(s"Job submissions failed, status code

→˓is ${f.getStatus}")
}

}
case class SubmissionFailedException(message:String) extends Exception(message)

}

17.1.15 CloudFormation Template with Embedded H2 DB

Overview

Using CloudFormation Templates, Fire can be easily installed on AWS. This CFT works with EMR 5.8 onwards.

The below steps would allow you to start up an EMR Cluster and have Fire setup on it.

The CFT does the following:

• Creates EMR cluster with 1 master node and 2 worker nodes by default.

• Once the cluster is ready it runs the job/script to deploy Fire (takes around 1-1:30 min for deploying app!).

460 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

Relevant Files

Table 1: Below are the Relevant Files
Title Description File
emr-file-
h2.json

CloudFormation Template https://s3.amazonaws.com/sparkflows-cft/h2-db/emr-fire-h2.
json

deploy-fire-
h2.sh

Script for deploying Fire https://s3.amazonaws.com/sparkflows-cft/h2-db/deploy-fire-h2.
sh

script-
runner.jar

Script Runner https://s3.amazonaws.com/sparkflows-cft/h2-db/script-runner.
jar

Ports

• With this CFT and deploy-fire-h2.sh, when Fire comes up, it would be listening on ports 8085 and 8086.

Download Files and Upload to your S3 Bucket

• Download CFT emr-fire-h2.json from the above link.

• Download deploy-fire-h2.sh and script-runner.jar from the above links and upload them to your s3 bucket

Update Cloudformation template based on your environment

Update the CFT emr-fire-h2.json according to your requirement and environment in which you are deploying.

• ElasticMapReduce-Master-SecurityGroup under mastersg:

From AWS console -> EC2 -> Security Groups -> search for "ElasticMapReduce-master"

• ElasticMapReduce-Slave-SecurityGroup under slavesg:

From AWS console -> EC2 -> Security Groups -> search for "ElasticMapReduce-slave"

• Applications:

By default the CFT deploys Hadoop, Hive & Spark. Add any other Applications which
→˓you need.

• EbsRootVolumeSize:

If required change the root(/) ebs volume size. By default CFT has 50GB disk
→˓volume

• SizeInGB for Master and Core Instances:

If required change the SizeInGB under EbsConfiguration. By default CFT has 50GB
→˓disk volume (used for hdfs)

• VolumesPerInstance for Master and Core Instances:

If required change the VolumesPerInstance under EbsConfiguration By default cft
→˓has 1. It means one additional disk of 50GB added to each instance(for hdfs). e.
→˓g. If you change it 2, two 50GB (SizeInGB size) disks will be added to each
→˓instances.

17.1. AWS Guide 461

https://s3.amazonaws.com/sparkflows-cft/h2-db/emr-fire-h2.json
https://s3.amazonaws.com/sparkflows-cft/h2-db/emr-fire-h2.json
https://s3.amazonaws.com/sparkflows-cft/h2-db/deploy-fire-h2.sh
https://s3.amazonaws.com/sparkflows-cft/h2-db/deploy-fire-h2.sh
https://s3.amazonaws.com/sparkflows-cft/h2-db/script-runner.jar
https://s3.amazonaws.com/sparkflows-cft/h2-db/script-runner.jar

Sparkflows Documentation, Release 0.0.1

• deploy-fire-h2.sh and script-runner.jar:

Change the s3 bucket path for these two files, this s3 bucket must be same
→˓bucket as S3Bucket. You'll pass the S3Bucket value while creating the
→˓cloudformation stack.

Steps to Create EMR Cluster and Deploy Fire

• AWS web Console -> Management tools -> CloudFormation

– Click on Create Stack.

• Next page is Select Template

– Select the radio-button Upload a template to Amazon S3

– Select the updated emr-fire-h2.json from your system

– Click Next

• Next page is Specify Details

– Enter CloudFormation stack name

Table 2: Update Parameters where needed
Name of Parame-
ter

Description

AdditionalSecurityGroupsFrom the list choose the additional secuirty group(sg), it’s required because default emr sg’s
ports are not opened for ssh, fire & etc. . .

AmiId EMR cluster can be launched using Custom AMI, pass the value if you have a Custom AMI
ClusterName Name for EMR Cluster
CoreInstanceType Provide the required instance type for core nodes, default instance type is m4.xlarge
CoreNodes Choose the required number of core nodes, by default it’s 2
EmrVersion Choose the required EMR version, it’s should be above EMR v.5.8.x
Environment By default dev
FireVersion Enter the required version of Fire
KeyName Enter the valid pem key name to connect to emr nodes
MasterInstanceType Provide the required instance type for master nodes, default instance type is m4.xlarge
MasterNodes By default 1
Owner provide the name of a team or person creating the cluster
ReleaseVersion Enter the required ReleaseVersion, it has to match with fire version
S3Bucket Provide the s3 bucket name, this s3 bucket should be same s3 bucket where deploy-fire-

h2.sh and script-runner.jar are uploaded
Subnet Provide the proper subnet name, which has sufficient resources to create emr cluster
TaskInstanceType Optional, required only if you’re choosing TaskNodes. Provide the required instance type

for task nodes, default instance type is m4.xlarge
TaskNodes Optional, required only if you want to create the cluster with tasknodes.By default zero,

enter the required number of nodes

• Click Next

• Next Page is Options

– If required (not mandatory) enter tag details

– Click Next

• Next Page is Review

462 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

– Review all the details provided to create an EMR stack

– Click on Create

– It will start creating the Stack

• Next page is back to Cloudformation Page

– Choose your Stack name

– Click on Events to check the process

– Click on Resources to get the EMR Cluster id

• Once the stack runs successfully, your EMR Cluster and Fire is ready to use. Cluster creation time depends on
your EMR cluster configuration

• To cross check the Fire installation

– Go to EMR from AWS web console

– Choose your EMR Cluster

– Identify the Master Node Public DNS

– Go to http://masternodeip:8085/index.html

Connect Fire to the New Cluster

• Go to User/Administration

• Click on Infer Hadoop Configuration

• Click on the Save button

Load Examples

• In Fire, click on Load Examples

• ssh to the master node

• cd /opt/fire/fire-3.1.0

• Upload the example data files to HDFS

– hadoop fs -put data

Create hadoop user

• Go to Administration/User

• Click on Add User

• Create a new user with username hadoop

• Log out and log back in as user hadoop

Start running the Examples

• Go to Applications

• Start creating/using the Applications

17.1. AWS Guide 463

Sparkflows Documentation, Release 0.0.1

Summary

Using the above CFT you have your EMR cluster with Fire running seamlessly.

17.1.16 CloudFormation Template with MySQL

Overview

Using CloudFormation Templates, Fire can be easily installed on AWS. This CFT works with EMR 5.8 onwards.

The below steps would allow you to start up an EMR Cluster and have Fire setup on it.

The CFT does the following:

• Creates External DB for Fire to be used as the metastore for Fire data

• Creates EMR cluster with 1 master node and 2 worker nodes by default.

• Once the cluster is ready it runs the job/script to deploy Fire (takes around 1-1:30 min for deploying app!).

Relevant Files

Table 3: Below are the Relevant Files
Title Description File
emr-file-
mysql.json

CloudFormation Template https://s3.amazonaws.com/sparkflows-cft/mysql-db/
emr-fire-mysql.json

deploy-fire-
mysql.sh

Script for deploying Fire with
MySQL

https://s3.amazonaws.com/sparkflows-cft/mysql-db/
deploy-fire-mysql.sh

script-
runner.jar

Script Runner https://s3.amazonaws.com/sparkflows-cft/mysql-db/
script-runner.jar

Ports

• With this CFT and deploy-fire-mysql.sh, when Fire comes up, it would be listening on ports 8085 and 8086.

Download Files and Upload to your S3 Bucket

• Download CFT emr-fire-mysql.json from the above link.

• Download deploy-fire-mysql.sh and script-runner.jar from the above links and upload them to your s3 bucket

Update Cloudformation template based on your environment

Update the CFT emr-fire-mysql.json according to your requirement and environment in which you are deploying.

• ElasticMapReduce-Master-SecurityGroup under mastersg:

From AWS console -> EC2 -> Security Groups -> search for "ElasticMapReduce-master"

• ElasticMapReduce-Slave-SecurityGroup under slavesg:

From AWS console -> EC2 -> Security Groups -> search for "ElasticMapReduce-slave"

464 Chapter 17. AWS Integration

https://s3.amazonaws.com/sparkflows-cft/mysql-db/emr-fire-mysql.json
https://s3.amazonaws.com/sparkflows-cft/mysql-db/emr-fire-mysql.json
https://s3.amazonaws.com/sparkflows-cft/mysql-db/deploy-fire-mysql.sh
https://s3.amazonaws.com/sparkflows-cft/mysql-db/deploy-fire-mysql.sh
https://s3.amazonaws.com/sparkflows-cft/mysql-db/script-runner.jar
https://s3.amazonaws.com/sparkflows-cft/mysql-db/script-runner.jar

Sparkflows Documentation, Release 0.0.1

• Applications:

By default the CFT deploys Hadoop, Hive & Spark. Add any other Applications which
→˓you need.

• EbsRootVolumeSize:

If required change the root(/) ebs volume size. By default CFT has 50GB disk
→˓volume

• SizeInGB for Master and Core Instances:

If required change the SizeInGB under EbsConfiguration. By default CFT has 50GB
→˓disk volume (used for hdfs)

• VolumesPerInstance for Master and Core Instances:

If required change the VolumesPerInstance under EbsConfiguration By default cft
→˓has 1. It means one additional disk of 50GB added to each instance(for hdfs). e.
→˓g. If you change it 2, two 50GB (SizeInGB size) disks will be added to each
→˓instances.

• deploy-fire-mysql.sh and script-runner.jar:

Change the s3 bucket path for these two files, this s3 bucket must be same
→˓bucket as S3Bucket. You'll pass the S3Bucket value while creating the
→˓cloudformation stack.

Steps to Create EMR Cluster and Deploy Fire

• AWS web Console -> Management tools -> CloudFormation

– Click on Create Stack.

• Next page is Select Template

– Select the radio-button Upload a template to Amazon S3

– Select the updated emr-fire-mysql.json from your system

– Click Next

• Next page is Specify Details

– Enter CloudFormation stack name

17.1. AWS Guide 465

Sparkflows Documentation, Release 0.0.1

Table 4: Update Parameters where needed
Name of Parame-
ter

Description

AdditionalSecurityGroupsFrom the list choose the additional secuirty group(sg), it’s required because default emr sg’s
ports are not opened for ssh, fire & etc. . .

AmiId EMR cluster can be launched using Custom AMI, pass the value if you have a Custom AMI
ClusterName Name for EMR Cluster
CoreInstanceType Provide the required instance type for core nodes, default instance type is m4.xlarge
CoreNodes Choose the required number of core nodes, by default it’s 2
EmrVersion Choose the required EMR version, it’s should be above EMR v.5.8.x
Environment By default dev
FireVersion Enter the required version of Fire
KeyName Enter the valid pem key name to connect to emr nodes
MasterInstanceType Provide the required instance type for master nodes, default instance type is m4.xlarge
MasterNodes By default 1
Owner provide the name of a team or person creating the cluster
ReleaseVersion Enter the required ReleaseVersion, it has to match with fire version
S3Bucket Provide the s3 bucket name, this s3 bucket should be same s3 bucket where deploy-fire.sh

and script-runner.jar are uploaded
Subnet Provide the proper subnet name, which has sufficient resources to create emr cluster
TaskInstanceType Optional, required only if you’re choosing TaskNodes. Provide the required instance type

for task nodes, default instance type is m4.xlarge
TaskNodes Optional, required only if you want to create the cluster with tasknodes.By default zero,

enter the required number of nodes

• Click Next

• Next Page is Options

– If required (not mandatory) enter tag details

– Click Next

• Next Page is Review

– Review all the details provided to create an EMR stack

– Click on Create

– It will start creating the Stack

• Next page is back to Cloudformation Page

– Choose your Stack name

– Click on Events to check the process

– Click on Resources to get the EMR Cluster id

• Once the stack runs successfully, your EMR Cluster and Fire is ready to use. Cluster creation time depends on
your EMR cluster configuration

• To cross check the Fire installation

– Go to EMR from AWS web console

– Choose your EMR Cluster

– Identify the Master Node Public DNS

– Go to http://masternodeip:8085/index.html

466 Chapter 17. AWS Integration

Sparkflows Documentation, Release 0.0.1

Connect Fire to the New Cluster

• Go to Administration/Configuration

• Click on Infer Hadoop Configuration

• Click on the Save button

Load Examples

• In Fire, click on Load Examples

• ssh to the master node

• cd /opt/fire/fire-3.1.0

• hadoop fs -put data

Create hadoop user

• Go to Administration/User

• Click on Add User

• Create a new user with username hadoop

• Log out and log back in as user hadoop

Start running the Examples

• Go to Applications

• Start building your Applications.

Summary

Using the above CFT you have your EMR cluster with Fire running seamlessly.

17.1. AWS Guide 467

Sparkflows Documentation, Release 0.0.1

468 Chapter 17. AWS Integration

CHAPTER 18

AZURE Integration

18.1 AZURE Guide

18.1.1 Introduction

Fire Insights is the flagship product from Sparkflows. It is seamlessly integrated with Azure. With Fire Insights you
can perform self-serve data processing, analytics and machine learning on Azure.

Fire Insights integrates with Azure Databricks, ADLS, HDInsight etc.

Fire Insights comes with a number of components including:

• Workflow Editor : To create workflows for data processing, analytics and machine learning.

• 300+ Processors : These include reading data from various stores, data processing, machine learning and
visualizations.

• Execution Engine : For executing the workflow on Azure VM or HDInsight

• Scheduler : For scheduling running the workflows at certain time intervals

• I-Dashboard : For Visualization using chart, dashboard

18.1.2 Deployment Guide

Fire Insights can be easily installed on an Azure Standalone VM.

prerequisite:

• java 8 should be installed

• if you do not already have it, Need to install

• Download it from below link:

469

Sparkflows Documentation, Release 0.0.1

https://www.oracle.com/in/java/technologies/javase/javase-jdk8-downloads.html

• Install using below command (Centos):

yum localinstall jdk-8uxxx-linux-x64.rpm

• Set the below in .bash_profile:

export JAVA_HOME=/usr/java/jdk1.8.0_xxx-amd64/

Below are the overall steps for installing Fire Insights on VM.

• ssh into the Azure VM

• Download Fire Insights from https://www.sparkflows.io/download

• Unzip it

• Create H2 Database

• Start Fire

Steps

• Create a VM on Azure:

Create a vm if you do not already have it running.

• Update the inbound rule

- ssh port ie 22 should be accessible to ssh to Azure VM.
- We would have Fire listening on ports 8080, so just ensure its opened.

• ssh into the VM:

ssh -i my.pem userp@public ip.

• Just Confirm that java 8 is already installed, if not follow above steps:

java -version

• Download the fire tgz file by one of the following options:

– https://www.sparkflows.io/download OR

– https://www.sparkflows.io/archives OR

– wget https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

• Unpack it:

tar xvf fire-x.y.z.tgz

• Create H2 DB:

Fire stores its metadata into the embedded H2 database. You can also connect it
→˓to an external MySQL database.

cd <fire install_dir>
./create-h2-db.sh

470 Chapter 18. AZURE Integration

https://www.sparkflows.io/download
https://www.sparkflows.io/download
https://www.sparkflows.io/archives
https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

Sparkflows Documentation, Release 0.0.1

• Launch Fire Server:

cd <fire install_dir>
./run-fire-server.sh start

• Open your web browser and navigate to:

<machine_ip>:8080

• Login with the following default username and password:

username : admin
password : admin

Loading Example Workflows

• From the home page of Fire Insights, click on *Load Example Applications*

• Upload the Fire examples data with default or if data is available at anyother location, point to that location:

Install and Start Running Example Workflows

• Start off with executing the example workflows:

- Fire comes pre-packaged with a number of example workflows, you can start
→˓executing.

18.1.3 Azure Databricks Integration Steps

Fire Insights integrates with Databricks. It submits jobs to the Databricks clusters using the REST API of Databricks
and have the results displayed back in Fire Insights.

Fire also fetches the list of Databases and Tables from Databricks, making it easier for the user to build their workflows
and execute them. In addition Fire displays the list of Databricks clusters running for the user.

• Running Databricks on Azure : https://docs.microsoft.com/en-us/azure/azure-databricks/
quickstart-create-databricks-workspace-portal

Below are the steps for Integrating Fire Insights with your Databricks Clusters.

Install Fire Insights

Install Fire Insights on any machine. The machine has to be reachable from the Databricks cluster.

Upload Fire Core Jar to Databricks

Upload Fire Insights jar to Databricks. Fire Insights jobs running on Databricks make use of this jar file.

Upload fire-x.y.z/fire-core-lib/fire-spark_2_4-core-3.1.0-jar-with-dependencies.
jar to Databricks. Upload it under Workspace as a Library on to Databricks.

18.1. AZURE Guide 471

https://docs.microsoft.com/en-us/azure/azure-databricks/quickstart-create-databricks-workspace-portal
https://docs.microsoft.com/en-us/azure/azure-databricks/quickstart-create-databricks-workspace-portal

Sparkflows Documentation, Release 0.0.1

1. Login to Databricks Cluster

2. Click on workspace in the left side pane

3. Create a new Library

4. Upload fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar from your machine by
Clicking on Drop JAR here

472 Chapter 18. AZURE Integration

Sparkflows Documentation, Release 0.0.1

5. Once fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar is uploaded, click on
Create

• Check the box with Install automatically on all clusters, in order to avoid installing it man-
ually to every cluster.

Configure the Uploaded Library in Fire Insights

Configure the path of the uploaded fire core jar library in Databricks in Fire Insights.

This has to be done under Administration/Configuration.

Configure app.postMessageURL in Fire Insights

Configure app.postMessageURL to be the IP of the machine on which Fire Insights is installed. Jobs running on
Databricks would post back results to Fire Insights using this URL.

18.1. AZURE Guide 473

Sparkflows Documentation, Release 0.0.1

Install Databricks JDBC Driver

Fire needs the Databricks JDBC Driver to be installed. Install it in the fire-user-lib and fire-server-lib
folder of the Fire installation.

You can download the Databricks JDBC Driver from the Databricks site :

• https://docs.databricks.com/bi/jdbc-odbc-bi.html

• https://databricks.com/spark/odbc-driver-download

The driver is available as a zip file. eg: SimbaSparkJDBC-2.6.3.1003.zip

• Unzip the downloaded file. It will create a directory like SimbaSparkJDBC-2.6.3.1003

• Copy the jdbc jar file named SparkJDBC4.jar into fire-x.y.z/fire-user-lib and fire-x.y.
z/fire-server-lib

Create your REST API token in Databricks

Create your token in Databricks. It would be used in making REST API calls to Databricks from Fire Insights.

1. Login to your Databricks Account

2. Click on Account icon in right corner top

474 Chapter 18. AZURE Integration

https://docs.databricks.com/bi/jdbc-odbc-bi.html
https://databricks.com/spark/odbc-driver-download

Sparkflows Documentation, Release 0.0.1

3. Click on User Settings

4. Click on Generate New Token

5. Add comment & Lifetime(days) for token expiry & Click on Generate

6. Copy the token generated. Click on DONE

Create Databricks Connection in Fire Insights

Create a connection in Fire Insights to Databricks.

It can be created by the Administrator under Administration/Global Connections. These connections are available for
everyone to use.

It can also be created by any user with their Application. In this case, it is only available to the Application and its
users.

• Specify your Databricks Token.

• Specify the Databricks JDBC URL of your cluster in Databricks.

18.1. AZURE Guide 475

Sparkflows Documentation, Release 0.0.1

Now we are ready to start using the Databricks Connection in Fire Insights to:

• Browse DBFS

• View your Databricks Clusters

• Browse your Databricks Databases & Tables

• Create Workflows which Read from and Write to Databricks

18.1.4 ADLS Integration

Fire Insights integrated with azure data lake storage, once configured you can use the filesystem for accessing data
from it.

Below are the steps to Configured adls using managed identity

Managed identity allow the users to access the azure resources without hardcoding any credentials in code.

System identity need to be enabled

System identity need to be enabled on vm where Fire Insights is running or need to be install

476 Chapter 18. AZURE Integration

Sparkflows Documentation, Release 0.0.1

In storage account, add the role to provide the access

In storage account, add the role to provide the access to Azure vm with needed access

login to Fire Insights

login to Fire Insights application and add below parameter in Configuration under administration section for AZURE.

• azure.enabled to true

• azure.homeDir as abfs://containerName@storageAccountName.dfs.core.windows.
net

Save Configuration

Save the above configuration and refresh the page & Click on Data browser to see ADLS page

Click on Data browser

Click on ADLS to see ADLS FILESYSTEM in DATA BROWSERS

Once the above configurations done, you can start using those file while creating dataset and workflow.

18.1. AZURE Guide 477

Sparkflows Documentation, Release 0.0.1

478 Chapter 18. AZURE Integration

CHAPTER 19

Load Balancer Integration

19.1 Load Balancer

Below are steps to Configure Network Load balancer and route using Route 53 in AWS

19.1.1 AWS Network Load balancer

It Explains about Creating Network Load balancer in AWS and Configuring it VM running with Fire Insights.

Below are steps involved in Creating Network Load balancer in AWS.

• Login with AWS Console and search for load balancer with EC2 feature.

• Create Load Balancer & select Network Load Balancer.

• Configure Load balancer

Add Name
Scheme : internet-facing
IP address type : ipv4

(continues on next page)

479

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

Listeners
Load Balancer Protocol : TLS (SECURETCP) Port: 443
Availability Zones
VPC : select VPC where application vm is running.
Availability Zones : select the specific zone.

• Configure Security Settings

Select default certificate.

AWS Certificate Manager (ACM) is the preferred tool to provision and store server certificates. If you previously
stored a server certificate using IAM, you can deploy it to your load balancer.

Certificate type
Certificate name
Security policy

480 Chapter 19. Load Balancer Integration

Sparkflows Documentation, Release 0.0.1

Note: Make sure to add certificate either through ACM or IAM

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-https-ssl-upload.html

• Configure Routing

Target group
Name : A name of target group
Target type : Instance
Protocol : TCP
Port : 80
Register Target

• Port forwarding

As Fire Insights by default running on port 8080 for HTTP & 8443 for HTTPS, Make sure forward HTTP or HTTPS
to specified port on which Fire Insights is running.

sudo firewall-cmd --add-forward-port=port=443:proto=tcp:toport=8443 --permanent
sudo firewall-cmd --reload

19.1.2 Route 53

It Explains about Configuring Route 53 to Network Load balancer.

Below ares steps to follow:

• Login to AWS Console and Type R 53 in search box

Sign in to the AWS Management Console and open the Route 53 console at https://console.aws.amazon.com/route53/

• Get started with R 53 Dashboard

19.1. Load Balancer 481

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-https-ssl-upload.html
https://console.aws.amazon.com/route53/

Sparkflows Documentation, Release 0.0.1

Register a domain

• Hosted zone

Create hosted zone

• Create records

Create records and Registered Network load balancer to it.

Value/Route traffic to : Alias to Network LB
Select Zone
By default load balancer domain name should be populated.
Record type : A -Routes traffic to IPV4 address and some aws resources.
Routing policy : Simple Routing

482 Chapter 19. Load Balancer Integration

Sparkflows Documentation, Release 0.0.1

19.1. Load Balancer 483

Sparkflows Documentation, Release 0.0.1

484 Chapter 19. Load Balancer Integration

CHAPTER 20

Superset

20.1 Superset

Superset enables powerful Visualizations. Superset can connect with Databricks clusters and display data from Tables
in Databricks.

Below are steps involved in Installing Superset and Configuring to Databricks.

20.1.1 Installation

Ensure that Superset machine has python 3.6.0+ installed on it.

Steps involved in installing apache superset (centos7)

• Install Superset:

pip install apache-superset

• Initialize the database:

superset db upgrade

• Create an admin user (you will be prompted to set a username, first and last name before setting a password):

export FLASK_APP=superset
superset fab create-admin

• Load some data to play with:

485

Sparkflows Documentation, Release 0.0.1

486 Chapter 20. Superset

Sparkflows Documentation, Release 0.0.1

superset load_examples

• Create default roles and permissions:

superset init

• Start a development web server on port 8088, using Gunicorn in background:

nohup gunicorn -b 0.0.0.0:8088 --limit-request-line 0 --limit-request-field_size
→˓0 "superset.app:create_app()"

Once above command runs successfully, ensure that port 8088, on which Superset is running is accessible
from your browser

• Open browser and login with public ip and port:

http://public-ip:8088/login

• Use your created credentials to login:

20.1.2 Connecting Superset with Databricks

Once Superset is running, you can configure Databricks database.

Note: Make sure that the Databricks cluster is up.

20.1. Superset 487

Sparkflows Documentation, Release 0.0.1

Install the Python dependencies

Install Needed python dependency for Databricks on the Superset VM:

pip install databricks-dbapi
pip install databricks-dbapi[sqlalchemy]

Once the above two python databricks dependencies have been installed successfully, restart superset server & Login
to Superset UI & Click on database

Now you can add databricks database by Clicking on NEW Tab & add Databricks Database name & SQLAlchemy
URI:

databricks+pyhive://token:<token>@<companyname>.cloud.databricks.com:443/<database>?
→˓cluster=<cluster_id>]

Click on TEST CONNECTION to test your connection. It should not throw any error and SAVE it, Once the database
is saved successfully, it would be available in Superset database list page.

Now You can start using databricks database tables for charts and visualizations

488 Chapter 20. Superset

Sparkflows Documentation, Release 0.0.1

20.1. Superset 489

Sparkflows Documentation, Release 0.0.1

490 Chapter 20. Superset

CHAPTER 21

Python

21.1 Python Integration

Sparkflows supports Python in Workflows in a few ways:

• PySpark Processor

The PySpark Processor allows writing PySpark/Python code to processes the incoming DataFrame and create a new
DataFrame. It can also be used to build scikit-learn models etc.

• Jython Processor

The Jython Processor allows writing Jython code to processes the incoming DataFrame and create a new DataFrame.

• Pipe Python Processor

Pipe Python Processor allows writing Python script to process the incoming DataFrame.

The incoming DataFrame is piped to the python script.

The Python script takes in each record of the DataFrame as a comma separated string. It parses the string, processes
the record and writes out the new record.

21.1.1 PySpark Processor

Fire Insights provides a PySpark processor for writing PySpark/Python code.

Interface

In the PySpark Processor, we have to implement the myfn function which gets invoked:

def myfn(spark: SparkSession, workflowContext: WorkflowContext, id: int, inDF:
→˓DataFrame):

(continues on next page)

491

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

* spark : SparkSession object

* workflowContext : Can be used for outputting results to the user

* id : id of the current processor

* inDF : Input PySpark dataframe

WorkflowContext

WorkflowContext provides the following methods for outputting data to the user:

* def outStr(self, text: str)

* def outNameValue(self, nm: str, val: str)

* def outSchema(self, id: int, title: str, df: DataFrame)

* def outDataFrame(self, id: int, title: str, df: DataFrame)

* def outPandasDataframe(self, id: int, title: str, df: pd.DataFrame)

* def outNumpy1darray(self, id: int, title: str, arr: np.ndarray)

* def outNumpy2darray(self, id: int, title: str, arr: np.ndarray)

Example 1

Below is an example code for the PySpark Node.

1 from pyspark.sql.types import StringType
2 from pyspark.sql.functions import *
3 from pyspark.sql import *
4 from workflowcontext import *
5

6 def myfn(spark: SparkSession, workflowContext: WorkflowContext, id: int, inDF:
→˓DataFrame):

7 house_type_udf = udf(lambda bedrooms: "big house" if int(bedrooms) >2 else "small
→˓house", StringType())

8 filetr_df = inDF.select("id", "price", "lotsize", "bedrooms")
9 outDF = filetr_df.withColumn("house_type", house_type_udf(filetr_df.bedrooms))

10 return outDF

Example 2

Below is another example which uses sklearn

1 from pyspark.sql.types import StringType
2 from pyspark.sql.functions import *
3 from pyspark.sql import *
4 from workflowcontext import *
5

6 import numpy as np
7 import pandas as pd
8

9 from sklearn.linear_model import LinearRegression
10 from sklearn import datasets
11 from sklearn.model_selection import train_test_split
12 from sklearn import metrics
13

14 from joblib import dump, load

(continues on next page)

492 Chapter 21. Python

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

15

16 def myfn(spark: SparkSession, workflowContext: WorkflowContext, id: int, inDF:
→˓DataFrame):

17 # Convert the Spark DataFrame to a Pandas DataFrame using Arrow
18 dataset = inDF.select("*").toPandas()
19

20 dataset = dataset.fillna(method='ffill')
21

22 X = dataset[
23 ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',

→˓'chlorides', 'free sulfur dioxide',
24 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol']].values
25

26 y = dataset['quality'].values
27

28 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
→˓state=0)

29

30 # There are three steps to model something with sklearn
31 # 1. Set up the model
32 model = LinearRegression()
33 # 2. Use fit
34 ft = model.fit(X_train, y_train)
35 print(ft)
36 # 3. Check the score
37 scr = model.score(X_test, y_test)
38 workflowContext.outStr("Model Score : " + str(scr))
39

40 # 4. Print model
41 workflowContext.outStr("Model Coeffient : " + str(model.coef_))
42 workflowContext.outStr("Model Intercept : " + str(model.intercept_))
43

44 # 5. Predict test data
45 y_pred = model.predict(X_test)
46

47 # 6. See difference between actual and predicted value
48 df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
49 df1 = df.head(25)
50 workflowContext.outPandasDataframe(id, "Actual - Predicted : ", df1)
51

52 # 7. Evaluate the performance
53 workflowContext.outStr("Mean Absolute Error:" + str(metrics.mean_absolute_error(y_

→˓test, y_pred)))
54 workflowContext.outStr("Mean Squared Error:" + str(metrics.mean_squared_error(y_

→˓test, y_pred)))
55 workflowContext.outStr("Root Mean Squared Error:" + str(np.sqrt(metrics.mean_

→˓squared_error(y_test, y_pred))))
56

57 return inDF

21.1.2 Jython Processor

Sparkflows has a Jython Processor.

The Jython Processor allows writing Jython code to process the incoming DataFrame. It then produces a resulting
DataFrame.

21.1. Python Integration 493

Sparkflows Documentation, Release 0.0.1

In the Jython node, the following variables are available:

• inDF : Incoming Spark DataFrame

• spark : The Spark Session object

Example Jython Code

Below are some example Jython code which can be used.

Select a specific column from the DataFrame

• outDF = inDF.select(“c2”)

Count the number of records after grouping them

• outDF = inDF.groupBy(“c2”).count()

Run a SQL on the input DataFrame

The Jython Processor registers the incoming dataframe as a temporary table with a configurable name.

The below SQL in Jython script, performs a SELECT on the registered temporary table.

• outDF = spark.sql(“SELECT c1, c2 FROM fire_temp_table”)

Run a SQL followed by further grouping and count

• outDF = spark.sql(“SELECT c1, c2 FROM fire_temp_table”)

• outDF = outDF.groupBy(“c2”).count()

Read from HDFS and create a new DataFrame

The below Jython script, reads a JSON file from HDFS.

• outDF = spark.read().json(“data/people.json”)

21.1.3 Pipe Python Processor

Fire Insights has a Pipe Python Processor.

It pipes the incoming DataFrame through pipe to the Python Script. It also passes the Schema of the DataFrame to the
Python script through the command line argument. (argv[1])

The Python script is written in the Workflow Editor.

Below is an example workflow containing Pipe Python Processor.

494 Chapter 21. Python

Sparkflows Documentation, Release 0.0.1

Input DataFrame Schema

The schema of the incoming dataframe is also passed into the Python script as an argument. It can be used in the
Python script as needed.

The format of the dataframe schema is below:

colname1:datatype1|colname2:datatype2|colname3:datatype3

Below is an example of printing the arguments and an example result:

print "The arguments are: " , str(sys.argv)

['/tmp/fire/scripts/pipepython-1899418263068404925.py',
→˓'id:DoubleType|label:DoubleType|f1:DoubleType|f2:DoubleType']

Simple Example

The below example reads in the incoming records, parses them, adds a new column whose value is the sum of the first
and second fields. Finally it write out the updated record back for Spark to read:

#!/usr/bin/python

import sys

for line in sys.stdin:
line = line.strip()
if not line:
continue

fields = line.split(",")

total = str(float(fields[0]) + float(fields[1]))

result = ",".join(fields) + "," + total

print result

Below is the code in the Dialog box of the Pipe Python Processor of the Workflow.

21.1. Python Integration 495

Sparkflows Documentation, Release 0.0.1

Output Schema of the Python Script

The output schema of the Python Script is used in the Spark code for recreating the Spark DataFrame from the data
received from running the Python script.

It has to be specified in the Pipe Python Processor Dialog.

Program Execution Output

Below is the output produced when executing the workflow.

21.1.4 Pipe Python2 Processor

Fire Insights has a Pipe Python2 Processor.

It pipes the incoming DataFrame through pipe to the Python Script. It also passes the Schema of the DataFrame to the
Python script through the command line argument. (argv[1])

The Python script is written in the Workflow Editor.

Below is an example workflow containing Pipe Python2 Processor.

496 Chapter 21. Python

Sparkflows Documentation, Release 0.0.1

21.1. Python Integration 497

Sparkflows Documentation, Release 0.0.1

Input DataFrame Schema

The schema of the incoming dataframe is also passed into the Python script as an argument. It can be used in the
Python script as needed.

The format of the dataframe schema is below:

colname1:datatype1|colname2:datatype2|colname3:datatype3

Below is an example of printing the arguments and an example result:

print "The arguments are: " , str(sys.argv)

['/tmp/fire/scripts/pipepython-1899418263068404925.py',
→˓'id:DoubleType|label:DoubleType|f1:DoubleType|f2:DoubleType']

Reading in Data in Python into a Pandas DataFrame

Below is an example script which reads in the input lines and converts it to a Pandas DataFrame. It parses the schema
passed in argv[1] to extract the column names which is used in creating the Pandas DataFrame:

#!/usr/bin/python

import sys
import pandas as pd

dataframe_list_of_rows = []

for line in sys.stdin:

line = line.strip()
if not line:

continue

row_list = []
for field in line.split(","):

row_list.append(field)

convert list to tuple
row_tuple = tuple(row_list)
dataframe_list_of_rows.append(row_tuple)

generate column names
schema = sys.argv[1]
column_names = []
schema_columns = schema.split("|")
for column_name_with_type in schema_columns:

column_name_with_type_split = column_name_with_type.split(":")
column_names.append(column_name_with_type_split[0])

create dataframe from the input rows
input_dataframe = pd.DataFrame.from_records(dataframe_list_of_rows, columns=column_
→˓names)

498 Chapter 21. Python

Sparkflows Documentation, Release 0.0.1

Transform the Pandas DataFrame

Now that we have the Pandas DataFrame in input_dataframe, we can transform it to create the result DataFrame
- output_dataframe. In the below example, we are just setting the output dataframe to the input dataframe:

output_dataframe = input_dataframe

Writing the Pandas DataFrame schema back to Spark

Below is an example code for writing the Pandas Schema back to Spark. It is used in inferring the schema output of
the Python code. This way users do not have to reenter the schema of the output in the Workflow:

dataframe_dtypes = output_dataframe.dtypes

f = open(sys.argv[2],'w+')
f.write(str(dataframe_dtypes))
f.close()

Fire expects each line of the schema file to contain the following:

• Name of the column

• Data Type of the column

There can be multiple spaces between the name and the data type.

Fire uses the below for mapping from the data type to Spark DataFrames Data Types:

• int : integer

• float : float

• double : double

• boolean : boolean

• string : string

Writing the Pandas DataFrame back to Spark

Below is an example code for writing the Pandas DataFrame back to Spark:

iterate over the dataframe created and return it to the pipeNode
for index, row in output_dataframe.iterrows():
list = row.tolist()
row_string = ','.join(str(e) for e in list)
print(row_string)

Output Schema of the Python Script

The output schema of the Python Script is written to a file which is read by the Spark Code. Clicking on Refresh
Schema infers the Python Schema output into Spark.

21.1. Python Integration 499

Sparkflows Documentation, Release 0.0.1

500 Chapter 21. Python

CHAPTER 22

Performance

22.1 Performance Tuning

Performance is the cornerstone of any Big Data Processing. Fire is extremely optimized for best performance. Each
of the Processors are written for extreme performance, the engine is optimized for the best performance.

There are certain things which need to be taken into account for any Spark job. Fire makes it extremely easy to apply
them to a Workflow.

22.1.1 Caching Level

Setting the right caching level of the Dataset outputs of the nodes is very important for performance in Apache Spark.

Fire allows you to set the caching output of the Dataset of any Processor.

When to use Caching

In general the default Caching does not have to be changed.

It is important to set Caching in the following scenarios:

• If the Dataset is going to be reused later. Below are some examples.

– A Dataset is read from HBase. Then another dataset is read and the two are joined. In this case it is a good
idea to Cache the dataset read from HBase.

– A Dataset is joined with another Dataset. The result is then joing with another Dataset. In this case it is a
good idea to cache the result of the first Join.

• A Dataset which is used in machine learning.

• Whenever a Dataset computation is expensive (JOIN etc.), caching can help in case the executor fails, the blocks
are evicted from memory.

501

Sparkflows Documentation, Release 0.0.1

22.1.2 Executor Memory, vcores

When running Apache Spark jobs, we can define the number of executors, executor memory and number of vcores
per executor.

Normally dynamic allocation of executors is enabled, and we do not need to specify the number of executors.

Certain jobs need higher executor memory and number of vcores. These can be specified with
--executor-memory and --executor-vcores.

These additional spark configs can be specified in Fire in the Execute page. They can also be specified when the jobs
are scheduled for execution.

22.1.3 Repartioning

Repartioning splits the datasets into the specified number of partitions.

This can help with performance

When saving to JDBC/File etc.

When saving a Dataset, the parallelism depends on the number of partitions of the Dataset. In case there are too few
partitions, repartitioning the Dataset before saving would increase the parallelism.

Parallelism is also a double-edged sword. It is not a good idea to say have too many parallel connections to a Relational
Database as it would put heavy load on the RDBMs.

22.1.4 Debug Mode

Fire Insights allows you to run the workflow in Debug mode.

In the debug mode a count is performed on the output from each Processor. This helps to know which Processor is
exactly taking more time.

Apache Spark in general executes the DAG lazily. It starts the execution of the DAG only when it hits an Action.
Hence, many times we do not know which Processor is actually taking more time.

Forcing Action with count in Debug mode forces execution of that step and insights into the time taken by the Proces-
sor.

502 Chapter 22. Performance

CHAPTER 23

Developer Guide

23.1 Developer Guide

23.1.1 Custom Node Development in Browser

Fire Insights enables you to write custom nodes from your Browser.

You would provide the execute method for the Processor and the Schema update code. You would also provide the
details of the widgets through which the user would provide the parameters for the new custom node.

Below are the steps for creating the custom node.

Once you login to Fire Insights application, there is PROCESSORS menu on top, select Custom Processors.

Click on CREATE PROCESSORS

Click on CREATE PROCESSORS to start creating the new processor.

It would open up the Create Processor Page as below.

Enter the name and other details for the new processor.

503

Sparkflows Documentation, Release 0.0.1

Then provide details for the various fields of the new processors. These fields would appear in the processor dialog
when used in the workflow editor.

Click on the + sign to add a new field. For each field provide the following:

• WIDGET

• NAME

• TITLE

• VALUE

• DESCRIPTION

Finally click on the Next button to go to the Code tab.

Execute Code

The Code tab is where you write the execution code for the new Custom Processor.

It shows the default template which you can update

Then click on Next button to go to the Schema tab.

Schema Update Code

The Schema tab is where you add the code which updates the incoming schema to produce the output schema from
this processor.

It displays the default template code which you can update.

Finally click on the Submit button to finish creating the new custom processor.

Once the custom processor is submitted successfully, it will be visible in Custom Processors list page.

504 Chapter 23. Developer Guide

Sparkflows Documentation, Release 0.0.1

Testing the custom processor

Fire Insights enables you to seamlessly Test your custom processor.

When editing the custom processor, select the Dataset for the data you want to feed to the custom processor. Then
click on Test to view the output of the new custom processor.

Using the new Processor

The processor is now available in the Workflow Editor.

You can click on the custom processor to start using it in your workflow.

You can also export & import them

Export Custom Processors

Fire Insights enables you to export Custom Processors from Browser to local machine.

Below are the steps to export Custom Processors.

Login to Fire Insights & go to Custom Processors list page.

Select the Custom Processors which you want to export and click on export.

NOTE: you can export multiple Custom Processors at a time too.

Once you click on export button, the selected Custom Processors will be downloaded to local machine in zip format.

23.1. Developer Guide 505

Sparkflows Documentation, Release 0.0.1

506 Chapter 23. Developer Guide

Sparkflows Documentation, Release 0.0.1

Import Custom Processors

Fire Insights enables you to import Custom Processors to different environment.

Below are the steps to Import Custom Processors.

Login to Fire Insights & go to Custom Processors list page.

Select the IMPORT button, it will open a new windows to upload zip file from local machine.

Once you upload zip file of Custom Processors from local machine, press IMPORT button to import it.

NOTE: You can import multiple Custom Processors at a time too.

Once you Click on IMPORT button, success message will display on imported Custom Processors.

After success import, you can view those Custom Processors in Custom Processors list page.

Now you can use those Custom Processors in your workflow.

23.1.2 Custom Node Development & Deployment (Java/Scala)

Fire Insights follows an open and extensible architecture allowing developers to add new custom nodes/processors that
can be exposed in Fire UI and embedded into workflows.

The details for building new nodes are available at the URL below:

• https://github.com/sparkflows/writing-new-node

Examples of more complex nodes are at the URL below :

• https://github.com/sparkflows/sparkflows-stanfordcorenlp

Step 1 : Start by cloning the github repo: writing-new-node

The easiest way to start writing a new node or processor is by cloning the writing-new-node repo using the
command below:

• git clone https://github.com/sparkflows/writing-new-node.git

23.1. Developer Guide 507

https://github.com/sparkflows/writing-new-node
https://github.com/sparkflows/sparkflows-stanfordcorenlp
https://github.com/sparkflows/writing-new-node.git

Sparkflows Documentation, Release 0.0.1

Step 2 : Install the Fire core jar to the local maven repository

Insall the Fire core jar to your local maven repository. The pom.xml contains the dependency for it.

• mvn install:install-file -Dfile=fire-spark_2.4-core-3.1.0.jar -DgroupId=fire -DartifactId=fire-spark_2.4-core -
Dversion=3.1.0 -Dpackaging=jar

Step 3 : Code the new custom node

The custom node might be a Dataset node or a Transform node.

A Dataset node reads data from some source into a Dataframe. It passes on this new Dataframe to the next node.
Examples of data sources include:

• Files on HDFS

• HIVE tables

• HBase tables

• Cassandra

• MongoDB

• Salesforce / Marketo

A Transform node receives an input Dataframe(s), transforms it and sends the transformed Dataframe to the next
node.

Writing a Dataset node

Create a new class that extends the NodeDataset class.

• Override the execute() method. The execute() method will read in data from the defined source into a
Dataframe. It would then pass on the resulting DataFrame to output node(s).

• Override the getOutputSchema() method to return the schema of of the Dataframe created by the node.

508 Chapter 23. Developer Guide

Sparkflows Documentation, Release 0.0.1

Writing a Transform node

Create a new class that extends the Node class.

• Override the execute() method. The execute() method will transform the incoming DataFrame and
then pass on the resulting DataFrame to output node(s).

• If the node is updating the incoming schema, also override the getOutputSchema() method. Otherwise the
incoming schema to this node is sent to the next node(s).

Examples of Custom Nodes

Example of custom nodes are available at:

• https://github.com/sparkflows/writing-new-node/tree/master/src/main/java/fire/nodes/examples

Step 4 : Create the node JSON file

Create the JSON file for the new node. The JSON file is used for displaying the new node in the Workflow Editor
and capturing the user inputs of the various fields of the node through a Dialog box. The JSON for the node also
captures the name of the Java/Scala class which has the implementation code for the Node.

Fire supports various widgets types for capturing the details of the fields from the user through the Node
Dialog Box.

Widget Types

The details of the various widget types is available at the URL below:

• https://github.com/sparkflows/writing-new-node/blob/master/docs/README_Processor_JSON.md

Examples of Node JSON

• https://github.com/sparkflows/writing-new-node/blob/master/json/nodes/testprintnrows.json

• https://github.com/sparkflows/writing-new-node/blob/master/json/nodes/testmovingaverage.json

Step 5 : Deploy the Custom Node in the Fire Server

Now that you have created a new node, follow the steps below to deploy it into the Fire Server:

• Create a jar file with mvn clean package

• Copy the jar file created in the previous step (target/writing-new-node-3.1.0.jar) into fire-user-lib direc-
tory of Fire Insights.

• Place the JSON file for the new node under the nodes directory.

• Restart the Fire Server.

The new node would be picked up by the Fire Server and be visible in the Workflow Editor. Check that new
node is available as expected in the Workflow Editor.

23.1. Developer Guide 509

https://github.com/sparkflows/writing-new-node/tree/master/src/main/java/fire/nodes/examples
https://github.com/sparkflows/writing-new-node/blob/master/docs/README_Processor_JSON.md
https://github.com/sparkflows/writing-new-node/blob/master/json/nodes/testprintnrows.json
https://github.com/sparkflows/writing-new-node/blob/master/json/nodes/testmovingaverage.json

Sparkflows Documentation, Release 0.0.1

Use the custom node in Spark submit when running on the Spark cluster

• Select the custom node jar checkbox when executing the workflow containing the custom node.

• You can also include the custom node with --jars <...> when running the workflow on the cluster

23.1.3 Databricks Custom Node Example JSON

Custom Nodes in Fire Insights can be exported as zip files and then subsequently imported into Fire Insights.

Click on the clink below to download a custom node zip file containing scorecardpy binning custom node.

Import it into Fire Insights by going to Processors/Custom Nodes.

The code looks like below:

Execution Code

1 from pyspark.sql import DataFrame, SparkSession
2 from fire.workflowcontext import WorkflowContext
3 import scorecardpy as sc
4

5 def myfn(spark: SparkSession, workflowContext: WorkflowContext, id: int, inDF:
→˓DataFrame, parameters: dict):

6 # Write your code here by using input dataframe i.e inDF and pass the output
→˓result as outDF dataframe.

7

8 pandas_df = inDF.toPandas()
9 variables = ["purpose"]

10 stopLimit = 0.1
11 countDistrLimit = 0.05
12 binNumLimit = 8
13 method = "tree"
14 positive = "bad|1"
15 workflowContext.outStr(id, "Method: " + parameters['method'] + ", Positive:" +

→˓parameters['positive'])
16

17 bins = sc.woebin(pandas_df, y="creditability", x=variables, stop_
→˓limit=float(stopLimit),

18 count_distr_limit=float(countDistrLimit),
19 bin_num_limit=int(binNumLimit), method=method, positive=positive)
20 bins_ply = sc.woebin_ply(pandas_df, bins)
21 spark_df = spark.createDataFrame(bins_ply)
22 outDF = spark_df
23 return outDF

Schema Propagation Code

1 from fire.workflowengine.workflow import JobContext
2 from fire.workflowengine.fireschema import FireSchema
3

4 def schema(inputSchema: FireSchema, parameters: dict):
5 #to add new column
6 #inputSchema.append("house_type", "string")
7

(continues on next page)

510 Chapter 23. Developer Guide

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

8 #to drop a column
9 #inputSchema.drop("id")

10 inputSchema.append('purpose_woe', 'double')
11

12 return inputSchema

23.1.4 Building and Running Custom Node

Fire Insights allows you to build your own Custom Nodes.

In this tutorial we would build a custom node built upon scorecardpy.

Install the scorecardpy dependencies

Since we are using the library scorecardpy, we would install its packages both on the Fire Insights machine and on the
Databricks cluster.

Use the command below to install it on the Fire Insights machines:

• pip install scorecardpy

Install it on your Databricks cluster with the below:

• Open a Notebook

• %sh pip install scorecardpy

Go to Custom Processors

Once you login to Fire Insights application, there is PROCESSORS menu in top, select Custom Processors.

Click on CREATE PROCESSORS

Click on CREATE PROCESSORS to start creating the new processor.

23.1. Developer Guide 511

Sparkflows Documentation, Release 0.0.1

It would open up the Create Processor Page as below.

Enter the name and other details for the new processor.

Then provide details for the various fields of the new processors. These fields would appear in the processor dialog
when used in the workflow editor.

Click on the + sign to add a new field. For each field provide the following:

• WIDGET

• NAME

• TITLE

• VALUE

• DESCRIPTION

Finally click on the Next button to go to the Code tab.

Execute Code

The Code tab is where you write the execution code for the new Custom Processor.

Its updated for scorecardpy here.

It shows the default template which you can update for scorecardpy.

Then click on Next button to go to the Schema tab.

512 Chapter 23. Developer Guide

Sparkflows Documentation, Release 0.0.1

Schema Update Code

The Schema tab is where you add the code which updates the incoming schema to produce the output schema from
this processor.

It displays the default template code which you can update.

Finally click on the Submit button to finish creating the new custom processor.

Once the custom processor submitted successfully, it will be vissible in Custom Processors list page.

Using the new Processor

The processor is now available in the Workflow Editor.

You can click on the custom processor to start using it in your workflow & submit the job.

23.1. Developer Guide 513

Sparkflows Documentation, Release 0.0.1

514 Chapter 23. Developer Guide

CHAPTER 24

Processors

24.1 Processors

24.1.1 16-Utilities

03-Execution

ExecuteInLoop

Type

transform

Class

fire.nodes.etl.NodeLoop

Fields

Name Title Description
loopCols Loop Columns

ReadParameters

Reads in the parameters from the given file.

515

Sparkflows Documentation, Release 0.0.1

Input

Input file has records in the following form on each line : name=value

Output

It adds the input parameters into the JobContext

Type

shellcommand

Class

fire.nodes.util.NodeReadParameters

Fields

Name Title Description
path Path Path of the parameters file containing the pa-

rameter name and value in each line

SpecifyParameters

Provides additional parameters to the workflow. When running with spark-submit, variables can also be given on the
command line with –var name=value.

Type

doc

Class

fire.nodes.util.NodeSpecifyParameters

Fields

Name Title Description
names Parameter Names Parameter Names
values Parameter Values Parameter Values

516 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

ExecuteWorkflow

Fires the given workflow. Does not wait for the workflow to complete to resume execution

Type

transform

Class

fire.nodes.util.NodeExecuteWorkflow

Fields

02-Data-Partition

Coalesce

This node coalesces the DataFrame into specified number of Partitions

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

The output DataFrame has the specified number of partitions

Type

transform

Class

fire.nodes.etl.NodeCoalesce

Fields

Name Title Description
numPartitions Number of Parti-

tions
input for number of partitions

24.1. Processors 517

Sparkflows Documentation, Release 0.0.1

Details

This node coalesces the DataFrame into specified number of Partitions.

It is specially helpful for the case when too many small files are being created. In such a scenario, the Coalesce node
can be used to limit the number of output files produced.

Repartition

This node repartitions incoming dataframe into a specified number of partitions

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeRepartition

Fields

Name Title Description
numPartitions Number of Parti-

tions
Number of Partitions

NumberOfPartitions

This node will get the number partitions in input dataframe.

Type

transform

Class

fire.nodes.util.NodeGetNumberOfPartitions

518 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

01-Spark-Performance

CacheDataFrame

Caches the DataFrame with the provided StorageLevel

Input

It takes in a DataFrame as input

Output

The input DataFrame is cached with the specified storage level and send to the output

Type

transform

Class

fire.nodes.util.NodeCacheDataFrame

Fields

Name Title Description
storageLevel Storage Level storage level name

PrintSparkConfiguration

Print the all spark configuration used in workflow.

Type

transform

Class

fire.nodes.util.NodeSparkConfiguration

24.1. Processors 519

Sparkflows Documentation, Release 0.0.1

Fields

UnpersistDataFrame

Unpersists the output DataFrames of the given Nodes

Input

It takes in a DataFrame as input

Output

The outputs the incoming DataFrame

Type

transform

Class

fire.nodes.util.NodeUnpersistDataFrame

Fields

Name Title Description
nodeIdsToUnpersist Node ID to Unper-

sist
Output of node to unpersist

24.1.2 09-DataProfiling

ColumnsCardinality

Distribution of categorical data. Calculates the count of records for each unique value for the column specified.

Type

transform

Class

fire.nodes.ml.NodeColumnsCardinality

520 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
maxValuesToDisplay Max Values To Dis-

play
Maximum number of values to display in re-
sult.

inputCols Column Names Name of columns for the cardinality data

SummaryStatistics

Summary statistics provide useful information about sample data. eg: measures of spread.

Type

transform

Class

fire.nodes.ml.NodeSummary

Fields

Details

Summary statistics provides useful information about sample data. eg: measures of spread.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-statistics.html#summary-statistics

Summary Node provides a table consist of informations such as number of non-null entries (count), mean, standard
deviation, and minimum and maximum value for each numerical column.

SkewnessAndKurtosis

Type

transform

Class

fire.nodes.etl.NodeSkewnessAndKurtosis

Fields

Name Title Description
inputCols Column Names Name of columns to get the skewness and

kurtosis.

24.1. Processors 521

http://spark.apache.org/docs/latest/mllib-statistics.html#summary-statistics

Sparkflows Documentation, Release 0.0.1

HistoGram

Computes a histogram of the data using number of bins evenly spaced between the minimum and maximum of the
specific columns.

Type

transform

Class

fire.nodes.ml.NodeHistoGramCal

Fields

Name Title Description
inputCols Column Name Name of column
bins Number of Bins Number of Bins

FlagOutlier

Flag the outlier based on the selected column using Box-and-Whisker technique.

Type

transform

Class

fire.nodes.ml.NodeFlagOutlier

Fields

Name Title Description
inputCol Input Column to

flag the outlier
The Input Column to flag the outlier

lowerQuantile LowerQuantile
upperQuantile UpperQuantile

DistinctValuesInColumn

Type

transform

522 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeDistinctValues

Fields

Name Title Description
distinctCols Column Names Name of columns to get the distinct combi-

nation of values.

NullValuesInColumn

Number of Null Values in Selected Columns.

Type

transform

Class

fire.nodes.etl.NodeNullValuesInColumn

Fields

Name Title Description
inputCols Column Names Name of columns for Number of Null Val-

ues Check

CrossTab

Categorical V.S. Categorical

Type

transform

Class

fire.nodes.ml.NodeCrosstab

24.1. Processors 523

Sparkflows Documentation, Release 0.0.1

Fields

GraphWeekDayDistribution

This node Finds the distribution of Week Days from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphWeekDayDistribution

Fields

Correlation

calculates the correlation between two series of data.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The input DataFrame is passed along to the next Processors

Type

transform

Class

fire.nodes.ml.NodeCorrelation

Fields

Details

This node calculates the correlation between two series of data in a common operation in Statistics.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-statistics.html#correlations

524 Chapter 24. Processors

http://spark.apache.org/docs/latest/mllib-statistics.html#correlations

Sparkflows Documentation, Release 0.0.1

GraphYearDistribution

This node Finds the distribution of Years from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphYearDistribution

Fields

GraphMonthDistribution

This node Finds the distribution of months from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphMonthDistribution

Fields

24.1.3 05-FeatureEngineering

WordCount

Type

transform

Class

fire.nodes.ml.NodeWordCount

Fields

MovingWindowFunctions

This node calculates the moving values of selected functions for the field(input column).

24.1. Processors 525

Sparkflows Documentation, Release 0.0.1

Input

It accepts a DataFrame as input from the previous Node

Output

A new columns is added which contains the results of applying the selected function on the given column of the input
DataFrame

Type

transform

Class

fire.nodes.etl.NodeMovingWindowFunctions

Fields

Name Title Description
windowStart Window Start value to be used to calculate the window

from
windowEnd Window End value to be used to calculate the window to
partitionCol Partition Column

Name
partition column to split the incoming
dataframe for the sliding/window operation

orderCol Order Column
Name

the order of the selected column for the slid-
ing/window operation

inputCols Input Columns input column name for calc
functions Functions

DateToAge

This node converts a date-column into columns of age (both in years and in days).

Type

transform

Class

fire.nodes.etl.NodeDateToAge

526 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputColName Input Column Name Input Column Name
yearsOutputColName Years Output Col-

umn Name
Num Years Output Column Name

daysOutputColName Days Output Col-
umn Name

Num Days Output Column Name

Details

Calculates age from the given date or timestamp column. Age is calculated and displayed in years and days columns.

Examples

Examples when date is 06-25-2019

dd-MM-yyyy : 20-09-2018 , 0 year : 278 days MM-dd-yyyy : 09-30-2018 , 0 year : 268 days yyyy-MM-dd : 2012-
01-31 , 7 year : 2702 days

24.1.4 01-IO

02-ReadStructured

ReadExcel

Dataset Node for reading Excel files

Type

dataset

Class

fire.nodes.dataset.NodeDatasetExcel

24.1. Processors 527

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
path Path Path of the Excel file
sheetName Sheetname Excel Sheet Name
header Header Does the file have a header row
outputColNames Column Names for

the Excel
New Output Columns of the SQL

outputColTypes Column Types for
the Excel

Data Type of the Output Columns

outputColFormats Column Formats for
the Excel

Format of the Output Columns

EmptyDataset

It creates an empty DataFrame

Input

It does not read any input

Output

It creates an empty DataFrame

Type

dataset

Class

fire.nodes.dataset.NodeDatasetEmpty

Fields

ReadCSV

It reads in CSV files and creates a DataFrame from it

Input

It reads in CSV text files

528 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetCSV

Fields

Name Title Description
path Path Path of the Text file/directory
separator Separator CSV Separator
header Header Does the file have a header row
dropMalformed Drop Malformed Whether to drop Malformed records or error
outputColNames Column Names for

the CSV
New Output Columns of the SQL

outputColTypes Column Types for
the CSV

Data Type of the Output Columns

outputColFormats Column Formats for
the CSV

Format of the Output Columns

ReadAvro

Dataset Node for reading Apache Avro files

Input

It reads in Avro files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetAvro

24.1. Processors 529

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
path Path Path of the Avro file/directory
outputColNames Column Names for

the Avro
Output Columns of the Avro

outputColTypes Column Types for
the Avro

Data Type of the Output Columns

outputColFormats Column Formats for
the Avro

Format of the Output Columns

ReadXML

It reads in XML files and creates a DataFrame from it

Input

It reads in XML text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetXML

Fields

Name Title Description
path Path Path of the Text file/directory
rowTag Row Tag Row Tag
outputColNames Column Names for

the CSV
New Output Columns of the SQL

outputColTypes Column Types for
the CSV

Data Type of the Output Columns

outputColFormats Column Formats for
the CSV

Format of the Output Columns

530 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

QueryJDBCConnection

This node executes query in Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeJDBCQueryUsingConnection

Fields

Name Title Description
connection Connection The JDBC connection to connect
query Query
outputColNames Column Names of

the Table
Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

JDBCIncrementalLoad

This node is used to load incremental data from RDBMS to Hive.

Input

RDBMS detail like url, username , password, hivedb , hive table name

Type

dataset

24.1. Processors 531

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.dataset.NodeDatasetJDBCIncrementalLoad

Fields

Name Title Description
sqldb SqlDB
sqlServer SqlServer
sqlUser SqlUser
password password
sqltable SqlTable
sqlkeycolumn SqlKeyColumn
homeDirectory Config Path
outputColNames Column Names of

the Table
Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

DB2 JDBC

This node reads data from other databases using JDBC.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBC

532 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
url DB2 JDBC URL The JDBC URL to connect to
user User User for connecting to the DB
password Password Password for connecting to the DB
dbtable DB2 Table The JDBC table that should be read. Note

that anything that is valid in a FROM clause
of a SQL query can be used. For example,
instead of a full table you could also use a
subquery in parentheses.

driver DB2 Driver The class name of the JDBC driver needed
to connect to this URL

outputColNames Column Names of
the Table

Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

ReadParquet

Dataset Node for reading Apache Parquet files

Input

It reads in Parquet files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetParquet

24.1. Processors 533

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
path Path Path of the Parquet file/directory
outputColNames Column Names for

the Parquet
Output Columns of the Parquet

outputColTypes Column Types for
the Parquet

Data Type of the Output Columns

outputColFormats Column Formats for
the Parquet

Format of the Output Columns

ReadDatabricksTable

This node reads data from Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeReadDatabricksTable

Fields

Name Title Description
db Databricks

Database
Databricks Database

table Databricks Table Databricks Table from which to read the
data

driver Driver The class name of the JDBC driver needed
to connect to this URL

outputColNames Column Names of
the Table

Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

534 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

JDBCConnection

This node reads data from Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBCUsingConnection

Fields

Name Title Description
connection Connection The JDBC connection to connect
dbtable DB Table The JDBC table that should be read. Note

that anything that is valid in a FROM clause
of a SQL query can be used. For example,
instead of a full table you could also use a
subquery in parentheses.

outputColNames Column Names of
the Table

Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

CreateDataset

Creates a dataset with the specified number of Rows and 9 pre-defined columns

Input

It does not read data from any external source

24.1. Processors 535

Sparkflows Documentation, Release 0.0.1

Output

It creates a DataFrame with the specified number of Rows

Type

dataset

Class

fire.nodes.dataset.NodeDatasetCreate

Fields

Name Title Description
numRows Number of Rows Number of Rows in the Output Dataset

DatasetStructured

This Node creates a DataFrame by reading data from HDFS, HIVE etc. The dataset has been defined earlier in Fire
by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.

Input

It reads in data from HIVE or files HDFS

Output

It creates a DataFrame from the input data and sends it to its output.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetStructured

Fields

Name Title Description
dataset Dataset Selected Dataset

536 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Details

This Node creates a DataFrame by reading data from HDFS, HIVE etc.

The data has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of
your interest.

ReadJDBC

This node reads data from Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBC

Fields

Name Title Description
url URL The JDBC URL to connect to
user User User for connecting to the DB
password Password Password for connecting to the DB
dbtable DB Table The JDBC table that should be read. Note

that anything that is valid in a FROM clause
of a SQL query can be used. For example,
instead of a full table you could also use a
subquery in parentheses.

driver Driver The class name of the JDBC driver needed
to connect to this URL

outputColNames Column Names of
the Table

Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

24.1. Processors 537

Sparkflows Documentation, Release 0.0.1

ReadHanaCsv

It reads in Hana CSV files and creates a DataFrame from it

Input

It reads in CSV text files and sql file to create schema from it

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeReadHANACSVDump

Fields

Name Title Description
path Path Path of the Text file/directory
hdfsSqlFile SQL File Path of the sql file that contains create table

script.
outputColNames Column Names for

the CSV
New Output Columns of the SQL

outputColTypes Column Types for
the CSV

Data Type of the Output Columns

outputColFormats Column Formats for
the CSV

Format of the Output Columns

URLSingleRecordJSONReader

It reads in single record JSON from the given URL and creates a DataFrame from it

Type

dataset

Class

fire.nodes.dataset.NodeDatasetURLSingleRecordJsonReader

538 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
URL URL URL from where to read the JSON string

from
outputColNames Column Names Column Names
outputColTypes Column Types Data Types
outputColFormats Column Formats Formats

ReadLibsvm

It reads in Libsvm files and creates a DataFrame from it

Input

It reads in Libsvm text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetLibsvm

Fields

Name Title Description
path Path Path of the Text file/directory
numFeatures NumFeatures Number of features in feature column
outputColNames Column Names for

the CSV
New Output Columns of the SQL

outputColTypes Column Types for
the CSV

Data Type of the Output Columns

outputColFormats Column Formats for
the CSV

Format of the Output Columns

ReadJSON

Dataset Node for reading JSON files

24.1. Processors 539

Sparkflows Documentation, Release 0.0.1

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJSON

Fields

Name Title Description
path Path Path of the JSON file/directory
multiLine Multi Line
outputColNames Column Name New Output Column Name
outputColTypes Column Type Data Type of the Output Column
outputColFormats Column Format Format of the Output Column

Details

It reads in JSON files. Each JSON record has to be on a separate line for Spark to handle it correctly.

There cannot be line break within a record.

URLTextFileReader

Reads text file from the given URL and creates a DataFrame from it. Each line in the file is a record in the DataFrame.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetUrlTextFileReader

Fields

Name Title Description
url URL URL of the file

ReadShapeFile

It reads in Shape files and creates a DataFrame from it

540 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Input

It reads in Shape files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetShapeFile

Fields

Name Title Description
path Path Path of the input directory

03-ReadUnstructured

TextFiles

Reads in Text Files from a given path and loads each line as a separate Row

Type

dataset

Class

fire.nodes.dataset.NodeDatasetTextFiles

Fields

Name Title Description
path Path Path of the Text file/directory
outputCol Output Column

Name
Text Lines Column in the Output
DataFrame

24.1. Processors 541

Sparkflows Documentation, Release 0.0.1

WholeTextFiles

Reads in Whole Text Files directory from a given path and loads each files as a separate Row with key(file name and
values(file content)

Type

dataset

Class

fire.nodes.dataset.NodeDatasetWholeTextFiles

Fields

Name Title Description
path Path Path of the Text files directory

Tika

Reads in files from a given path and parses them with Apache Tika

Type

dataset

Class

fire.nodes.dataset.NodeDatasetTika

Fields

Name Title Description
path Path Path of the file/directory
fileNameCol File Name Column File Name Column in the Output DataFrame
contentCol Content Column Tika output Column in the Output

DataFrame

PDF

Reads in PDF Files from a given path and extracts the text content from them

542 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

dataset

Class

fire.nodes.dataset.NodeDatasetPDF

Fields

Name Title Description
path Path Path of the PDF file/directory
fileNameCol File Name File Name Column in the Output DataFrame
contentCol File Content File Content Column in the Output

DataFrame

PDFImageOCR

Reads in PDF Files from a given path, extracts the images from them and converts them to text with Tesseract

Input

It reads in a PDF file or a directory containing PDF files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetPDFImageOCR

Fields

Name Title Description
path Path of the PDF files Path of the PDF file/directory
fileNameCol File Name Column File Name Column in the Output DataFrame
outputCol Column Name

which contains the
result of OCR

OCR output Column in the Output
DataFrame

24.1. Processors 543

Sparkflows Documentation, Release 0.0.1

BinaryFiles

Reads in Binary Files from a given path and loads them as FileName/Content

Type

dataset

Class

fire.nodes.dataset.NodeDatasetBinaryFiles

Fields

Name Title Description
path Path Path of the Binary file/directory
fileNameCol File Name Column File Name Column in the Output DataFrame
binaryContentCol Binary File Content

Column
Binary File Content Column in the Output
DataFrame

Details

It creates a new Dataframe from some data. Data can be in binary, text, parquet, pdf, image files.

03-Save

SaveJDBC

This node writes data to databases using JDBC.

Type

transform

Class

fire.nodes.save.NodeSaveJDBC

544 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
url URL The JDBC URL to connect to
table DB Table The JDBC table to write to
driver Driver The class name of the JDBC driver needed

to connect to the URL
user User Username with which to connect to the DB
password Password Password with which to connect to the DB
truncate Truncate Whether to truncate the table in case Save

Mode is Overwrite
saveMode Save Mode Whether to Append, Overwrite or Error if

the table Exists

UpsertJDBC

This node insert or update the data to databases using JDBC.

Type

transform

Class

fire.nodes.save.NodeUpsertJDBC

Fields

Name Title Description
primaryKeyColumn PrimaryKeyColumn Key column name in table
url URL The JDBC URL to connect to
table DB Table The JDBC table to write to
driver Driver The class name of the JDBC driver needed

to connect to the URL
user User Username with which to connect to the DB
password Password Password with which to connect to the DB

SaveCSV

Saves the DataFrame into the specified location in CSV Format

Type

transform

24.1. Processors 545

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.save.NodeSaveCSV

Fields

Name Title Description
path Path Path where to save the CSV files
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists
header Header Should a Header Row be saved with each

File?
partitionColNames Partition Column

Names
Partition Column Names

SaveJSON

Saves the DataFrame into the specified location in JSON Format

Type

transform

Class

fire.nodes.save.NodeSaveJSON

Fields

Name Title Description
path Path Path where to save the JSON files
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists
partitionColNames Partition Column

Names
Partition Column Names

KafkaProducer

Write out the Dataframe to a specified Apache Kafka Topic

Type

transform

546 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.save.NodeKafkaProducer

Fields

Name Title Description
brokers Kafka Brokers Brokers
topic Topic Kafka Topic to write out the incoming

Dataframe to

SaveParquet

Saves the DataFrame into the specified location in Parquet Format. When running on Hadoop, it is saved onto HDFS.

Type

transform

Class

fire.nodes.save.NodeSaveParquet

Fields

Name Title Description
path Path Path where to save the Parquet files
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists
partitionColNames Partition Column

Names
Partition Column Names

SaveORC

Saves the DataFrame into the specified location in ORC Format

Type

transform

Class

fire.nodes.save.NodeSaveORC

24.1. Processors 547

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
path Path Path where to save the ORC files
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists

InsertIntoHIVETable

Saves the DataFrame into an Apache HIVE Table

Type

transform

Class

fire.nodes.save.NodeInsertIntoTable

Fields

Name Title Description
database HIVE Database Name of the HIVE Database
table HIVE Table Name of the HIVE table
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists
partitionBy Partition By Partition By Column (can be empty)
bucketBy Bucket By Bucket By Column (can be empty)

Details

When using Insert Into Table, the HIVE table has to already exist.

Otherwise it throws the following exception:

org.apache.spark.sql.catalyst.analysis.NoSuchTableException: Table or view ‘xyz’ not found in database ‘abc’;

SaveAsHIVETable

Saves the DataFrame into an Apache HIVE Table

Type

transform

548 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.save.NodeSaveAsTable

Fields

Name Title Description
database HIVE Database Name of the HIVE Database
table HIVE Table Name of the HIVE table
partitionBy Partition By List of columns to partition by - separated

by space
format Format File format when saving to HIVE Table
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists

Details

If the HIVE table does not exist, it would create the table.

SaveAvro

Saves the DataFrame into the specified location in Apache Avro Format

Type

transform

Class

fire.nodes.save.NodeSaveAvro

Fields

Name Title Description
path Path Path where to save the Avro files
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists

01-Connectors

Salesforce

This node reads data from Salesforce.

24.1. Processors 549

Sparkflows Documentation, Release 0.0.1

Type

dataset

Class

fire.nodes.salesforce.NodeReadSalesforce

Fields

Name Title Description
sql SQL Sql for reading salesforce data ex - select id,

name, amount from opportunity
userNmae User Name UserName of Salesforce
password Password Password of Salesforce
readOption Read Option Pulling data/Object from salesforce
outputColNames Column Names of

the Table
Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

ReadMarketo

Node for reading Marketo files

Type

dataset

Class

fire.nodes.marketo.NodeReadMarketo

550 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
clientId Client Id Marketo account clientId
clientSecret Client Secret Marketo account clientSecret
instanceUrl Instance Url Instance URL to be used to access Mar-

keto. It has to be specified without /rest.
i.e it should be like https://119-AAA-888.
mktorest.com

object Object Object to be queried from Marketo. ex.
leads

filterType Filter Type Filter field to be used
filterValues Filter Values Comma separated filter values to be applied
fromDate From Date (Optional) Datatime from which the data

has to be fetched. It has to be in ISO 8601
format

customObject Custom Object (Optional) Boolean to specify if the speci-
fied object is custom object, Default value
is false

apiVersion Api Version (Optional) API Version to be used. Default
value is v1

modifiedFields Modified Fields (Optional) Fields to be considered for lead-
Changes. It has to be comma separated field
names

queryType Query Type Query Type of Marketo
outputColNames Column Names for

the Marketo
New Output Columns of the SQL

outputColTypes Column Types for
the Marketo

Data Type of the Output Columns

outputColFormats Column Formats for
the Marketo

Format of the Output Columns

SaveRedshift-AWS

This node save data to Redshift using JDBC.

Type

transform

Class

fire.nodes.aws.NodeSaveRedshift

24.1. Processors 551

https://119-AAA-888.mktorest.com
https://119-AAA-888.mktorest.com

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
url URL The JDBC URL to connect to
dbtable Redshift Table The Redshift table that should be write.

Note that anything that is valid in a FROM
clause of a SQL query can be used. For ex-
ample, instead of a full table you could also
use a subquery in parentheses.

awsAccessKeyId AWS Access Key Id AWS Access Key Id
awsSecretAccessKey AWS Secret Access

Key
AWS Secret Access Key

tempS3Dir Temporary S3 direc-
tory

Temporary S3 directory

saveMode Save Mode Whether to Append, Overwrite or Error if
the path Exists

WriteToSnowFlake

Type

transform

Class

fire.nodes.snowflake.NodeWriteToSnowFlake

Fields

Name Title Description
sfUrl SF Url SnowFlake URL to connect to
sfUser SF User User for connecting to the SnowFlake
sfPassword SF Password Password for connecting to the SnowFlake
sfDatabase SF Database Database for connecting to the SnowFlake
sfSchema SF Schema Schema for connecting to the SnowFlake
sfWarehouse SF Warehouse Warehouse for connecting to the SnowFlake
saveMode Save Mode Whether to Append, Overwrite or Error if

the table Exists
dbtable SF Table

SaveCassandra

Saves the rows of the incoming DataFrame into Apache Cassandra

552 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.cassandra.NodeSaveCassandra

Fields

Name Title Description
table Cassandra Table

Name
Cassandra Table into which data gets loaded

keyspace Cassandra Keyspace
Name

The keyspace where table is looked for

host Host
username Username
password Password

ExecuteQueryInSnowFlake

Type

dataset

Class

fire.nodes.snowflake.NodeExecuteQueryInSnowFlake

Fields

Name Title Description
sfUrl SF Url SnowFlake URL to connect to
sfUser SF User User for connecting to the SnowFlake
sfPassword SF Password Password for connecting to the SnowFlake
sfDatabase SF Database Database for connecting to the SnowFlake
sfSchema SF Schema Schema for connecting to the SnowFlake
sfWarehouse SF Warehouse Warehouse for connecting to the SnowFlake
query SF Query
outputColNames Output Column

Names
Name of the Output Columns

outputColTypes Output Column
Types

Data Type of the Output Columns

outputColFormats Output Column For-
mats

Format of the Output Columns

24.1. Processors 553

Sparkflows Documentation, Release 0.0.1

ReadMongoDB

Reads data from MongoDB

Type

dataset

Class

fire.nodes.mongodb.NodeReadMongoDB

Fields

Name Title Description
mongoURI MongoDB URI URI of MongoDB to read from
mongoDBName MongoDB Database Name of the MongoDB database to read

from
mongoTableName MongoDB Table Name of the MongoDB table to read from
outputColNames Column Names of

the Table
Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

SaveMongoDB

It Saves the incoming Dataframe into MongoDB

Input

It takes in a DataFrame as input

Output

Incoming dataFrame is passed along to the next nodes.

Type

transform

Class

fire.nodes.mongodb.NodeSaveMongoDB

554 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
mongoURI mongo URI URI of mongodb
mongoDBName mongoDB Name mongoDB Name
mongoTableName mongo Table Name mongo Table Name

ReadDatabricksTable

This node reads a table from Databricks

Input

It reads data from Databricks Table

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.databricks.NodeReadDatabricksTable

Fields

ReadHIVETable

This node reads data from Apache HIVE table and creates a DataFrame from it

Input

It reads in CSV text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

24.1. Processors 555

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.hive.NodeHIVE

Fields

SaveHBase

Saves all the rows in the incoming DataFrame onto Apache HBase using the specific field mapping

Input

It takes in a DataFrame as input

Output

Incoming dataFrame is passed along to the next nodes.

Type

transform

Class

fire.nodes.hbase.NodeSaveHBase

Fields

Details

SaveHBase node saves all the rows in the incoming DataFrame onto HBase using the specific field mapping.

The DataFrame columns which do not have to be loaded into HBase are left empty.

SaveElasticSearch

Stores the rows of the incoming DataFrame into Elastic Search

Type

transform

Class

fire.nodes.elasticsearch.NodeSaveElasticSearch

556 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
indexName Index Name Name of the Elastic Search Index
elasticSearchHost Elastic Search Host Name of the Elastic Search Host
elasticSearchPort Elastic Search Port Port of Elastic Search
esIndexAutoCreate es.index.auto.create ES Index Auto Create
esNodesWANOnly es.nodes.wan.only ES Nodes WAN Only
esNodesIngestOnly es.nodes.ingest.only ES Nodes Ingest Only
esNodesDataOnly es.nodes.data.only ES Nodes Data Only
esNetHttpAuthUser es.net.http.auth.user Username
esNetHttpAuthPass es.net.http.auth.pass Password
esConfKeys Config Key/Value

Pairs
More Config Values

esConfValues Config Key/Value
Pairs

More Config Values

ReadFromSnowFlake

Type

dataset

Class

fire.nodes.snowflake.NodeReadFromSnowFlake

Fields

Name Title Description
sfUrl SF Url SnowFlake URL to connect to
sfUser SF User User for connecting to the SnowFlake
sfPassword SF Password Password for connecting to the SnowFlake
sfDatabase SF Database Database for connecting to the SnowFlake
sfSchema SF Schema Schema for connecting to the SnowFlake
sfWarehouse SF Warehouse Warehouse for connecting to the SnowFlake
dbtable SF Table
outputColNames Output Column

Names
Name of the Output Columns

outputColTypes Output Column
Types

Data Type of the Output Columns

outputColFormats Output Column For-
mats

Format of the Output Columns

SFTP

Secure file transfer protocol

24.1. Processors 557

Sparkflows Documentation, Release 0.0.1

Type

dataset

Class

fire.nodes.sftp.NodeSftp

Fields

Name Title Description
sftpHost Sftp Host IP address of sftp
sftPort Sft Port Port no of SFTP. Default port is 22
sftpUser Sftp User Name SFTP User Name
sftpPass Sftp Password SFTP User Password
sftpUserDir Sftp User Directory user directory path(File take from)
sftpDirectory Sftp Directory server directory path(Inside SFTP uploads

folder ‘/uploads’)
pemKey Pem Key Path of pem key directory

ReadCassandra

This node reads data from Apache Cassandra

Type

dataset

Class

fire.nodes.cassandra.NodeReadCassandra

Fields

Name Title Description
table Cassandra Table Cassandra Table from which to read the data
keyspace Cassandra Keyspace Cassandra Keyspace
host Cassandra host
username Username
password Password

SaveDatabricksTable

This node saves a input data as table in Databricks

558 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Input

It take dataframe as input data.

Output

It creates a Table in Databricks from the dataframe(input data).

Type

transform

Class

fire.nodes.databricks.NodeSaveDatabricksTable

Fields

Name Title Description
database Databricks

Database
Name of the Database

table Databricks Table Name of the table
partitionBy Partition By List of columns to partition by - separated

by space
format Format File format when saving to Table
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists

ReadRedshift-AWS

This node reads data from Redshift using JDBC.

Type

dataset

Class

fire.nodes.aws.NodeReadRedshift

24.1. Processors 559

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
url URL The JDBC URL to connect to
dbtable Redshift Table The Redshift table that should be read. Note

that anything that is valid in a FROM clause
of a SQL query can be used. For example,
instead of a full table you could also use a
subquery in parentheses.

awsAccessKeyId AWS Access Key Id AWS Access Key Id
awsSecretAccessKey AWS Secret Access

Key
AWS Secret Access Key

tempS3Dir Temporary S3 direc-
tory

Temporary S3 directory

outputColNames Column Names of
the Table

Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

ReadElasticSearch

Reads data from Elastic Search

Type

dataset

Class

fire.nodes.elasticsearch.NodeReadElasticSearch

560 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
indexName Index Name Name of the Elastic Search Index
elasticSearchHost Elastic Search Host Name of the Elastic Search Host
elasticSearchPort Elastic Search Port Port of Elastic Search
temporaryTable Spark Temporary

Table for Reading
from ES

Spark Temporary Table to be used for read-
ing from Elastic Search

sql SQL for reading
from Elastic Search

SQL for reading from Elastic Search.
Where condition can be applied here for
limiting the rows read from ES.

outputColNames Column Names of
the Table

Output Columns Names of the Table

outputColTypes Column Types of
the Table

Output Column Types of the Table

outputColFormats Column Formats Output Column Formats

24.1.5 11-ML-SparkML

12-FreqPatternMining

FPGrowth

Does Pattern Mining using FPGrowth Algorithm

Type

transform

Class

fire.nodes.ml.NodeFPGrowth

Fields

Name Title Description
transactionCol Transaction Column Input data set, each element contains a trans-

action
minSupport Min Support The minimum support for an itemset to be

identified as frequent
numPartitions Number of Parti-

tions
The number of partitions used to distribute
the work

24.1. Processors 561

Sparkflows Documentation, Release 0.0.1

Details

This node does Pattern Mining using FPGrowth Algorithm.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html

04-FeatureTransformers

VectorAssembler

Merges multiple columns into a vector column

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column to the incoming DataFrame. The new column contains the values of the input columns concate-
nated into a vector in the specified order.

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorAssembler

Fields

Name Title Description
inputCols Input Columns Input column of type - all numeric, boolean

and vector
outputCol Output Column Output column name

IDF

Compute the Inverse Document Frequency (IDF) given a collection of documents.

Input

It takes in a DataFrame and transforms it to another DataFrame

562 Chapter 24. Processors

http://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html

Sparkflows Documentation, Release 0.0.1

Output

The output DataFrame contains a new column of type vector, It takes feature vectors (generally created from Hash-
ingTF) as input and scales each column. Intuitively, it down-weights columns which appear frequently in a corpus.

Type

ml-transformer

Class

fire.nodes.ml.NodeIDF

Fields

Name Title Description
inputCol Input Column Input Column Name
outputCol Output Column Output column name
minDocFreq MinDocFreq The minimum of documents in which a term

should appear.

StopWordsRemover

Filters out stop words from input. Null values from input array are preserved unless adding null to stopWords explicitly.

Output

It adds a new column containing the sequence of strings from the input column but with the stop words removed, to
the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeStopWordsRemover

24.1. Processors 563

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCol Input Column Column containing the array text from

which the stop words have to be removed
outputCol Output Column Contains array of text by dropping list of

stop words
caseSensitive Case Sensitive Case Sensitive
stopWords Comma Separated

List of Custom Stop
Words. If not pro-
vided, the default
list of stop words
would be used.

Custom List of Stop Words

Details

Stop words filters out stop words from input. Null values from input array are preserved unless adding null to stop-
Words explicitly.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#stopwordsremover

Tokenizer

A tokenizer that converts the input string to lowercase and then splits it by white spaces.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the results of tokenization of the input column, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeTokenizer

564 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-features.html#stopwordsremover

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCol Input Column Column containing text (such as sentence)
outputCol Output Column Output column name

PolynominalExpansion

Perform feature expansion in a polynomial space

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column of type vector, Expanding your features into a polynomial space, which
is formulated by an n-degree combination of original dimensions.

Type

ml-transformer

Class

fire.nodes.ml.NodePolynominalExpansion

Fields

Name Title Description
inputCol Input Column The input column name
outputCol Output Column The output column name
degree Degree The polynomial degree to expand, which

should be >= 1. A value of 1 means no ex-
pansion.

VectorIndexer

Vector Indexer indexes categorical features inside of a Vector. It decides which features are categorical and converts
them to category indices. The decision is based on the number of distinct values of a feature.

Input

It takes in a DataFrame and transforms it to another DataFrame

24.1. Processors 565

Sparkflows Documentation, Release 0.0.1

Output

It indexes categorical features in datasets of Vectors and stores the result into a new column of the DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorIndexer

Fields

Name Title Description
inputCol Input Column The Input column name
outputCol Output Column Output column name
maxCategories Maximum Cate-

gories
Threshold for the number of values a cate-
gorical feature can take. If a feature is found
to have > maxCategories values, then it is
declared continuous. Must be >= 2

Normalizer

Normalizer is a Transformer which transforms a dataset of Vector rows, normalizing each Vector to have unit norm.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the normalized value of the input column, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeNormalizer

566 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCol Input Column The input column name
outputCol Output Column The output column name
p P Normalization in L^p space. Must be >= 1.

(default: p = 2)

Details

Normalizer is a Transformer which transforms a dataset of Vector rows, normalizing each Vector to have unit norm.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#normalizer

OneHotEncoder

Maps a column of label indices to a column of binary vectors, with at most a single one-value

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column which contains the mapping of a column of label indices to a column
of binary vectors, with at most a single one-value.

Type

ml-transformer

Class

fire.nodes.ml.NodeOneHotEncoder

Fields

Name Title Description
inputCols Input Columns Input columns for encoding
outputCols Output Columns Output columns

24.1. Processors 567

http://spark.apache.org/docs/latest/ml-features.html#normalizer

Sparkflows Documentation, Release 0.0.1

NGramTransformer

Converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an
array of n-grams where each n-gram is represented by a space-separated string of words.When the input is empty, an
empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are
returned

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column consisting of a sequence of nn-grams where each nn-gram is represented by a space-delimited
string of nn consecutive words, to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeNGramTransformer

Fields

Name Title Description
inputCol Input Column Contains sequence of strings
inputColStringArrCol List of Words Sequence of words
outputCol Output Column Consist of a sequence of n-grams where

each n-gram is represented by a space-
delimited string of n consecutive words

numberOfGrams Number of Grams Sequence of ‘string array’ for integer ‘Num-
ber of Grams’

Details

This node converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It
returns an array of n-grams where each n-gram is represented by a space-separated string of words.When the input is
empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no
n-grams are returned”

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#n-gram

568 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-features.html#n-gram

Sparkflows Documentation, Release 0.0.1

Binarizer

Binarize a column of continuous features given a threshold.

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

A new column containing the binarized values is added to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeBinarizer

Fields

Name Title Description
inputCol Input Column The input column name
outputCol Output Column The output column name
threshold Threshold The features greater than the threshold, will

be binarized to 1.0.The features equal to or
less than the threshold, will be binarized to
0.0.

Details

This node binarizes a column of continuous features given a threshold.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-features.html#binarizer

VectorFunctions

Vector Functions for transforming Vectors

Type

ml-transformer

24.1. Processors 569

https://spark.apache.org/docs/latest/ml-features.html#binarizer

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.ml.NodeVectorFunctions

Fields

Name Title Description
inputCol Input Column The Input column name
vectorFunction Vector Function Vector Function Name
parameter Parameter Parameter for the Function
outputCol Output Column Output column name

WordToScoreMapping

Map the original word of hashValue to score.

Type

ml-transformer

Class

fire.nodes.ml.NodeWordToScoreMapping

Fields

Name Title Description
words Words Array of words
features Features Vector with hash value of words
output Output

IndexString

Maps a column of indices back to a new column of corresponding string values. The index-string mapping is either
from the ML attributes of the input column, or from user-supplied labels

Type

ml-transformer

Class

fire.nodes.ml.NodeIndexString

570 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCol Input Column Column containing label indices
outputCol Output Column Output column name

Details

This node maps a column of indices back to a new column of corresponding string values. The index-string mapping
is either from the ML attributes of the input column, or from user-supplied labels

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#indextostring

QuantileDiscretizer

QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical features.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column of binned categorical features.

Type

ml-transformer

Class

fire.nodes.ml.NodeQuantileDiscretizer

Fields

Name Title Description
inputCol Input Column The Input column name
outputCol Output Column Output column name
numBuckets NumBuckets Maximum number of buckets (quantiles or

categories) into which the data points are
grouped. Must be >= 2.

24.1. Processors 571

http://spark.apache.org/docs/latest/ml-features.html#indextostring

Sparkflows Documentation, Release 0.0.1

Details

QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#quantilediscretizer

SQLTransformer

This node runs the given SQL on the incoming DataFrame using Spark ML SQLTransformer

Type

transform

Class

fire.nodes.ml.NodeSQLTransformer

Fields

Name Title Description
tempTable Temp Table Temp Table Name to be used
sql SQL SQL to be run
outputColNames Output Column

Names
Name of the Output Columns

outputColTypes Output Column
Types

Data Type of the Output Columns

outputColFormats Output Column For-
mats

Format of the Output Columns

StringIndexer

StringIndexer encodes a string column of labels to a column of label indices

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the encoding of the string column of labels to a column of label indices, to the
incoming DataFrame.

572 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-features.html#quantilediscretizer

Sparkflows Documentation, Release 0.0.1

Type

ml-transformer

Class

fire.nodes.ml.NodeStringIndexer

Fields

Name Title Description
handleInvalid Handle Invalid Invalid entries to be skipped or thrown error
inputCols Input Columns Input columns for encoding
outputCols Output Columns Output columns

03-FeatureExtraction

RFormula

RFormula feature selection, RFormula selects columns specified by an R model formula. Currently we support a
limited subset of the R operators, including ‘~’, ‘.’, ‘:’, ‘+’, and ‘-‘

Type

ml-transformer

Class

fire.nodes.ml.NodeRFormula

Fields

Name Title Description
featuresCol Features Column The features column name
formula Formula formula
labelCol Label Column The label column name

HashingTF

Maps a sequence of terms to term frequencies using the hashing trick.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

24.1. Processors 573

Sparkflows Documentation, Release 0.0.1

Output

A new column is added to the input DataFrame containing hashing of the bag of words into a feature vector

Type

ml-transformer

Class

fire.nodes.ml.NodeHashingTF

Fields

Name Title Description
inputCol Input Column Contains sets of terms. In text processing, a

‘set of terms’ might be a bag of words
outputCol Output Column Output column name

CountVectorizer

Extracts the vocabulary from a given collection of documents and generates a vector of token counts for each docu-
ment.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column to the incoming DataFrame containing the vector of token counts in the input column, to generate
the output DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeCountVectorizer

574 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCol Input Column Input column name
outputCol Output Column Output column name
vocabularySize Vocabulary Size Max size of the vocabulary.

Details

CountVectorizer and CountVectorizerModel aim to help convert a collection of text documents to vectors of token
counts. When an a-priori dictionary is not available, CountVectorizer can be used as an Estimator to extract the
vocabulary and generates a CountVectorizerModel. The model produces sparse representations for the documents
over the vocabulary, which can then be passed to other algorithms like LDA.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-features.html#countvectorizer

Word2Vec

Transforms vectors of words into vectors of numeric codes for the purpose of further processing by NLP or machine
learning algorithms.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

A new column containing feature vector is added to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeWord2Vec

Fields

Name Title Description
inputCol Input Column Contains sequences of words
inputColStringArrCol Text Array Column The text array column which is produced
outputCol Output Column Output column name
vectorSize Vector Size Vector Size
minCount Min Count Min Count

24.1. Processors 575

https://spark.apache.org/docs/latest/ml-features.html#countvectorizer

Sparkflows Documentation, Release 0.0.1

Details

Word2Vec is an Estimator which takes sequences of words representing documents and trains a Word2VecModel. The
model maps each word to a unique fixed-size vector. The Word2VecModel transforms each document into a vector
using the average of all words in the document; this vector can then be used for as features for prediction, document
similarity calculations, etc.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#word2vec

11-CollaborativeFiltering

ALS

Alternating Least Squares (ALS) matrix factorization.

Input

It takes in a DataFrame as input and performs ALS

Output

It generates the ALSModel and passes it to the next Predict and ModelSave Nodes. It also passes the incoming
DataFrame to the next Nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeALS

576 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-features.html#word2vec

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
userCol User Column The column name for user ids.
itemCol Item Column The column name for item ids.
ratingCol Rating Column The column name for ratings.
predictionCol Prediction Column The prediction column created during

model scoring
maxIter Max iterations The maximum number of iterations.
regParam Regularization

Param
The regularization parameter.(>=0)

alpha Alpha The alpha parameter in the implicit prefer-
ence formulation.(>=0)

checkpointInterval Checkpoint Interval The checkpoint interval.
nonnegative Non negative Whether to apply nonnegativity constraints.
numItemBlocks Num Item Blocks The number of item blocks.
numUserBlocks Num User Blocks The number of user blocks.
rank Rank The rank of the matrix factorization.
seed Seed Random Seed.
implicitPrefs Implicit Prefs whether to use implicit preference

Details

Collaborative filtering is commonly used for recommender systems. These techniques aim to fill in the missing entries
of a user-item association matrix. spark.mllib currently supports model-based collaborative filtering, in which users
and products are described by a small set of latent factors that can be used to predict missing entries. spark.mllib uses
the alternating least squares (ALS) algorithm to learn these latent factors.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-collaborative-filtering.html

09-Regression

GBTRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Logistic Regression

Output

It generates the GBTRegression and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also
passed along to the next nodes.

Type

ml-estimator

24.1. Processors 577

http://spark.apache.org/docs/latest/mllib-collaborative-filtering.html

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.ml.NodeGBTRegression

Fields

Details

GBT Regression supports both continuous and categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#
gradient-boosted-trees-gbts

AFTSurvivalRegression

Accelerated failure time (AFT) model which is a parametric survival regression model for censored data.

Output

It generates the LAFTSurvivalRegressionModel and passes it to the next Predict and ModelSave Nodes. The input
DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeAFTSurvivalRegression

578 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-trees-gbts
http://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-trees-gbts

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
featuresCol Features Column Features column of type vectorUDT for

model fitting
labelCol Label Column The label column for model fitting
censorCol Censor Column Indicator of the event has occurred or not. If

the value is 1.O, it means the event has oc-
curred i.e. uncensored; otherwise censored

fitIntercept Fit Intercept Whether to fit an intercept term
maxIter Maximum Iterations Maximum number of iterations (>= 0)
tol Tolerance The convergence tolerance for iterative al-

gorithms
quantileProbabilities QuantileProbabilities Values of the quantile probabilities array

should be in the range (0, 1)
quantilesCol Quantiles Column The quantiles column created during model

scoring
predictionCol Prediction Column The prediction column created during

model scoring

Details

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-classification-regression.html#
survival-regression

XGBoostRegressor

Input

It takes in a DataFrame as input and performs XGBoost Regression

Output

The XGBoost Model generated is passed along to the next nodes. The input DataFrame is also passed along to the
next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeXGBoostRegressor

24.1. Processors 579

https://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression
https://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
featuresCol Features Column Features column of type vectorUDT for

model fitting
labelCol Label Column The label column for model fitting
predictionCol Prediction Column The prediction column created during

model scoring.
maxDepth Max Depth The Maximum depth of a tree
maxBins Max Bins The maximum number of bins used for dis-

cretizing continuous features.Must be >= 2
and >= number of categories in any categor-
ical feature.

maxLeaves Max Leaves
numRound Num Round
numWorkers Num Workers
objective Objective
eta Eta
regLambda Reg Lambda
regAlpha Reg Alpha
subsample Subsample
sampleType SampleType
treeMethod TreeMethod
useExternalMemory UseExternalMemory
seed Seed
baseScore Base Score
minChildWeight Min Child Weight
colsampleBylevel ColSampleByLevel
colsampleBytree ColSampleByTree
minSplitLoss MinSplitLoss
maxDeltaStep MaxDeltaStep
sketchEps SketchEps
scalePosWeight ScalePosWeight
growPlicy GrowPlicy
normalizeType NormalizeType
skipDrop SkipDrop
rateDrop RateDrop

DecisionTreeRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Decision Tree Regression

580 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Output

The Decision Tree Regression Model generated is passed along to the next nodes. The input DataFrame is also passed
along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeDecisionTreeRegression

Fields

Details

Decision tree supports both continuous and categorical features.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/1.6.0/ml-classification-regression.html#
decision-tree-regression

RandomForestRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Random Forest Regression

Output

It generates the Random Forest Regression Model and passes it to the next Predict and ModelSave Nodes. The input
DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeRandomForestRegression

24.1. Processors 581

https://spark.apache.org/docs/1.6.0/ml-classification-regression.html#decision-tree-regression
https://spark.apache.org/docs/1.6.0/ml-classification-regression.html#decision-tree-regression

Sparkflows Documentation, Release 0.0.1

Fields

LinearRegression

The interface for working with linear regression models and model summaries is similar to the logistic regression case.

Input

This takes in a DataFrame and performs Logistic Regression

Output

It generates the LinearRegressionModel and passes it to the next Predict and ModelSave Nodes. The input DataFrame
is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeLinearRegression

Fields

Details

The interface for working with linear regression models and model summaries is similar to the logistic regression case.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#
linear-regression

08-Clustering

LDA

LDA is given a collection of documents as input data, via the featuresCol parameter. Each document is specified as a
Vector of length vocabSize, where each entry is the count for the corresponding term (word) in the document

Input

It takes in a DataFrame as input and performs LDA

Output

LDA Model is passed to the next Node for Prediction or Storing

582 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression
http://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression

Sparkflows Documentation, Release 0.0.1

Type

ml-estimator

Class

fire.nodes.ml.NodeLDA

Fields

Name Title Description
featuresCol Features Column Features column of type vectorUDT for

model fitting.
k K The number of topics to create.
maxIter Max Iterations The maximum number of iterations.
optimizer Optimizer Optimizer or inference algorithm used to es-

timate the LDA model.
topicDistributionCol TopicDistributionColumnOutput column with estimates of the topic

mixture distribution for each document
checkpointInterval checkpointInterval The checkpoint interval (>= 1) or disable

checkpoint (-1). E.g. 10 means that the
cache will get checkpointed every 10 iter-
ations.

subsamplingRate subsamplingRate Fraction of the corpus to be sampled and
used in each iteration of mini-batch gradient
descent, in range (0, 1].

seed Seed Random Seed.
maxTermsPerTopic MaxTermsPerTopic Number of Terms in Topics

GaussianMixture

This class performs expectation maximization for multivariate Gaussian Mixture Models (GMMs). A GMM repre-
sents a composite distribution of independent Gaussian distributions with associated mixing weights specifying each’s
contribution to the composite.

Input

It takes in a DataFrame as input and performs GaussianMixture clustering

Output

The input DataFrame is passed along to the next Processors

Type

ml-estimator

24.1. Processors 583

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.ml.NodeGaussianMixture

Fields

Name Title Description
featuresCol Features Column Features column of type vectorUDT for

model fitting.
k K The number of clusters to create.
maxIter Max Iterations The maximum number of iterations.
predictionCol Prediction Column The prediction column created during

model scoring.
seed Seed Random Seed.
tol Tolerence The convergence tolerance for iterative al-

gorithms.

Details

GaussianMixture clustering will maximize the log-likelihood for a mixture of k Gaussians, iterating until the log-
likelihood changes by less than convergenceTol, or until it has reached the max number of iterations. While this
process is generally guaranteed to converge, it is not guaranteed to find a global optimum.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/2.2.0/mllib-clustering.html#gaussian-mixture

KMeans

K-means clustering with support for k-means|| initialization proposed by Bahmani et al

Input

It takes in a DataFrame as input and performs K-Means clustering

Output

The input DataFrame is passed along to the next Processors

Type

ml-estimator

Class

fire.nodes.ml.NodeKMeans

584 Chapter 24. Processors

https://spark.apache.org/docs/2.2.0/mllib-clustering.html#gaussian-mixture

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
featuresCol Features Column Features column of type vectorUDT for

model fitting.
k K The number of clusters to create.
maxIter Max Iterations The maximum number of iterations.
predictionCol Prediction Column The prediction column created during

model scoring.
seed Seed Random Seed.
tol Tolerence The convergence tolerance for iterative al-

gorithms.
initMode initMode The initialization algorithm mode.
initSteps initSteps The number of steps for the k-means|| ini-

tialization mode. It will be ignored when
other initialization modes are chosen.

Details

K-means clustering with support for k-means|| initialization proposed by Bahmani et al

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-clustering.html#k-means

05-DimensionalityReduction

SVD

Type

transform

Class

fire.nodes.ml.NodeSVD

Fields

PCA

Trains a model to project vectors to a low-dimensional space using PCA.

Input

This takes in a DataFrame as input

24.1. Processors 585

http://spark.apache.org/docs/latest/mllib-clustering.html#k-means

Sparkflows Documentation, Release 0.0.1

Output

The output DataFrame is a projection of the vectors in the incoming DataFrame to a low-dimensional space using PCA

Type

ml-transformer

Class

fire.nodes.ml.NodePCA

Fields

Name Title Description
inputCol Input Column The input column name
outputCol Output Column The output column name
k K The number of principal components

Details

PCA trains a model to project vectors to a low-dimensional space using PCA.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#pca

02-FeatureScaler

MinMaxScaler

MinMaxScaler transforms a dataset of Vector rows, rescaling each feature to a specific range (often [0, 1])

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

A new column containing the scaled features is added to the incoming DataFrame

Type

ml-transformer

586 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-features.html#pca

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.ml.NodeMinMaxScaler

Fields

Name Title Description
inputCol Input Column The input column name
outputCol Output Column The output column name
max Max The upper bound after transformation,

shared by all features
min Min The lower bound after transformation,

shared by all features

StandardScaler

StandardScaler transforms a dataset of Vector rows, normalizing each feature to have unit standard deviation and/or
zero mean.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column containing the transform of the input Vector column to unit standard deviation and/or zero mean
features to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeStandardScaler

Fields

Name Title Description
inputCol Input Column The input column name
outputCol Output Column The output column name
withMean With Mean Centers the data with mean before scaling.
withStd With Standard Dev Scales the data to unit standard deviation

24.1. Processors 587

Sparkflows Documentation, Release 0.0.1

Details

StandardScaler transforms a dataset of Vector rows, normalizing each feature to have unit standard deviation and/or
zero mean.

StandardScaler is an Estimator which can be fit on a dataset to produce a StandardScalerModel; this amounts to
computing summary statistics. The model can then transform a Vector column in a dataset to have unit standard
deviation and/or zero mean features.

If the standard deviation of a feature is zero, it will return default 0.0 value in the Vector for that feature.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#standardscaler

17-Util

Spark ML Model Load

Type

ml-modelload

Class

fire.nodes.ml.NodeModelLoad

Fields

TrainValidationSplit

This node represents Train Validation Split from Spark ML

Input

TrainValidationSplit takes an Estimator, a set of ParamMaps provided in the estimatorParamMaps parameter, and
anEvaluator.

Output

The incoming DataFrame is passed to the output.

Type

ml-trainvalidationsplit

Class

fire.nodes.ml.NodeTrainValidationSplit

588 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-features.html#standardscaler

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
trainRatio Train Ratio Training Ratio

Details

This node represents Train Validation Split from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#
example-model-selection-via-train-validation-split

Spark ML Model Save

This node saves the ML model generated at the specified path

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.ml.NodeModelSave

Fields

Spark ML ROC

Type

transform

Class

fire.nodes.etl.NodeROC

24.1. Processors 589

http://spark.apache.org/docs/latest/ml-guide.html#example-model-selection-via-train-validation-split
http://spark.apache.org/docs/latest/ml-guide.html#example-model-selection-via-train-validation-split

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
probabilityCol Probability Column
labelCol Label Column

CrossValidator

This node represents Cross Validator from Spark ML

Input

It takes in a DataFrame, Estimator and Evaluator as input.

Output

The incoming dataframe is passed to the output.

Type

ml-crossvalidator

Class

fire.nodes.ml.NodeCrossValidator

Fields

Name Title Description
numFolds Num Folds The number of folds

Details

This node represents Cross Validator from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#
example-model-selection-via-cross-validation

Spark Pipeline

This node represents Pipeline from Spark ML

590 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-guide.html#example-model-selection-via-cross-validation
http://spark.apache.org/docs/latest/ml-guide.html#example-model-selection-via-cross-validation

Sparkflows Documentation, Release 0.0.1

Input

It takes in a DataFrame as input.

Output

The incoming DataFrame is passed to the output.

Type

ml-pipeline

Class

fire.nodes.ml.NodePipeline

Fields

Details

This node represents Pipeline from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#pipeline-components

07-SplitDataset

Split With Stratified Sampling

This node splits the incoming DataFrame into 2. It takes in the fraction to use in splitting the data by Stratified
Sampling.

Input

It takes in a DataFrame as input

Output

The input DataFrame is split into 2 DataFrames and output

Type

transform

24.1. Processors 591

http://spark.apache.org/docs/latest/ml-guide.html#pipeline-components

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.util.SplitWithStratifiedSampling

Fields

Name Title Description
keyInputCol Column Name column that defines strata
fraction Fraction sampling fraction for each stratum. If a stra-

tum is not specified, we treat its fraction as
zero

seed Seed random seed

Details

Split With Stratified Sampling, which is the preferred way to sample from populations with varing subpopulation sizes.

More details are available at : https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#
DataFrame.sampleBy

Split

This node splits the incoming DataFrame into 2. It takes in the fraction to use in splitting the data. For example, if the
fraction is .7, it would split the data into 2 DataFrames, one containing 70% of the rows and the other containing the
remaining 30%.

Input

It takes in a DataFrame as input

Output

The input DataFrame is split into 2 DataFrames and output

Type

transform

Class

fire.nodes.ml.NodeSplit

592 Chapter 24. Processors

https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.sampleBy
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.sampleBy

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
fraction1 Fraction 1 Fraction to be used for Splitting the

DataFrame into two. The first DataFrame
would go to the lower edge output. The
other would go to the higher edge output.

SplitProbabilityColumn

Type

transform

Class

fire.nodes.ml.NodeSplitProbabilityCol

Fields

Name Title Description
probabilityColName Probability Column
numFields NumFields Number of fields in probability columns to

extract

10-Classification

MultiLayerPerceptron

It supports creation of full connected neural network.

Type

ml-estimator

Class

fire.nodes.ml.NodeMultilayerPerceptron

24.1. Processors 593

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
featuresCol Features Column Features column of type vectorUDT for

model fitting
labelCol Label Column The label column for model fitting
predictionCol Prediction Column The prediction column created during

model scoring.
layers Layers - comma

separated list of
integers

The integer array specifying the number of
activation units in each layer

maxIter Max number of iter-
ations

Number of iterations to train the Neural net-
work

blockSize Block Size Block size
seed Seed The initial seed to initialise the neural net-

work.
tol Tol
solver Solver solver
stepSize Step Size Step size

GBTClassifier

Gradient-Boosted Trees (GBTs) is a learning algorithm for classification. It supports binary labels, as well as both
continuous and categorical features. Note: Multiclass labels are not currently supported.

Input

It takes in a DataFrame as input and performs GBT Classification

Output

The GBT Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next
nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeGBTClassifier

Fields

XGBoostClassifier

594 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Input

It takes in a DataFrame as input and performs XGBoost Classification

Output

The XGBoost Model generated is passed along to the next nodes. The input DataFrame is also passed along to the
next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeXGBoostClassifier

Fields

Name Title Description
featuresCol Features Column Features column of type vectorUDT for

model fitting
labelCol Label Column The label column for model fitting
predictionCol Prediction Column The prediction column created during

model scoring.
numClass Num Class
maxDepth Max Depth The Maximum depth of a tree
maxBins Max Bins The maximum number of bins used for dis-

cretizing continuous features.Must be >= 2
and >= number of categories in any categor-
ical feature.

maxLeaves Max Leaves
numRound Num Round
numWorkers Num Workers
objective Objective
eta Eta
regLambda Reg Lambda
regAlpha Reg Alpha
subsample Subsample
sampleType SampleType
treeMethod TreeMethod
useExternalMemory UseExternalMemory
seed Seed
baseScore Base Score
minChildWeight Min Child Weight
colsampleBylevel ColSampleByLevel
colsampleBytree ColSampleByTree

Continued on next page

24.1. Processors 595

Sparkflows Documentation, Release 0.0.1

Table 1 – continued from previous page
Name Title Description
minSplitLoss MinSplitLoss
maxDeltaStep MaxDeltaStep
sketchEps SketchEps
scalePosWeight ScalePosWeight
growPlicy GrowPlicy
normalizeType NormalizeType
skipDrop SkipDrop
rateDrop RateDrop

LogisticRegression

Logistic regression. Currently, this class only supports binary classification.

Input

This takes in a DataFrame and performs Logistic Regression

Output

The Logistic Regression Model generated is passed along to the next nodes. The input DataFrame is also passed along
to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeLogisticRegression

Fields

Details

Logistic regression is a popular method to predict a categorical response.

It is a special case of Generalized Linear models that predicts the probability of the outcomes. In spark.ml logistic
regression can be used to predict a binary outcome by using binomial logistic regression, or it can be used to predict a
multiclass outcome by using multinomial logistic regression.

More details are available at : https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#
logistic-regression

596 Chapter 24. Processors

https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#logistic-regression
https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#logistic-regression

Sparkflows Documentation, Release 0.0.1

Examples

The below example is available at : https://spark.apache.org/docs/2.3.0/ml-classification-
regression.html#logistic-regression

import org.apache.spark.ml.classification.LogisticRegression

// Load training data val training = spark.read.format(“libsvm”).load(“data/mllib/sample_libsvm_data.txt”)

val lr = new LogisticRegression() .setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8)

// Fit the model val lrModel = lr.fit(training)

// Print the coefficients and intercept for logistic regression println(s”Coefficients: ${lrModel.coefficients} Intercept:
${lrModel.intercept}”)

// We can also use the multinomial family for binary classification val mlr = new LogisticRegression()

.setMaxIter(10) .setRegParam(0.3) .setElasticNetParam(0.8) .setFamily(“multinomial”)

val mlrModel = mlr.fit(training)

// Print the coefficients and intercepts for logistic regression with multinomial family println(s”Multinomial coeffi-
cients: ${mlrModel.coefficientMatrix}”) println(s”Multinomial intercepts: ${mlrModel.interceptVector}”)

DecisionTreeClassifier

It supports both binary and multiclass labels, as well as both continuous and categorical features.

Input

It takes in a DataFrame and performs Decision Tree Classification

Output

The Decision Tree Model generated is passed along to the next nodes. The input DataFrame is also passed along to
the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeDecisionTreeClassifier

Fields

Details

Decision trees supports both binary and multiclass labels, as well as both continuous and categorical features.

24.1. Processors 597

Sparkflows Documentation, Release 0.0.1

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#
decision-tree-classifier

NaiveBayes

Creates a NaiveBayes model. Supports both Multinomial NB which can handle finitely supported discrete data. For
example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every
vector a binary (0/1) data, it can also be used as Bernoulli NB.The input feature values must be nonnegative

Type

ml-estimator

Class

fire.nodes.ml.NodeNaiveBayes

Fields

Name Title Description
featuresCol Features Column Features column of type vectorUDT for

model fitting
labelCol Label Column The label column for model fitting
predictionCol Prediction Column The prediction column created during

model scoring
modelType modelType The model type. Supported options: multi-

nomial and bernoulli. (default = multino-
mial)

smoothing Smoothing The smoothing parameter.

RandomForestClassifier

Supports both binary and multiclass labels, as well as both continuous and categorical features.

Input

Takes in a DataFrame and performs Random Forest Classification

Output

Random Forest Classification Model generated is passed along to the next nodes. The input DataFrame is also passed
along to the next nodes

598 Chapter 24. Processors

http://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier
http://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier

Sparkflows Documentation, Release 0.0.1

Type

ml-estimator

Class

fire.nodes.ml.NodeRandomForestClassifier

Fields

Details

Random forests supports both binary and multiclass labels, as well as both continuous and categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#
random-forest-classifier

13-EvaluatePredict

MulticlassClassificationEvaluator

Evaluator for multiclass classification, which expects two input columns: score and label.

Type

ml-evaluator

Class

fire.nodes.ml.NodeMulticlassClassificationEvaluator

Fields

Name Title Description
labelCol Label Column The label column for model fitting.
predictionCol Prediction Column The prediction column.
metricName Metric Name The metric used in evaluation.

Details

Evaluator for multiclass classification, which expects two input columns: score and label.

More at Spark MLlib/ML docs page :https://spark.apache.org/docs/1.6.0/mllib-evaluation-metrics.html#
multiclass-classification

24.1. Processors 599

http://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier
http://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier
https://spark.apache.org/docs/1.6.0/mllib-evaluation-metrics.html#multiclass-classification
https://spark.apache.org/docs/1.6.0/mllib-evaluation-metrics.html#multiclass-classification

Sparkflows Documentation, Release 0.0.1

RegressionEvaluator

Evaluator for regression, which expects two input columns: prediction and label.

Input

It takes in a DataFrame as input

Output

The incoming DataFrame is passed to the output

Type

ml-evaluator

Class

fire.nodes.ml.NodeRegressionEvaluator

Fields

Name Title Description
labelCol Label Column The label column for model fitting.
predictionCol Prediction Column The prediction column.
metricName Metric Name The metric used in evaluation.

Details

Evaluator for regression, which expects two input columns: prediction and label.

More at Spark MLlib/ML docs page:

http://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.ml.evaluation.RegressionEvaluator

Predict

Predict node takes in a DataFrame and Model and makes predictions

Input

It takes in a DataFrame and Model as input

600 Chapter 24. Processors

http://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.ml.evaluation.RegressionEvaluator

Sparkflows Documentation, Release 0.0.1

Output

A new column containing the predictions is added to the input DataFrame

Type

ml-predict

Class

fire.nodes.ml.NodePredict

Fields

BinaryClassificationEvaluator

Evaluator for binary classification, which expects two input columns: rawPrediction and label.

Output

It outputs the Probability for each class

Type

ml-evaluator

Class

fire.nodes.ml.NodeBinaryClassificationEvaluator

Fields

Name Title Description
labelCol Label Column The label column for model fitting.
predictionCol Prediction Column The prediction column.
metricName Metric Name The metric used in evaluation.

Details

Evaluator for binary classification, which expects two input columns: rawPrediction and label.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-evaluation-metrics.html#
binary-classification

24.1. Processors 601

http://spark.apache.org/docs/latest/mllib-evaluation-metrics.html#binary-classification
http://spark.apache.org/docs/latest/mllib-evaluation-metrics.html#binary-classification

Sparkflows Documentation, Release 0.0.1

06-FeatureSelection

ChiSqSelector

Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label.

Type

ml-transformer

Class

fire.nodes.ml.NodeChiSqSelector

Fields

Name Title Description
featuresCol Features Column The features column name
outputCol Output Column The output column name
labelCol Label Column The label column name
numTopFeatures NumTopFeatures Number of features that selector will select

(ordered by statistic value descending).

VectorSlicer

VectorSlicer feature selection, which takes a feature vector and outputs a new feature vector with a sub-array of the
original features. It is useful for extracting features from a vector column

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorSlicer

Fields

Name Title Description
inputCol Features Column The features column name
outputCol Output Column The output column name

602 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

24.1.6 ML-TS

ARIMA

Type

ml-transformer

Class

fire.nodes.ts.NodeAutoARIMA

Fields

Name Title Description
y Y The time-series to which to fit the ARIMA

estimator
seasonal Seasonal Whether to fit a seasonal ARIMA. Default

is True
stepwise Stepwise Whether to use the stepwise algorithm to

identify the optimal model parameters.
trace Trace Whether to print status on the fits.
suppress_warnings Suppress Warnings If suppress_warnings is True, all of the

warnings coming from ARIMA will be
squelched.

error_action Error Action If unable to fit an ARIMA for whatever rea-
son, this controls the error-handling behav-
ior. One of (warn, raise, ignore)

scoring Scoring The metric to use for scoring the out-of-
sample data. One of (mse, mae)

n_periods Forecast Int number of periods to forecast forward.

Prophet

Type

ml-transformer

Class

fire.nodes.ts.NodeProphet

Fields

24.1.7 02-Parse

24.1. Processors 603

Sparkflows Documentation, Release 0.0.1

FieldSplitter

This node splits the string of the specified input column using the specified delimiter

Input

It accepts a DataFrame as input from the previous Node

Output

New columns are added to the incoming DataFrame with values from the result of splitting the value in the input
column

Type

transform

Class

fire.nodes.etl.NodeFieldSplitter

Fields

Name Title Description
inputCol Input Column input column name
outputCols Output Columns new column names separed by

comma’,’.(eg: col1,co2,col3)
sep Separator separator to split the input column

value(default: space)
onError On Error

RegexTokenizer

This node creates a new DataFrame by the process of taking text (such as a sentence) and breaking it into individual
terms (usually words) based on regular express

Type

transform

Class

fire.nodes.etl.NodeRegexTokenizer

604 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCol Column input column for tokenizing
outputCol Tokenized Column New output column after tokenization
pattern Pattern The regex pattern used to match delimiters
gaps Gaps Indicates whether the regex splits on gaps

Fixed Length Fields

Fixed Length

Type

transform

Class

fire.nodes.etl.NodeFixedLength

Fields

Name Title Description
inputCol Input Column input column name
outputColNames Column Names for

the CSV
New Output Columns of the SQL

outputColTypes Column Types for
the CSV

Data Type of the Output Columns

colLengths Length of each col-
umn

Length of the columns in characters

outputColFormats Column Formats for
the CSV

Format of the Output Columns

ApacheLogs

Reads in Apache Log files from a given path, parses them and loads them into a DataFrame

Type

dataset

Class

fire.nodes.logs.NodeApacheFileAccessLog

24.1. Processors 605

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
path Path Full path for the directory or file for the

Apache File Logs

ParseJSONCol

Parses JSON content in a given Col

Type

transform

Class

fire.nodes.etl.NodeParseJSONColumn

Fields

Name Title Description
jsonColName JSON Col Name Column containing the JSON Content
inputCol Input Col Input Columns
jsonFieldNames JSON Field names JSON Field names
jsonFieldTypes JSON Field Type Data Type of the JSON field

OCR

Performs Optical Character Recognition using the Tesseract Library. Please make sure the TESSDATA_PREFIX
environment variable is set to the parent directory of your ‘tessdata’ directory. Download the tessdata directory with
git clone https://github.com/tesseract-ocr/tessdata.git

Type

transform

Class

fire.nodes.ocr.NodeOCRTesseract

606 Chapter 24. Processors

https://github.com/tesseract-ocr/tessdata.git

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
imageNameCol Image Name Col-

umn
input image column name

imageCol Image Column input image column name
outputCol Output OCR Col-

umn
output column name

MultiRegexExtractor

This node to extract pattren from input columns

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node extract pattren from input columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiRegexExtractor

Fields

Name Title Description
inputColNames InputColumnsName Columns
outputColNames OuputColumnsName name of the output column
patterns Patterns patterns or regex to extract the input column

name
groups Groups An regular expression group number start-

ing with 1, defining which portion of the
matching string will be returned

24.1.8 06-Filter

FilterByDateRange

This node filters Rows within the given date range

24.1. Processors 607

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.etl.NodeFilterByDateRange

Fields

Name Title Description
inputCol Column input column name
fromDateCol From Date Takes Start Date in the form of yyyy-MM-

dd
toDateCol To Date Takes End Date in the form of yyyy-MM-dd

FilterByNumberRange

This node filter Rows in the given Number Range

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFilterByNumberRange

Fields

Name Title Description
inputCol Input Column Name input column name
lowestValue Lowest Value input lowest value
highestValue Highest Value input highest value

ColumnFilter

This node creates a new DataFrame that contains only the selected columns

608 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

This node filters the specified columns from the incoming DataFrame

Type

transform

Class

fire.nodes.etl.NodeColumnFilter

Fields

Name Title Description
outputCols Columns Columns to be included in the output

DataFrame

RowFilter

This node creates a new DataFrame containing only rows satisfying given condition

Input

It accepts DataFrame as input from the previous Node

Output

This node filters the rows based on the conditional expression to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeRowFilter

24.1. Processors 609

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
conditionExpr Conditional Expres-

sion
The filtering condition. Rows not satisfying
given condition will be excluded from out-
put DataFrame. eg: usd_pledged_real > 0
and (category = 1 or category == 2) and goal
> 100

Details

This node creates a new DataFrame containing only rows satisfying the given condition.

Examples of Conditional Expression

col1 > 5 AND col2 > 3

name is not NULL

name is NULL

usd_pledged_real > 0 and (category = “Narrative Film” or category == “Music”) and goal > 100

datetime > ‘2011-01-01 00:00:00.0’ (datetime column is of type timestamp)

datetime > ‘2011-01-01 00:00:00.0’ and datetime < ‘2016-01-01 00:00:00.0’

FilterByStringLength

This node filters the Rows within the given string length. The column to be used for determining the string length is
specified

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFilterByStringLength

610 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCol Input Column Name input column name
minLength Minimum length Minimum length of String
maxLength Maximum length Maximum length of String

NodeRowFilterByIndex

This node creates a new DataFrame containing only rows satisfying given condition

Input

It accepts DataFrame as input from the previous Node

Output

This node filters the rows based on the conditional expression to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeRowFilterByIndex

Fields

Name Title Description
indexes Indexes Comma separated index values starts from

0. ex: 0, 1, 2, 5
indexesRange IndexesRange Index ranges example like 10-14 i.e 10, 11,

12, 13, 14.

DropColumns

This node creates a new DataFrame by deleting columns specified as an input

Input

It takes in a DataFrame as input

24.1. Processors 611

Sparkflows Documentation, Release 0.0.1

Output

The specified columns are dropped from the incoming DataFrame to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeDropColumns

Fields

Name Title Description
dropCols Columns The columns to be excluded from the output

DataFrame

24.1.9 18-OpenNLP

OpenNLPNameFinder

This node finds names using OpenNLP. It takes in the OpenNLP model. Models can be downloaded from http:
//opennlp.sourceforge.net/models-1.5/

Input

It takes in a DataFrame as input.

Output

It extracts the names from the specified column and stores the result in the specified output column.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPNameFinder

612 Chapter 24. Processors

http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
model Model Path to the model file (on HDFS when run-

ning on the cluster)
inputCol Input Text Column input column name
outputCol Output Column Output Column containing the results

Details

This node performs namefinder using OpenNLP to easily detect named entities and numbers in text.

To be able to detect entities the Name Finder needs a model. The model is dependent on the language and entity type
it was trained for.

https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition.cmdline

The OpenNLP project offers a number of pre-trained name finder models which are trained on various freely available
corpora. They can be downloaded at the OpenNLP download page.

http://opennlp.sourceforge.net/models-1.5/

OpenNLPSentenceDetector

This node detects sentences using OpenNLP - https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#
tools.sentdetect. It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/
models-1.5/

Input

It takes in a DataFrame as input.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPSentenceDetector

Fields

Name Title Description
model Model Path to the model file (on HDFS when run-

ning on the cluster)
inputCol Input Text Column input cpulmn name
outputCol Output Column Output Column containing the results

24.1. Processors 613

https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition.cmdline
http://opennlp.sourceforge.net/models-1.5/
https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.sentdetect
https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.sentdetect
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/

Sparkflows Documentation, Release 0.0.1

Details

This node detects sentences using OpenNLP -

https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.sentdetect.

It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

NodeOpenNLPDocumentCategorizer

This node classifies text into pre-defined categories using OpenNLP - https://opennlp.apache.org/documentation/1.7.2/
manual/opennlp.html#tools.doccat. It takes in the OpenNLP model. Models can be downloaded from http://opennlp.
sourceforge.net/models-1.5/

Input

It takes in a DataFrame as input.

Output

It finds the Document Category and stores the result in the specified output column.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPDocumentCategorizer

Fields

Name Title Description
model Model Path to the model file (on HDFS when run-

ning on the cluster)
inputCol Input Text Column input cpulmn name
outputCol Output Column Output Column containing the results

Details

This node classifies text into pre-defined categories using OpenNLP

https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.doccat.

It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

614 Chapter 24. Processors

https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.sentdetect
http://opennlp.sourceforge.net/models-1.5/
https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.doccat
https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.doccat
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.sourceforge.net/models-1.5/
https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.doccat
http://opennlp.sourceforge.net/models-1.5/

Sparkflows Documentation, Release 0.0.1

24.1.10 15-ScoreCardPy

Binning Scorecard

Type

ml-transformer

Class

fire.nodes.scorecardpy.NodeBinning

Fields

Name Title Description
y Y
x X
stopLimit StopLimit
countDistrLimit CountDistrLimit
binNumLimit BinNumLimit
method Methos
positive Positive

VariableSelection Scorecard

Type

ml-transformer

Class

fire.nodes.scorecardpy.NodeVariableSelection

Fields

Name Title Description
y Y
ivLimit IvLimit
missingLimit MissingLimit
identicalLimit IdenticalLimit
positive Positive

24.1. Processors 615

Sparkflows Documentation, Release 0.0.1

24.1.11 03-Prepare

13-Others

MultiWindowAnalytics

Type

transform

Class

fire.nodes.etl.NodeMultiWindowAnalytics

Fields

Name Title Description
analyticsCols AnalyticsColumn
windowFunctions Window Function Window Function Name
partitionByCols PartitionBy partition column names separated by

comma(,)
orderByCols OrderBy order by column names separated by

comma(,)
outPutColumns OutPutColumn Enter output field(column) name

RoundValue

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.etl.NodeRoundDouble

Fields

Name Title Description
inputCols Input Column The columns containing double or float val-

ues to round.
precision Precision The scale of the double values to round to.

616 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

SortBy

It sorts the incoming DataFrame on the fields specified.

Type

transform

Class

fire.nodes.etl.NodeSortBy

Fields

Name Title Description
description Description Description
sortByColNames Columns Columns on which to Sort By
ascDesc Sorting Order Whether to sort in ascending or descending

order

Transpose

This node transposes a dataframe without performing aggregation function by given column(transposeby). ALL IN-
PUT COLUMNS TO THIS NODE HAVE TO BE OF THE SAME TYPE

Input

It accepts a DataFrame as input from the previous Node

Output

Output dataframe consisting of three columns transposeBy, column_name, column_value

Type

transform

Class

fire.nodes.etl.NodeTranspose

24.1. Processors 617

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
transposeBy TransposeByColumn

Name
transposeBy column name

WindowRanking

Type

transform

Class

fire.nodes.etl.NodeWindowRanking

Fields

Name Title Description
partitionByCols PartitionBy partition column names separated by

comma(,)
orderByCols OrderBy order by column names separated by

comma(,)
windowFunction Window Function Window Function Name

GeoPoint

Type

transform

Class

fire.nodes.etl.NodeGeoPoint

Fields

Name Title Description
longitude Longitude
latitude Latitude

618 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

MultiWindowRanking

Type

transform

Class

fire.nodes.etl.NodeMultiWindowRanking

Fields

Name Title Description
windowFunctions WindowFunction Window Function Name
partitionByCols PartitionBy partition column names separated by

comma(,)
orderByCols OrderBy order by column names separated by

comma(,)
outPutColumns OutputColumn Enter output field(column) name

ColumnsRename

This node creates a new DataFrame by renaming existing columns with new name

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

The specified columns are renamed to have the new names.

Type

transform

Class

fire.nodes.etl.NodeColumnsRename

24.1. Processors 619

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
currentColNames Current Column

Names
Current Column Names

newColNames Columns New
Name

New name for existing columns

RecoverHivePartitions

Node to recover the partitions of external hve table.

Type

doc

Class

fire.nodes.etl.NodeRecoverHivePartitions

Fields

Name Title Description
databaseName HIVE Database Name of the HIVE Database
tableName HIVE Table Name of the HIVE table

Details

This node is used recover the partitions of external hve table.

It will run the command: “MSCK REPAIR TABLE ${databaseName}.${tableName}”

CDCUsingFullTableMerge

CDC Using Full Table Merge

Type

transform

Class

fire.nodes.etl.NodeCDCUsingFullTableMerge

620 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
baseTable Base Table Name Name of the Base Table
idCols ID Column Names ID Column names
modifiedDateCol Modified Date Col-

umn
Modified Date Column

Count

This node counts the number of records in the incoming Dataframe and puts the count into a variable to the used by
subsequent Nodes

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is sent to the output

Type

transform

Class

fire.nodes.etl.NodeCount

Fields

Name Title Description
variable Variable Name Name of the Variable in which the count is

stored

Sample

Samples the incoming DataFrame

Type

transform

24.1. Processors 621

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeSample

Fields

Name Title Description
withReplacement With Replacement With or without Replacement
fraction Fraction Fraction
seed Seed Seed

SortColumns

It sort the columns selection.

Type

transform

Class

fire.nodes.etl.NodeSortColumns

Fields

Name Title Description
sortColumnNames Columns Sort the Column Name

RegisterTempTable

This node registers the incoming DataFrame as a temporary table in Spark

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is output without any changes

Type

transform

622 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeRegisterTempTable

Fields

Name Title Description
tempTable Temporary Table Name of the temporary table to be created

GeoIP

This node converts IP to geo location

Input

The input dataframe is passed in the variable inDF

Output

Transforms the IP to Geo location

Type

transform

Class

fire.nodes.etl.NodeGeoIP

Fields

Name Title Description
ipCol IP Column IP Column in the DataFrame
databaseFilePath Database File Path Database File Path

WindowAnalytics

Type

transform

24.1. Processors 623

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeWindowAnalytics

Fields

Name Title Description
partitionByCols PartitionBy partition column names separated by

comma(,)
orderByCols OrderBy order by column names separated by

comma(,)
windowFunction Window Function Window Function Name
analyticsCol Analytics Column
window_offset Window Offset It’s used in lead and lag functions.

10-Condition

Assert

This Node takes in an expression. It evaluates the expression and based on the results sends the execution to the first
or the second output Node

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is sent to the output. Only one of the output Nodes receives the DataFrame based on the
results of the expression

Type

transform

Class

fire.nodes.etl.NodeAssert

Fields

Name Title Description
expression Expression Expression to be evaluated. It can use vari-

ables computed in the previous Nodes

624 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Decision

It computes expressions to determine if the condition is met or not. Accordingly proceeds to the next step or stops
here.

Type

transform

Class

fire.nodes.etl.NodeDecision

Fields

Name Title Description
description Description Description
inputCols Columns Columns
functions Function Function to apply
symbols Symbol Symbol to apply
values Values Values

09-Split

Split By Expression

This node splits the incoming DataFrame into two output DataFrames by applying the conditional logic

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeSplitByExpression

24.1. Processors 625

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
conditionExpr Conditional Expres-

sion to split the Data
on

Conditional Expression to be used for Split-
ting the DataFrame into two. DataFrame
which matches the condition will go to the
lower edge output. The other would go to
the higher edge output.

SplitByMultipleExpressions

Splits the incoming DataFrame into multiple output DataFrames by applying the conditional logic

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeSplitByMultipleExpressions

Fields

Name Title Description
conditionExpr1 Conditional Expres-

sion 1 to split the
Data on

Conditional Expression 1 to be used for
Splitting the Dataset

conditionExpr2 Conditional Expres-
sion 2 to split the
Data on

Conditional Expression 2 to be used for
Splitting the Dataset

conditionExpr3 Conditional Expres-
sion 3 to split the
Data on

Conditional Expression 3 to be used for
Splitting the Dataset

conditionExpr4 Conditional Expres-
sion 4 to split the
Data on

Conditional Expression 4 to be used for
Splitting the Dataset

conditionExpr5 Conditional Expres-
sion 5 to split the
Data on

Conditional Expression 5 to be used for
Splitting the Dataset

626 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

CompareAllColumnsSingleOutput

Compares 2 incoming DataFrames. Outputs 1 DataFrame (A-B) or (B-A) or (A intersection B) based on user’s input

Type

join

Class

fire.nodes.etl.NodeCompareAllColumnsSingleOutput

Fields

Name Title Description
compareOption Compare Type Comparision options whether (A-B) or (B-

A) or (A intersection B)

Compare Specific Columns

Compares 2 incoming DataFrames on specific columns. Outputs 1 DataFrame (A-B) or (B-A) or (A intersection B)
based on user’s input

Type

join

Class

fire.nodes.etl.NodeCompareSpecificColumnsSingleOutput

Fields

Name Title Description
columnsToCompare Columns to Com-

pare
Columns to be used in the comparison

compareOption Compare Type Comparision options whether (A-B) or (B-
A) or (A intersection B)

CompareSpecificColumns

Compares 2 incoming DataFrames on specific columns. Outputs 3 DataFrames (A-B), (B-A), (A intersection B)

24.1. Processors 627

Sparkflows Documentation, Release 0.0.1

Type

join

Class

fire.nodes.etl.NodeCompareSpecificColumns

Fields

Name Title Description
columnsToCompare Columns to Com-

pare
Columns to be used in the comparison

Compare All Columns

Compares 2 incoming DataFrames. Outputs 3 DataFrames (A-B), (B-A), (A intersection B)

Type

join

Class

fire.nodes.etl.NodeCompareAllColumns

Fields

11-AddColumn

Expressions

Expressions

Type

transform

Class

fire.nodes.etl.NodeExpressions

628 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
description Description Description
outputCols New Columns

Name
New Columns Name

expressions Expressions Expressions

AddColumns

This node allows adding new columns with certain values

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node adds the user specified columns to the DataFrame

Type

transform

Class

fire.nodes.etl.NodeAddColumns

24.1. Processors 629

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
addCurrentDateCol Add Current Date

Column
Whether to add the current date as a new
column

currentDateColName Current Date Col-
umn Name

Name of the new Current Date Column Cre-
ated

addCurrentTimeCol Add Current Time
Column

Whether to add the current time as a new
column

currentTimeColName Current Time Col-
umn Name

Name of the new Current Time Column
Created

addConstantStringCol1 Add Constant String
Column

Whether to add a new columns with con-
stant string value

constantStringColName1 Constant String
Column Name

Constant String Name

constantStringColValue1 Constant String
Column Value

Constant String Value

addConstantIntCol1 Add Constant Inte-
ger Column

Whether to add a new columns with con-
stant integer value

constantIntColName1 Constant Integer
Column Name

Constant Integer Column Name

constantIntColValue1 Constant Integer
Column Value

Constant Integer Value

GenerateUID

This node Generates a new column with unique Index/Value for each row in the Dataset for each partition. Each
Partition starts a new range.

Type

transform

Class

fire.nodes.etl.NodeGenerateUID

Fields

Name Title Description
outputCol UID Column Name UID column name

Hash

This node adds a new Columns which contains the Hash of the specified columns

630 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added to the incoming DataFrame by creating a Hash of the specified input columns.

Type

transform

Class

fire.nodes.etl.NodeHash

Fields

Name Title Description
inputCols Columns Columns to be concatenated
hashingAlgorithm Hashing Algorithm Hashing Algorithm
outputCol Output Column

Name
Column name for Hash

bitLength Bit Length Bit Length
sep Separator Separator to be used when concatenating the

columns

GenerateUUID

This node Generates a Universally Unique ID

Input

It accepts a dataframe as input

Output

It adds a new column for UUID to the input DataFrame. This new DataFrame is sent to the output

Type

transform

24.1. Processors 631

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeGenerateUUID

Fields

Name Title Description
outputCol Output Column Output Column Name

CaseWhen

Sets values based on conditions

Type

transform

Class

fire.nodes.etl.NodeCaseWhen

Fields

Name Title Description
outputCol Output Column

Name
output column name

whenConditions When Condition When Condition
values Value Value when this condition is true
finallyElse Else else

ConcatColumns

This node creates a new DataFrame by concatenating the specified columns of the input DataFrame

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added to the incoming DataFrame by concatenating the specified columns. The new DataFrame is
sent to the output of this Node.

632 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.etl.NodeConcatColumns

Fields

Name Title Description
inputCols Columns Columns to be concatenated
outputCol Concatenated

Column Name
Column name for the concatenated columns

sep Separator Separator to be used when concatenating the
columns

ZipWithIndex

This node Generates a new column with unique Index/Value for each row in the Dataset

Type

transform

Class

fire.nodes.etl.NodeZipWithIndex

Fields

Name Title Description
indexColName Index Column

Name
Index column name

12-CastDataType

CastToSingleType

This node creates a new DataFrame by casting the specified input columns to a new data type

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

24.1. Processors 633

Sparkflows Documentation, Release 0.0.1

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeCastColumnType

Fields

Name Title Description
inputCols Columns Columns to be cast to new data type
outputColType New Data Type New data type(INTEGER, DOUBLE,

STRING, LONG, SHORT)
replaceExistingCols Replace Existing

Cols
Whether to replace existing columns or cre-
ate new ones

CastToDifferentTypes-2

This node creates a new DataFrame by casting the specified columns into new types

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiCastColumnType2

634 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputColNames Columns Columns
outputColTypes New Data Type New data type(INTEGER, DOUBLE,

STRING, LONG, SHORT)
replaceExistingCols Replace Existing

Cols
Whether to replace existing Columns or cre-
ate New Ones

formats Formats Formats like yyy-MM-dd used in input &
output

CastToDifferentTypes-1

This node creates a new DataFrame by casting the specified columns into new types

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiCastColumnType

Fields

Name Title Description
inputColNames Columns Columns
outputColTypes New Data Type New data type(INTEGER, DOUBLE,

STRING, LONG, SHORT)
replaceExistingCols Replace Existing

Cols
Whether to replace existing Columns or cre-
ate New Ones

06-Math

MathFunctions

This node performs specified math function on a row

24.1. Processors 635

Sparkflows Documentation, Release 0.0.1

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added which contains the results of applying the Math function on the given column of the input
DataFrame

Type

transform

Class

fire.nodes.etl.NodeMathFuntions

Fields

Name Title Description
inputCol Input Column Name input column name
mathFunction Math Function Math Function Name
outputCol Output Column Output Column Name
scale Scale Scale to be used when applying the Math

Function

MathFunctionsMultiple

Math Functions Multiple

Type

transform

Class

fire.nodes.etl.NodeMathFunctionsMultiple

636 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
description Description Description
inputCols Columns Columns
functions Function Math Function to apply
replaceExistingCols Replace Existing

Cols
Replace Existing Columns (true, false)

scales Scale Scale to be used when applying the Math
Function

MathExpression

Type

transform

Class

fire.nodes.etl.NodeMathExpression

Fields

Name Title Description
outputCols OutPut Column Output Column Name
expressions Math Expression Define math expression.

03-DateTime

DateDifference

This node finds difference between two dates

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeDateDiff

24.1. Processors 637

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
fromDate FromDate From date column name
toDate Todate To date column name
useCurrentDateAsToDateCol useCurrentDateAsToColCurrent Date As ToDate
days Days Days difference
hours Hours Hours difference
minutes Minutes Minutes difference
seconds Seconds Seconds difference

Details

Calculates difference between 2 given dates. Difference between dates is displayed in days, hours, minutes, and
seconds columns.

Examples

Format Examples

dd-MM-yy : 30-11-95 to 19-02-18 diff- 8608 days : 206609 hours : 12396574 min : 743794461 : second dd-MM-
yyyy : 10-02-1996 to 20-09-2017 diff- 8536 days : 204881 hours : 12292884 min : 737573070 : second MM-dd-yyyy
: 19-10-1994 to 06-12-2017 diff- 9015 days : 216377 hours : 12982644 min : 778958670 : second yyyy-MM-dd
: 1994-12-25 to 2019-01-16 diff- 8948 days : 214769 hours : 12886164 min : 773169870 : second yyyy-MM-dd
HH:mm:ss : 2012-01-31 23:59:59 to 2010-12-30 22:59:59 diff-397 days: 1 hour: 0 minutes : 0 seconds

TimeFunctions

Type

transform

Class

fire.nodes.etl.NodeTimeFunctions

Fields

Name Title Description
timeStampCol TimeStamp Column

Name
input column name

timeFunctions Time Functions Time Functions Name

638 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

DateTimeFieldExtract

It creates a new DataFrame by extracting Date and Time fields.

Input

It takes in a DataFrame as Input

Output

Node to extract year/month/dayofmonth/hour/minute/seconad values from TimeStamp

Type

transform

Class

fire.nodes.etl.NodeDateTimeFieldExtract

Fields

Name Title Description
inputCol Column The input column name
extractYear Extract Year Extract Year
extractMonth Extract Month Extract Month
extractDayOfMonth Extract Day of

Month
Extract Day of Month

extractHour Extract Hour Extract Hour
extractMinute Extract Minute Extract Minute
extractSecond Extract Second Extract Second
extractWeekOfYear Extract WeekO-

fYear
Extract WeekOfYear

Details

Extracts year, month, day of month, hour, minute, second and week of year in different columns.

StringToUnixTime

This nodes converts a string to Unix Time

Type

transform

24.1. Processors 639

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeStringToUnixTime

Fields

Name Title Description
inputColName Input Column Name Input Column Name
inputColFormat Input Column For-

mat
Input Column Format (eg: yyyy-MM-dd
HH:mm:ss)

outputColName Output Column
Name

Output Column Name

Details

This node converts a string column to unix time (seconds).

Examples

Format Examples

dd-MM-yy : 31-01-12 dd-MM-yyyy : 31-01-2012 MM-dd-yyyy : 01-31-2012 yyyy-MM-dd : 2012-01-31 yyyy-
MM-dd HH:mm:ss : 2012-01-31 23:59:59 yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999 yyyy-MM-dd
HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100 EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November
2012 10:45:42.720+0100

Example: Date (string), Format , Unix time (seconds)

2003-07-25 , yyy-MM-dd , 1059091200

StringToDate

This node converts a string column to date using the given date/time format

Type

transform

Class

fire.nodes.etl.NodeMultiStringToDate

640 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputColNames Columns Columns
inputColFormats Input Column For-

mats
Input Column Formats. eg: yyyy-MM-dd
yyyy-MM-dd HH:mm:ss

outputColNames Output Column
Names

Output Column Names

outputColTypes New Data Types New data types (DATE, TIMESTAMP)

Details

This node converts multiple string columns to date/time.

Examples

Format Examples

dd-MM-yy : 31-01-12 dd-MM-yyyy : 31-01-2012 MM-dd-yyyy : 01-31-2012 yyyy-MM-dd : 2012-01-31 yyyy-
MM-dd HH:mm:ss : 2012-01-31 23:59:59 yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999 yyyy-MM-dd
HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100 EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November
2012 10:45:42.720+0100

UnixTimeToString

This node converts Unix Time to String

Type

transform

Class

fire.nodes.etl.NodeUnixTimeToString

Fields

Name Title Description
inputColName Input Column Name input column name
outputColName Output Column

Name
Output Column Name

outputColFormat Output Column For-
mat

Output Column Format (eg: yyyy-MM-dd
HH:mm:ss)

24.1. Processors 641

Sparkflows Documentation, Release 0.0.1

Details

This node converts unix time (seconds) to string type.

Examples

Format Examples

dd-MM-yy : 31-01-12 dd-MM-yyyy : 31-01-2012 MM-dd-yyyy : 01-31-2012 yyyy-MM-dd : 2012-01-31 yyyy-
MM-dd HH:mm:ss : 2012-01-31 23:59:59 yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999 yyyy-MM-dd
HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100 EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November
2012 10:45:42.720+0100

Example: select an input column (long type), output column name and desired output column format. It will add one
more column in string format.

If you input a date format like dd-MM-yy. It will add one column having value like 31-01-12.

DateToString

This node converts a date/time column to string with given format

Type

transform

Class

fire.nodes.etl.NodeMultiDateToString

Fields

Name Title Description
inputColNames Input Column Name Input Column Name
outputColFormats Output Column For-

mats
Output Column Formats. eg: yyyy-MM-dd
yyyy-MM-dd HH:mm:ss

outputColNames Output Column
Names

Output Column Names

Details

This node converts date/time column to string type with given format.

642 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Examples

Format Examples

dd-MM-yy : 31-01-12 dd-MM-yyyy : 31-01-2012 MM-dd-yyyy : 01-31-2012 yyyy-MM-dd : 2012-01-31 yyyy-
MM-dd HH:mm:ss : 2012-01-31 23:59:59 yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999 yyyy-MM-dd
HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100 EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November
2012 10:45:42.720+0100

07-String

StringFunctions

This node performs specified String function on a row

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeStringFunctions

Fields

Name Title Description
inputCols Input Column Name input column name
stringFunction String Function String Function Name
replaceExistingCols ReplaceExistingCols replaceExistingCols

StringFunctionsMultiple

String Functions Multiple

Type

transform

Class

fire.nodes.etl.NodeStringFunctionsMultiple

24.1. Processors 643

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
description Description Description
inputCols Columns Columns
functions Function String Function to apply
replaceExistingCols Replace Existing

Cols
Replace Existing Columns (true or false)

TextCaseTransformer

This node converts text to upper or lower case

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeTextCaseTransformer

Fields

Name Title Description
inputCol Input Column Name input column name
mode Text Case Type input to convert text to upper or lower case
outputCol Output Column Output Column

05-DataCleaning

DataWrangling

This node creates a new DataFrame by applying each of the Rules specified

Input

It takes in a DataFrame as Input

644 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Output

It creates the output DataFrame by applying the data wrangling rules provided

Type

transform

Class

fire.nodes.etl.NodeDataWrangling

Fields

Name Title Description
rules Rules Rules to be applied on column and rows

Details

Rename one column to another rename col:c1 to c2;

Drop Column drop col:col4

Delete columns with some condition delete col:col3 > 44

Substring col:col2 0,3 get substring between 0 and 3rd column from the column col2

Trim Values : Removes leading and trailing whitespace from a string value.

set col:Name value: trim(Name)

Sets the new value of Name column to be trim(Name)

RemoveUnwantedCharactersMult

This node removes unwanted characters

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeRemoveUnwantedCharactersMultiple

24.1. Processors 645

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCols Input Columns Input columns
removeWhitespaces Remove Whites-

paces
Removes white space

removeLetters Remove Letters Removes letters
removeDigits Remove Digits Removes digits
removeSigns Remove Signs Removes signs
removeCommas Remove Commas Removes commas

ImputingWithMedian

Imputing with median

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMedian

Fields

Name Title Description
colNames Input Columns Input column of type - all numeric for me-

dian impute

DropRowsWithNull

This node creates a new DataFrame by dropping rows containing null values

Input

It accepts DataFrame as input from the previous Node

Output

This node drops rows containing null values

Type

transform

646 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeDropRowsWithNull

Fields

DropDuplicateRows

1>When user don’t select any column, returns a new Dataset that contains only the unique rows from this Dataset. 2>
Returns a new Dataset with duplicate rows removed, considering only the subset of columns.

Type

transform

Class

fire.nodes.etl.NodeDropDuplicateRows

Fields

Name Title Description
colNames Columns Columns to be used in determining if any

two rows are duplication. No columns indi-
cate to use all the available columns.

FindAndReplaceUsingRegexMultiple

This node finds and replaces text in a column containing string

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFindAndReplaceUsingRegexMultiple

24.1. Processors 647

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
inputCols Input Columns Columns on which to apply Regex
searchPatterns Find Enter Search Pattern
replacePatterns Replace Enter replacement Value

FindAndReplaceUsingRegex

This node finds and replaces text in a column containing string

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFindAndReplaceUsingRegex

Fields

Name Title Description
inputCols Input Columns Columns on which to apply Regex
searchPattern Find Enter Search Pattern
replacePattern Replace Enter replacement Value

ImputingWithConstant

It imputes missing value with constant value. It fills missing values (None) in selected columns with given constant
value for the corresponding column, in the incoming DataFrame.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithConstant

648 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
colNames Columns Columns to be processed for missing values
constants Constants Missing value will be replaced with constant

ImputingWithMeanValue

Imputing the continuous variables by mean.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMean

Fields

Name Title Description
inputCols Column Names Columns type should be continuous

RemoveDuplicateRows

This node take an array of fields, compare rows on those fields. If they full match then its a match. From the matches
it would randomly take one row and drop the rest.

Input

It accepts a DataFrame as input from the previous Node

Output

The output Dataframe is the same as the input Dataframe with the duplicate rows removed

Type

transform

Class

fire.nodes.etl.NodeRemoveDuplicateRows

24.1. Processors 649

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
order Order Whether to take the first or last matching

record when removing duplicates
inputCols Columns The columns to be selected for match

Dedup

This node is used for problems like entity resolution or data matching. Entity resolution or Data matching is the
problem of finding and linking different mentions of the same entity in a single data source or across multiple data
sources.

Input

It takes in a DataFrame as input

Output

Dataframe with confidence score field and other selected scores for entities

Type

transform

Class

fire.nodes.ml.NodeDedup

Fields

Name Title Description
confidenceScore Confidence Score Confidence Score
lhsCols LHS Variables LHS columns for matching
rhsCols RHS Variables RHS columns for matching
matchingAlgorithms Algorithm to use Algorithm to use for matching
matchingWeights Weights Weights for matches
outputCols Output Column Output Column

Details

650 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Levenstein

The Levenshtein distance between two strings is defined as the minimum number of edits needed to transform one
string into the other, with the allowable edit operations being insertion, deletion, or substitution of a single character.

How many char you change to make two strings equal.

JaroWinker

Jaro–Winkler distance for two strings is, the more similar the strings are. The Jaro–Winkler distance metric is designed
and best suited for short strings such as person names. The score is normalized such that 0 equates to no similarity
and 1 is an exact match.

Good for short words, typos and nikename.

Fullmatch

Fullmatch distance for two strings is, how two strings are match exactly. The score is assigned such that 1 is for exact
match and 0 is for not match.

Jaccard

The Jaccard similarity measures similarity between finite sample sets, and is defined as the cardinality of the inter-
section of sets divided by the cardinality of the union of the sample sets. Suppose you want to find jaccard similarity
between two sets A and B it is the ration of cardinality of A B and A B.

Sparkflows provide default 3-gram Jaccard similarity measures.

Longest common subsequences(LCS): LCS distance between strings s1 and s2, computed as |s1| +|s2| - 2 * |LCSfunc-
tion(s1, s2)| and distance is normalized between 0 and 1.

LCSfunction returns the length of Longest Common Subsequence (LCS) between strings s1 and s2.

Notional distance

Notional distance between two numbers X and Y, computed as abs(X - Y) / abs(x) + abs(Y).

Date Difference

Date Difference gives number of days between two dates(yyyy-MM-dd).

RemoveUnwantedCharacters

This node removes unwanted characters

Input

It accepts a DataFrame as input from the previous Node

24.1. Processors 651

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.etl.NodeRemoveUnwantedCharacters

Fields

Name Title Description
inputCols Input Columns Input columns
removeWhitespaces Remove Whites-

paces
Removes white space

removeLetters Remove Letters Removes letters
removeDigits Remove Digits Removes digits
removeSigns Remove Signs Removes signs
removeCommas Remove Commas Removes commas

ImputingWithModeValue

Imputing with most frequently observed value. It fills missing values (None) in selected columns with most frequently
observed value in the corresponding column, in the incoming DataFrame.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMode

Fields

Name Title Description
colNames Columns Columns to be processed for imputing the

missing values.

24.1.12 04-DataValidation

ValidateFieldsAdvanced

Validation Multiple Node

652 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.etl.NodeValidationMultiple

Fields

Name Title Description
description Description Validations being Performed
measureValue Validation Success-

ful if Percent Good
Records >=

Condition for Validation Passing

inputCols Columns Columns
functions1 Function Validation Function to apply
values1 Values Values
conditions1 Condition Validation Condition to apply
functions2 Function Validation Function to apply
values2 Values Values
conditions2 Condition Validation Condition to apply
functions3 Function Validation Function to apply
values3 Values Values

CompareDatasets

Validate the input datasets

Type

join

Class

fire.nodes.validation.NodeCompareDatasets

Fields

ValidateAddress

This node validate the USA address

Input

It accepts a DataFrame as input from the previous Node

24.1. Processors 653

Sparkflows Documentation, Release 0.0.1

Output

A new column isValidAddress is added which contains valid or inValid values

Type

transform

Class

fire.nodes.etl.NodeValidateAddress

Fields

Name Title Description
inputColName Input Column Name input column name

ValidateFieldsSimple

Validation Node

Type

transform

Class

fire.nodes.etl.NodeValidation

Fields

Name Title Description
description Description Validations being Performed
inputCols Columns Columns
functions Function Validation Function to apply
values Values Values

24.1.13 CustomProcessors

pyspark

ScoreCard_Binning

654 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.etl.NodeCustomPySpark_dd281630-bf8f-4e04-8526-1cb555871c46

Fields

24.1.14 17-Documentation

StickyNote

Allows capturing Notes on the Workflow

Type

sticky

Class

fire.nodes.doc.NodeStickyNote

Fields

Name Title Description
bgColor Bg Color Background of note
width Width Width of note
height Height Height of note
comment Comment Comments for the Workflow

Notes

Allows capturing Notes on the Workflow

Type

doc

Class

fire.nodes.doc.NodeDocLarge

24.1. Processors 655

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
comment Comment Comments for the Workflow

24.1.15 12-ML-H2O

H2OWord2Vec

H2O Word2Vec

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OWord2vec

Fields

Name Title Description
min_word_freq Min Word Freq Specify an integer for the minimum word

frequency. Word2vec will discard words
that appear less than this number of times.

vec_size Vec Size Specify the size of word vectors.
window_size Window Size This specifies the size of the context window

around a given word.
epochs Epochs Specify the number of training iterations to

run.
init_learning_rate Init Learning Rate Set the starting learning rate.
sent_sample_rate Sent Sample Rate Set the threshold for the occurrence of

words. Those words that appear with higher
frequency in the training data will be ran-
domly down-sampled. An ideal range for
this option 0, 1e-5.

aggregateMethod AggregateMethod Specifies how to aggregate sequences of
words.

656 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Details

The Word2vec algorithm takes a text corpus as an input and produces the word vectors as output. The algorithm first
creates a vocabulary from the training text data and then learns vector representations of the words.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/word2vec.html#

H2OScore

Type

join

Class

fire.nodes.h2o.NodeH2OScore

Fields

H2OModelSave

Saves an H2O binary ML model

Type

ml-modelsave

Class

fire.nodes.h2o.NodeH2OModelSave

Fields

Name Title Description
path Path Absolute Path for saving the H2O Mojo

H2OPCA

H2O PCA

Input

It takes in a DataFrame as input

24.1. Processors 657

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/word2vec

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.h2o.NodeH2OPCA

Fields

Details

Principal Components Analysis (PCA) is closely related to Principal Components Regression. The algorithm is carried
out on a set of possibly collinear features and performs a transformation to produce a new set of uncorrelated features.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/pca.html

H2OGLM

H2O GLM

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGlm

Fields

Details

Generalized Linear Models (GLM) estimate regression models for outcomes following exponential distributions. In
addition to the Gaussian (i.e. normal) distribution, these include Poisson, binomial, and gamma distributions. Each
serves a different purpose, and depending on distribution and link function choice, can be used either for prediction or
classification.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html

658 Chapter 24. Processors

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/pca.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html

Sparkflows Documentation, Release 0.0.1

H2OScore

Type

ml-predict

Class

fire.nodes.h2o.NodeH2OScore

Fields

Name Title Description
isTestData isTestData To enable the test metrics.

H2OMojoLoad

Loads an H2O Mojo ML model

Type

ml-modelload

Class

fire.nodes.h2o.NodeH2OMojoLoad

Fields

Name Title Description
path Path Absolute Path for loading the H2O Mojo

H2OXGBoostScore

Type

ml-predict

Class

fire.nodes.h2o.NodeH2OXGBoostScore

24.1. Processors 659

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
isTestData isTestData To enable the test metrics.

H2O Model Load

This node load the H2O model.

Type

ml-modelload

Class

fire.nodes.h2o.NodeH2OModelLoad

Fields

H2OXGBoostWithGridSearch

H2O XGBoost

Input

It takes in a DataFrame as input

Type

join

Class

fire.nodes.h2o.node_h2oxgboost_gridsearch

Fields

H2OXGBoost

H2O XGBoost

Input

It takes in a DataFrame as input

660 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

join

Class

fire.nodes.h2o.node_h2oxgboost

Fields

Name Title Description
responseCol Response Column
featureCols Feature Columns Specify the column or columns to be in-

cluded for feature.
ntrees NTrees Specify the number of trees to build
tree_method Tree Method Specify the construction tree method to use.
grow_policy Grow Policy
max_depth Max Depth Specify the maximum tree depth (Setting

this value to 0 specifies no limit)
max_leaves Max Leaves Specify the maximum number of leaves to

include each tree
col_sample_rate_per_tree Col Sample Rate

Per Tree
sample_rate Sample rate Specify the row sampling rate (x-axis).

(Note that this method is sample without re-
placement)

learn_rate Learn Rate Specify the learning rate (The range is 0.0 to
1.0)

stopping_rounds Stopping Rounds
stopping_metric Stopping Metric Specify the construction tree method to use.
seed Seed

H2OXGBoost

H2O XGBoost

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OXGBoost

24.1. Processors 661

Sparkflows Documentation, Release 0.0.1

Fields

Details

XGBoost is a supervised learning algorithm that implements a process called boosting to yield accurate models. Boost-
ing refers to the ensemble learning technique of building many models sequentially, with each new model attempting
to correct for the deficiencies in the previous model.

More details are available at : https://h2o-release.s3.amazonaws.com/h2o/rel-weierstrass/2/docs-website/h2o-docs/
data-science/xgboost.html

H2O Model Save

This node saves the H2O model at the specified path.

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.h2o.NodeH2OModelSave

Fields

H2ONeuralNetwork

H2O Deep Learning/Neural Network

Input

It takes in a DataFrame as input

Type

transform

662 Chapter 24. Processors

https://h2o-release.s3.amazonaws.com/h2o/rel-weierstrass/2/docs-website/h2o-docs/data-science/xgboost.html
https://h2o-release.s3.amazonaws.com/h2o/rel-weierstrass/2/docs-website/h2o-docs/data-science/xgboost.html

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.h2o.NodeH2ONeuralNetwork

Fields

Details

H2O’s Deep Learning is based on a multi-layer feedforward artificial neural network that is trained with stochastic
gradient descent using back-propagation. The network can contain a large number of hidden layers consisting of
neurons with tanh, rectifier, and maxout activation functions.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html

H2ONaiveBayes

H2O Naive Bayes

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2ONaiveBayes

Fields

Details

Naïve Bayes is a classification algorithm that relies on strong assumptions of the independence of covariates in ap-
plying Bayes Theorem. The Naïve Bayes classifier assumes independence between predictor variables conditional on
the response, and a Gaussian distribution of numeric predictors with mean and standard deviation computed from the
training dataset.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/naive-bayes.html

H2OGLRM

H2O GLRM

24.1. Processors 663

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/naive-bayes.html

Sparkflows Documentation, Release 0.0.1

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGlrm

Fields

Details

Generalized Low Rank Models (GLRM) is an algorithm for dimensionality reduction of a dataset. It is a general, par-
allelized optimization algorithm that applies to a variety of loss and regularization functions. Categorical columns are
handled by expansion into 0/1 indicator columns for each level. With this approach, GLRM is useful for reconstructing
missing values and identifying important features in heterogeneous data.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glrm.html

H2OGBM

H2O GBM

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGbm

Fields

Details

Gradient Boosting Machine (for Regression and Classification) is a forward learning ensemble method. The guiding
heuristic is that good predictive results can be obtained through increasingly refined approximations. H2O’s GBM

664 Chapter 24. Processors

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glrm.html

Sparkflows Documentation, Release 0.0.1

sequentially builds regression trees on all the features of the dataset in a fully distributed way - each tree is built in
parallel.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html

H2OKMeans

H2O KMeans

Input

It takes in a DataFrame as input

Type

ml-estimator

Class

fire.nodes.h2o.NodeH2OKMeans

Fields

Details

K-Means falls in the general category of clustering algorithms. Clustering is a form of unsupervised learning that tries
to find structures in the data without using any labels or target values. Clustering partitions a set of observations into
separate groupings such that an observation in a given group is more similar to another observation in the same group
than to another observation in a different group.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/k-means.html

H2OIsolationForest

Isolation Forest is similar in principle to Random Forest and is built on the basis of decision trees.

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OIsolationForest

24.1. Processors 665

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/k-means.html

Sparkflows Documentation, Release 0.0.1

Fields

Details

Isolation Forest is similar in principle to Random Forest and is built on the basis of decision trees. Isolation Forest,
however, identifies anomalies or outliers rather than profiling normal data points. Isolation Forest isolates observations
by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values
of that selected feature. This split depends on how long it takes to separate the points.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/if.html

H2ODRF

H2O DRF

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2ODrf

Fields

Details

Distributed Random Forest (DRF) is a powerful classification and regression tool. When given a set of data, DRF
generates a forest of classification or regression trees, rather than a single classification or regression tree. Each of
these trees is a weak learner built on a subset of rows and columns. More trees will reduce the variance. Both
classification and regression take the average prediction over all of their trees to make a final prediction, whether
predicting for a class or numeric value.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html

H2OMojoSave

Saves an H2O MOJO ML model

Type

ml-modelsave

666 Chapter 24. Processors

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/if.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.h2o.NodeH2OMojoSave

Fields

Name Title Description
path Path Path for saving the H2O Mojo

H2OModelLoad

Loads an H2O binary ML model

Type

ml-modelload

Class

fire.nodes.h2o.NodeH2OModelLoad

Fields

Name Title Description
path Path Path for loading the H2O Mojo

24.1.16 13-ML-AWSSagemaker

KMeansSageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeKMeansSageMakerEstimator

24.1. Processors 667

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
roleArn Role Arn Role arn to use sagemaker
trainingInstanceType Training Instance

Type
InstanceType for training

trainingInstanceCount Training Instance
Count

Number of Instance for training

endpointInstanceType Endpoint Instance
Type

InstanceType for Endpoint

endpointInitialInstanceCount Endpoint Initial In-
stance Count

Number of Instance for Endpoint

k K The number of clusters to create.
featureDim Feature Dim The number of dimensions in dataset

XGBoostSageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeXGBoostSageMakerEstimator

668 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
roleArn Role Arn Role arn to use sagemaker
trainingInstanceType Training Instance

Type
InstanceType for training

trainingInstanceCount Training Instance
Count

Number of Instance for training

endpointInstanceType Endpoint Instance
Type

InstanceType for Endpoint

endpointInitialInstanceCount Endpoint Initial In-
stance Count

Number of Instance for Endpoint

booster Booster Select the type of model to run at each iter-
ation. It has 2 options: gbtree: tree-based
models & gblinear: linear models

silent Silent Silent mode is activated is set to 1, i.e. no
running messages will be printed

nthread NThread If you wish to run on all cores, value should
not be entered and algorithm will detect au-
tomatically

objective Objective This defines the loss function to be mini-
mized

numTrees Num Trees The number of rounds for boosting
numClasses Num Classes For Objective: multi:softmax, you also need

to set an additional num_class (number of
classes) parameter defining the number of
unique classes

seed Seed Can be used for generating reproducible re-
sults and also for parameter tuning

PCASageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodePCASageMakerEstimator

24.1. Processors 669

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
roleArn Role Arn Role arn to use sagemaker
trainingInstanceType Training Instance

Type
InstanceType for training

trainingInstanceCount Training Instance
Count

Number of Instance for training

endpointInstanceType Endpoint Instance
Type

InstanceType for Endpoint

endpointInitialInstanceCount Endpoint Initial In-
stance Count

Number of Instance for Endpoint

numComponents Num Components The number of principal components to
find.

featureDim Feature Dim The number of dimensions in dataset

SageMakerLinearLearnerBinaryClassifier

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeLinearLearnerBinaryClassifier

Fields

Name Title Description
roleArn Role Arn Role arn to use sagemaker
trainingInstanceType Training Instance

Type
InstanceType for training

trainingInstanceCount Training Instance
Count

Number of Instance for training

endpointInstanceType Endpoint Instance
Type

InstanceType for Endpoint

endpointInitialInstanceCount Endpoint Initial In-
stance Count

Number of Instance for Endpoint

SageMakerLinearLearnerRegressor

Type

ml-estimator

670 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.sagemaker.NodeLinearLearnerRegressor

Fields

Name Title Description
roleArn Role Arn Role arn to use sagemaker
trainingInstanceType Training Instance

Type
InstanceType for training

trainingInstanceCount Training Instance
Count

Number of Instance for training

endpointInstanceType Endpoint Instance-
Type

InstanceType for Endpoint

endpointInitialInstanceCount Endpoint Initial In-
stance Count

Number of Instance for Endpoint

SaveSageMakerFormat

Saves the DataFrame into the specified location in Sagemaker Format

Type

transform

Class

fire.nodes.sagemaker.NodeSaveSagemaker

Fields

Name Title Description
path Path Path where to save the Sagemaker files
saveMode Save Mode Whether to Append, Overwrite or Error if

the path Exists
labelColumnName Label Column

Name
label column name

featuresColumnName Features Column
Name

features column name

24.1.17 14-ML-Sklearn

SklearnPredict

Predict node takes in a DataFrame and Model and makes predictions

24.1. Processors 671

Sparkflows Documentation, Release 0.0.1

Input

It takes in a DataFrame and Model as input

Output

A new column containing the predictions is added to the input DataFrame

Type

ml-predict

Class

fire.nodes.sklearn.NodeSklearnPredict

Fields

SklearnRegressionEvaluator

Evaluator for regression, which expects two input columns: prediction and label.

Input

It takes in a DataFrame as input

Output

The incoming DataFrame is passed to the output

Type

transform

Class

fire.nodes.sklearn.NodeSklearnRegressionEvaluator

Fields

Name Title Description
targetCol Label Column The label column for model fitting.
predictCol Prediction Column The prediction column.

672 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Sklearn Model Load

This node load the Sklearn model stored in the pickel file.

Type

ml-modelload

Class

fire.nodes.sklearn.NodeModelLoad

Fields

CustomMetrics

Type

transformer

Class

fire.nodes.sklearn.NodeCustomMetrics

Fields

Name Title Description
actualCol ActualCol
predictedCol PredictedCol
aggregatedAt AggregatedAt
metricsType metricsType Window Function Name

SkLearnRidgeRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnRidgeRegression

24.1. Processors 673

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
targetCol Target Column The label column for model fitting
alpha Alpha
fitintercept Fitintercept
normalize Normalize
maxiter Maxiter
tol Tolerence
solver Solver
randomstate randomstate Random state

SklearnRandomForestClassifier

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnRandomForestClassifier

Fields

Name Title Description
targetCol Target Column The label column for model fitting
n_estimators NEstimators
criterion Criterion
max_depth MaxDepth Default value is None i.e -1
min_samples_split MinSamplesSplit
min_samples_leaf MinSamplesLeaf
min_weight_fraction_leaf MinWeightFractionLeaf
max_features MaxFeatures
max_leaf_nodes MaxLeafNodes Default value is None i.e -1
min_impurity_decrease MinImpurityDecrease
min_impurity_split MinImpuritySplit
bootstrap Bootstrap
oob_score OobScore
random_state RandomState Default value is None i.e -1
warm_start WarmStart

SklearnRandomForestRegression

Type

ml-estimator

674 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.sklearn.NodeSklearnRandomForestRegression

Fields

Name Title Description
targetCol Target Column The label column for model fitting
n_estimators NEstimators
criterion Criterion
max_depth MaxDepth Default value is None i.e -1
min_samples_split MinSamplesSplit
min_samples_leaf MinSamplesLeaf
min_weight_fraction_leaf MinWeightFractionLeaf
max_features MaxFeatures
max_leaf_nodes MaxLeafNodes Default value is None i.e -1
min_impurity_decrease MinImpurityDecrease
min_impurity_split MinImpuritySplit
bootstrap Bootstrap
oob_score OobScore
random_state RandomState Default value is None i.e -1
warm_start WarmStart

SklearnGradientBoostingRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnGradientBoostingRegressor

24.1. Processors 675

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
targetCol Target Column The label column for model fitting
loss Loss
learning_rate LearningRate
n_estimators NEstimators
subsample Subsample
criterion Criterion
min_samples_split MinSamplesSplit
min_samples_leaf MinSamplesLeaf
min_weight_fraction_leaf MinWeightFractionLeaf
max_depth MaxDepth Default value is None i.e -1
min_impurity_decrease MinImpurityDecrease
min_impurity_split MinImpuritySplit
random_state RandomState Default value is None i.e -1
max_features MaxFeatures
alpha Alpha
verbose Verbose
max_leaf_nodes MaxLeafNodes Default value is None i.e -1
warm_start WarmStart
presort Presort
validation_fraction ValidationFraction
n_iter_no_change NIterNoChange Default value is None i.e -1
tol Tol

SklearnGradientBoostingClassifier

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnGradientBoostingClassifier

676 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
targetCol Target Column The label column for model fitting
loss Loss
learning_rate LearningRate
n_estimators NEstimators
subsample Subsample
criterion Criterion
min_samples_split MinSamplesSplit
min_samples_leaf MinSamplesLeaf
min_weight_fraction_leaf MinWeightFractionLeaf
max_depth MaxDepth
min_impurity_decrease MinImpurityDecrease
min_impurity_split MinImpuritySplit
random_state RandomState Default value is None i.e -1
max_features MaxFeatures
verbose Verbose
max_leaf_nodes MaxLeafNodes Default value is None i.e -1
warm_start WarmStart
presort Presort
validation_fraction ValidationFraction
n_iter_no_change NIterNoChange Default value is None i.e -1
tol Tol

SkLearnLassoRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnLassoRegression

24.1. Processors 677

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
targetCol Target Column The label column for model fitting
alpha Alpha
fit_intercept Fitintercept
normalize Normalize
precompute Precompute
max_iter Maxiter
tol Tol
warm_start WarmStart
positive Positive
random_state RandomState Default value is None i.e -1
selection Selection

SklearnLogisticRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnLogisticRegression

Fields

Name Title Description
targetCol Target Column The label column for model fitting
penalty Penalty
dual Dual
tol Tol
C C
fit_intercept Fitintercept
intercept_scaling InterceptScaling
class_weight ClassWeight
random_state RandomState
solver Solver
max_iter Maxiter
multi_class MultiClass
verbose Verbose
warm_start WarmStart
l1_ratio L1Ratio

Sklearn Model Save

This node saves the Sklearn model generated at the specified path in pickle file.

678 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.sklearn.NodeModelSave

Fields

Sklearn Model Load From S3

This node load the Sklearn model stored in the pickel format in S3.

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.sklearn.NodeSklearnModelLoadFromS3

Fields

SklearnClassificationEvaluator

Evaluator for classification, which expects two input columns: prediction and label.

24.1. Processors 679

Sparkflows Documentation, Release 0.0.1

Input

It takes in a DataFrame as input

Output

The incoming DataFrame is passed to the output

Type

transform

Class

fire.nodes.sklearn.NodeSklearnClassificationEvaluator

Fields

Name Title Description
targetCol Label Column The label column for model fitting.
predictCol Prediction Column The prediction column.

Sklearn Model Save To S3

This node saves the Sklearn model generated at the specified path in S3 in pickle format.

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.sklearn.NodeSklearnModelSaveToS3

680 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

CategoryEncoders

Type

ml-transformer

Class

fire.nodes.sklearn.NodeCategoryEncoders

Fields

Name Title Description
category_features_column Category Features

Column

24.1.18 08-Group

GroupBy

Grouper Node

Type

transform

Class

fire.nodes.etl.NodeGroupBy

Fields

Cube

Cube Node generates a result set that shows aggregates for all combinations of values in the selected columns.

Type

transform

24.1. Processors 681

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeCube

Fields

Name Title Description
cubeCols Cube Columns
aggregateCols Aggregate Columns Aggregate Columns
aggregateOperations Aggregate Opera-

tion to use
Aggregate Operation

Rollup

Rollup Node generates a result set that shows aggregates for a hierarchy of values in the selected columns.

Type

transform

Class

fire.nodes.etl.NodeRollup

Fields

Name Title Description
rollupCols Rollup Columns
aggregateCols Aggregate Columns Aggregate Columns
aggregateOperations Aggregate Opera-

tion to use
Aggregate Operation

PivotBy

Pivot Node

Type

transform

Class

fire.nodes.etl.NodePivotBy

682 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

24.1.19 06-Code

SQLExecuter

This node runs the given SQL query

Input

This type of node takes the sql query of any statement type

Output

This node execute the given SQL query

Type

dataset

Class

fire.nodes.runrdbmssql.NodeSqlExecuter

Fields

Name Title Description
url Db Url Url of SQL
driver driver class name driver class name for SQL
user name User Name User name of SQL
password password password of SQL
statementType Statement Type statementType of SQL
query query write query to wxecute

PipePython2

This node runs any given Python code. It pipes the incoming DataFrame through pipe to the Python Script. Output
back to Spark has to be written out using print.

Input

It pipes the incoming DataFrame through pipe to the Python Script. It also passes the Schema of the DataFrame to the
Python script through the command line argument - argv[1]

24.1. Processors 683

Sparkflows Documentation, Release 0.0.1

Output

Output back to Spark has to be written out using print.

Type

transform

Class

fire.nodes.etl.NodePipePython2

Fields

Name Title Description
codeHeader Pipe Header Code Header part of the Python code to be run. It

receives each record as a string
codeBody Pipe Body Code Body part of the Python code to be run.
codeFooter Pipe Footer Code Footer part of the Python code to be run. It

should write out each resulting record back
as a string.

outputColNames Output Column
Names

Output Schema of Pipe Python Processor

outputColTypes Output Column
Types

Data Type of the Output Columns

outputColFormats Output Column For-
mats

Format of the Output Columns

ScalaUDF

This node runs any given Scala code for UDFs

Input

.

Type

scala

Class

fire.nodes.etl.NodeUDFScala

684 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
code Scala Scala code to be run.

Jython

This node runs any given Jython code. The input dataframe is passed in the variable inDF. The output dataframe
should be placed in the variable outDF

Input

The input dataframe is passed in the variable in DF

Output

The output dataframe should be placed in the variable outDF

Type

transform

Class

fire.nodes.etl.NodeJython

Fields

Details

This node runs any given Jython code.

Below is an example jython code. It takes the input dataframe ‘inDF’, and returns the new dataframe ‘outDF’

outDF = inDF.groupBy(“c2”).count()

UnixShellCommands

This node execute shell command

Type

shellcommand

24.1. Processors 685

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeShellCommand

Fields

Name Title Description
shellCommand shell Command Unix Shell Command

SQL

This node runs the given SQL on the incoming DataFrame

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node runs the given SQL on the incoming DataFrame to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeSQL

Fields

Scala

This node runs any given Scala code. The input dataframe is passed in the variable inDF. The output dataframe is
passed back by registering it as a temporary table.

Input

The input dataframe is passed in the variable inDF.

Output

The output dataframe is passed back by registering it as a temporary table

686 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

scala

Class

fire.nodes.etl.NodeScala

Fields

PipePython

This node runs any given Python code. It pipes the incoming DataFrame through pipe to the Python Script. Output
back to Spark has to be written out using print.

Input

It pipes the incoming DataFrame through pipe to the Python Script. It also passes the Schema of the DataFrame to the
Python script through the command line argument - argv[1]

Output

Output back to Spark has to be written out using print.

Type

transform

Class

fire.nodes.etl.NodePipePython

Fields

Name Title Description
code Pipe Python Python code to be run. It receives each

record as a string and outputs records back
as a string.

outputColNames Output Column
Names

Output Schema of Pipe Python Processor

outputColTypes Output Column
Types

Data Type of the Output Columns

outputColFormats Output Column For-
mats

Format of the Output Columns

24.1. Processors 687

Sparkflows Documentation, Release 0.0.1

PySpark

This node runs any given PySpark code. The input dataframe is passed in the variable inDF. The output dataframe is
passed back by registering it as a temporary table.

Input

The input dataframe is passed in the variable inDF.

Output

The output dataframe is passed back by registering it as a temporary table

Type

pyspark

Class

fire.nodes.etl.NodePySpark

Fields

RunHIVEQL

This node runs the given SQL on the incoming DataFrame

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node runs the given SQL on the incoming DataFrame to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeRunHiveQL

688 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
hql HiveQL - HIVE

Query Language
HiveQL

24.1.20 10-Visualization

GraphRegionGeo

This node displays values on a Map

Type

transform

Class

fire.nodes.graph.NodeGraphRegionGeo

Fields

PrintNRows

Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output

Type

transform

Class

fire.nodes.util.NodePrintFirstNRows

Fields

GraphValues

Type

transform

24.1. Processors 689

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.graph.NodeGraphValues

Fields

GraphGroupByColumn

Groups the data by the given column and plots the number of records in each group

Type

transform

Class

fire.nodes.graph.NodeGraphGroupByColumn

Fields

Sample PrintNRows

Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output

Type

transform

Class

fire.nodes.util.NodeSamplePrintFirstNRows

Fields

24.1.21 19-Deprecated

StringToDate

This node converts a string column to date using the given date/time format

Type

transform

690 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.etl.NodeStringToDate

Fields

Name Title Description
inputColName Input Column Name Input Column Name
inputColFormat Input Column For-

mat
Input Column Format. eg: yyyy-MM-dd
yyyy-MM-dd HH:mm:ss

outputColName Output Column
Name

Output Column Name

outputColType Output Column
Type

Output Column Type

Examples

Format Examples

dd-MM-yy : 31-01-12 dd-MM-yyyy : 31-01-2012 MM-dd-yyyy : 01-31-2012 yyyy-MM-dd : 2012-01-31 yyyy-
MM-dd HH:mm:ss : 2012-01-31 23:59:59 yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999 yyyy-MM-dd
HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100 EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November
2012 10:45:42.720+0100

OUTPUT COLUMN NAME: - If user inputs an existing column name, it overrides the column otherwise it
will add a new column.

24.1.22 15-Streaming

StreamingSocketTextStream

Reads in streaming text from a socket

Input

It does not take any DataFrame as input

Output

It creates DataFrame from reading data from a socket. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

24.1. Processors 691

Sparkflows Documentation, Release 0.0.1

Class

fire.nodes.streaming.NodeStreamingSocketTextStream

Fields

Name Title Description
batchDuration Batch Duration in

Seconds
Batch Duration in Seconds

hostname Hostname Host to connect to for listening
port Port Port to connect to

Details

This Processor reads in messages from a Socket

Key Fields

Below are the key fields of this Processor.

• hostname: this is the name of the host from where to read in the messages

• port: this is the port number from where to read in the messages

Examples

Below is an example of the fields:

• hostname: localhost

• port: 8099

StreamingKafka

Reads in streaming text from topics in Apache Kafka

Input

It does not take any DataFrame as input

Output

It reads events from Kafka and creates DataFrame from the resulting rows. This DataFrame is passed to the output
Nodes.

692 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

sparkstreaming

Class

fire.nodes.streaming.NodeStreamingKafka

Fields

Name Title Description
batchDuration Batch Duration in

Seconds
Batch Duration in Seconds

brokers Kafka Brokers Kafka Brokers
group Consumer Group Consumer Group
topics Kafka Topics List of Topics separated by , (comma)
autoOffsetReset auto.offset.reset Auto Offset Reset
enableAutoCommit enable.auto.commit Enable Auto Commit
kafkaParamsKeys Params Key/Value

Pairs
More Config Values

kafkaParamsValues Parms Key/Value
Pairs

More Config Values

StreamingTextFileStream

It monitors a specified directory for new files. It keeps reading in any new files created in the directory.

Input

It does not take any DataFrame as input

Output

It reads the new files and creates DataFrame from the content of the text files. This DataFrame is passed to the output
Nodes.

Type

sparkstreaming

Class

fire.nodes.streaming.NodeStreamingTextFileStream

24.1. Processors 693

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
path Path Directory from where to pick up files from
batchDuration Batch Duration in

Seconds
Batch Duration in Seconds

outputCol Output Column Output Column

24.1.23 15-StructuredStreaming

StructuredStreamingCSV

It monitors a specified directory for new files. It keeps reading in any new files created in the directory.

Input

It does not take any DataFrame as input

Output

It reads the new files and creates DataFrame from the content of the text files. This DataFrame is passed to the output
Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingCSV

Fields

Name Title Description
path Path Path of the Text file/directory
separator Separator CSV Separator
outputColNames Column Names for

the CSV
Output Column Names

outputColTypes Column Types for
the CSV

Output Column Types

outputColFormats Column Formats for
the CSV

Output Column Formats

694 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

StructuredStreamingHiveSink2

Saves the streaming data into an Apache HIVE Table

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingHiveSink2

Fields

Name Title Description
databaseName HIVE Database Name of the HIVE Database
tableName HIVE Table Name of the HIVE table

StructuredStreamingFileSink

It writes the DataFrame to files with Structured Streaming

Input

It takes in DataFrame as input

Output

It writes the incoming DataFrame to files.

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingFileSink

24.1. Processors 695

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
path Path Path where to write the files
outputMode Output Mode Output Mode for saving to Files
checkpointLocation Checkpoint Loca-

tion
Checkpoint Location on HDFS compatible
file system for Streaming

format Format File Format
partitionBy Partition By

Columns
Partition By Columns separated by space
(can be empty in which case partitionBy
would not be applied)

StructuredStreamingSocket

Reads in streaming text from a socket

Input

It does not take any DataFrame as input

Output

It reads events a socket and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingSocket

Fields

Name Title Description
host Hostname Host to connect to for listening
port Port Port to connect to

StructuredStreamingHiveSink

Saves the streaming data into a HIVE Table

696 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingHiveSink

Fields

Name Title Description
databaseName HIVE Database Name of the HIVE Database
tableName HIVE Table Name of the HIVE table

StructuredStreamingKinesis

Reads in streaming text from Kinesis stream

Input

It does not take any DataFrame as input

Output

It reads events from Kinesis and creates DataFrame from the resulting rows. This DataFrame is passed to the output
Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingKinesis

Fields

Name Title Description
streamName Stream Name Kinesis Stream Name
endpointUrl Endpoint Url Kinesis Endpoint Url
editorData Editor Data Data to be used for testing in the Workflow

Editor

24.1. Processors 697

Sparkflows Documentation, Release 0.0.1

StructuredStreamingKafka

Reads in streaming text from topics in Apache Kafka

Input

It does not take any DataFrame as input

Output

It reads events from Kafka and creates DataFrame from the resulting rows. This DataFrame is passed to the output
Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingKafka

Fields

Name Title Description
batchDuration Batch Duration in

Seconds
Batch Duration in Seconds

brokers Kafka Brokers Kafka Brokers
group Consumer Group Consumer Group
topics Kafka Topics List of Topics separated by , (comma)
autoOffsetReset auto.offset.reset Auto Offset Reset
enableAutoCommit enable.auto.commit Enable Auto Commit
kafkaParamsKeys Params Key/Value

Pairs
More Config Values

kafkaParamsValues Parms Key/Value
Pairs

More Config Values

StructuredStreamingConsoleSink

It output the DataFrame to the console

Input

It takes in DataFrame as input

698 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Output

It writes the incoming DataFrame to the console.

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingConsoleSink

Fields

Name Title Description
outputMode Output Mode Output Mode for saving to Files

24.1.24 14-DL

KerasModelFit

Type

ml-estimator

Class

fire.nodes.dl.NodeModelFit

24.1. Processors 699

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
targetCol Target Column The label column for model fitting
batch_size BatchSize Default value is None i.e -1
epochs Epochs
verbose Verbose
callbacks Callbacks Default value is None i.e -1
validation_split ValidationSplit
validation_data ValidationData Default value is None i.e -1
shuffle Shuffle
class_weight ClassWeight Default value is None i.e -1
sample_weight SampleWeight Default value is None i.e -1
initial_epoch InitialEpoch
steps_per_epoch StepsPerEpoch Default value is None i.e -1
validation_steps ValidationSteps Default value is None i.e -1
validation_freq ValidationFreq
max_queue_size MaxQueueSize
workers Workers
use_multiprocessing UseMultiprocessing

KerasPredict

Type

ml-predict

Class

fire.nodes.dl.NodePredict

Fields

Name Title Description
targetCol Target Column The label column for model fitting
batch_size BatchSize Default value is None i.e -1
verbose Verbose
steps Steps Default value is None i.e -1
callbacks Callbacks Default value is None i.e -1
max_queue_size ValidationFreq
workers Workers
use_multiprocessing UseMultiprocessing

KerasModelCompile

700 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

transform

Class

fire.nodes.dl.NodeModelCompile

Fields

Name Title Description
optimizer Optimizer
loss Loss
metrics Metrics
loss_weights LossWeights
sample_weight_mode SampleWeightMode
weighted_metrics WeightedMetrics
target_tensors TargetTensors

DenseLayer

Type

transform

Class

fire.nodes.dl.NodeDense

Fields

Name Title Description
units Units
activation Activation
use_bias Use Bias
kernel_initializer Kernel Initializer
bias_initializer Bias Initializer
kernel_regularizer Kernel Regularizer
bias_regularizer Bias Regularizer
activity_regularizer Activity Regularizer
kernel_constraint Kernel Constraint
bias_constraint Bias Constraint

24.1. Processors 701

Sparkflows Documentation, Release 0.0.1

KerasModelSequential

Type

transform

Class

fire.nodes.dl.NodeModelSequential

Fields

Name Title Description
layers Layers

24.1.25 07-JoinUnion

UnionAll

This node creates a new DataFrame by merging all the rows without removing the duplicates

Input

It accepts a DataFrame as input from the previous Node

Output

This node does union of all the rows without removing the duplicates

Type

join

Class

fire.nodes.etl.NodeUnionAll

Fields

GeoJoin

This node joins the incoming dataframes

702 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Input

This node takes in 2 DataFrames as input and produces one DataFrame as output

Type

join

Class

fire.nodes.etl.NodeGeoJoin

Fields

Name Title Description
latitudeCol Latitude Column Latitude Column from first DataFrame
longitudeCol Longitude Column Longitude Column from first DataFrame
polygonCol Polygon Column Polygon Column from second DataFrame

JoinOnCommonColumns

This node joins the incoming dataframes on 1 or more columns

Input

It takes in 2 DataFrames as input and produces one DataFrame as output by joining on the specified columns

Output

The output DataFrame produced as a result of joining the incoming DataFrames on the specified columns

Type

join

Class

fire.nodes.etl.NodeJoinUsingColumns

24.1. Processors 703

Sparkflows Documentation, Release 0.0.1

Fields

Name Title Description
joinCols Common Join

Columns
Space separated list of columns on which to
join

joinType Join Type Type of Join
outputColNames Output Column

Names
Name of the Output Columns

outputColTypes Output Column
Types

Data Type of the Output Columns

outputColFormats Output Column For-
mats

Format of the Output Columns

whereClause Where Clause where condition after join function

JoinOnColumns

Type

join2inputs

Class

fire.nodes.etl.JoinOnColumns

Fields

Name Title Description
joinType Join Type Type of Join
leftTableJoinColumn LeftTableJoinColumn
rightTableJoinColumn RightTableJoinColumn

JoinUsingSQL

This node registers the incoming DataFrames as temporary tables and executes the SQL provided

Input

It takes in 2 DataFrames as input and produces one DataFrame as output by executing the provided SQL.

Output

The DataFrame created as a result of executing the join SQL

704 Chapter 24. Processors

Sparkflows Documentation, Release 0.0.1

Type

join

Class

fire.nodes.etl.NodeJoinUsingSQL

Fields

UnionDistinct

This node creates a new DataFrame by performing a DISTINCT on the result set, eliminating any duplicate rows

Input

It takes in multiple DataFrames as input

Output

This node does union of all the rows from the incoming DataFrames to generate the output DataFrame

Type

join

Class

fire.nodes.etl.NodeUnionDistinct

Fields

JoinOnCommonColumn

This node joins the incoming dataframes on a joinCol

Input

This node takes in 2 DataFrames as input and produces one DataFrame as output

Output

The output DataFrame is the result of joining the 2 incoming DataFrames on the join column

24.1. Processors 705

Sparkflows Documentation, Release 0.0.1

Type

join

Class

fire.nodes.etl.NodeJoinUsingColumn

Fields

Name Title Description
joinCol Common Join Col-

umn
column on which to join

706 Chapter 24. Processors

CHAPTER 25

Release Notes

25.1 Release Notes

25.1.1 Upcoming Features

Below are the upcoming features in Fire Insights.

Installer

A one-click installer and update for Fire Insights.

Users would be able to install and update Fire Insights on their laptops with one click.

25.1.2 Aug 2020

New Features

• Time Series Modeling with Prophet

• Time Series Modeling with Arima

• Building Custom Nodes in Python

UI Improvements

• Upgraded look and feel

707

Sparkflows Documentation, Release 0.0.1

25.1.3 May 2020

New Features

• Added viewing of Fire Insights logs under Administration Menu

• Added more details to Data Profiling

• Added file upload and delete capabilities in DBFS browser

• Added ability to create datasets for data on AWS S3.

• Added configurations for AWS Home Directory to restrict access of other bucket or folder

• Added interactive dashboards

• Added ability to view workflows by type : Normal, Data Profiling, Dataset Cleaning

UI Improvements

• Each workflow list page now displays up to 50 workflows

25.1.4 April 2020

New Features

• Added browsing of AWS S3 file system under Data Browser

• Added uploading files to S3

• Added creating folder on S3

• Added deleting files on S3

• Added reporting for Total Users, Groups, Projects, Workflows & Workflows Executions

UI Improvements

• Autocomplete feature added to SQL editor in workflows

25.1.5 March 2020

New Features

• Integration with Databricks

• Added Browsing Databricks DB, Databricks Cluster & DBFS

• Added Scheduling in Standalone Mode

• Compatible with Amazon Aurora Database

UI Improvements

• Improvement of Metrics which include stage information

• Improvement in JOIN USING SQL Processors

708 Chapter 25. Release Notes

Sparkflows Documentation, Release 0.0.1

25.1.6 February 2020

New Features

• Job Metrics Integration with improvements.

• SUPERUSER to have more rights when elevated access is enabled.

• If user is inactive, he is unable to login.

• Added Runtime Statistics.

• Added Compare Model.

UI Improvment

• Improvement to Connection page.

25.1.7 January 2020

New Features

• Integrated with yarn which enable us to see detail information of job submitted to cluster

• Integrated with Job Metrics

• Added plugins for GoogleRestApiKey in Configurations

• Added Geo chart: Country & Geo chart: Lat, Lon features in Interactive Dahboard

• Integrated with Model List and Summary Page for viewing detail information about the model

• Added Reload Sample Application Features

25.1.8 September 2019

New Processors Added For Scala Engine

• MultiWindowAnalytics

• MultiWindowRanking

New Processors Added For Pyspark Engine

• SaveAvro

• SaveJSON

Improvement of RESTAPI

New Features

• Integrated File Watcher with AWS

• Database Cleanup for workflow execution & workflow execution results

25.1. Release Notes 709

Sparkflows Documentation, Release 0.0.1

• Export of all users implemented

• Added search help with search option to Quickstart Guide, Tutorials & FAQ

Upgrades for Security Vulnerabilties

• All the dependencies have been upgraded to handle security vulnerabilities.

UI Improvement

• Improvement of WorkflowEeditor Page to make it easy to add the workflow parameters.

25.1.9 August 2019

New Processors Added For Scala Engine

• WindowAnalytics

• WindowRanking

• H2OGLRM

• H2OWord2Vec

New Processors Added For Pyspark Engine

• ZipWithIndex

• ReadAvro

• ReadJSON

• ReadParquet

UI Improvements

• Drag and drop function for node in workflow editor

• Improvement of workflow editor page look & feel.

25.1.10 July 2019

Integration of H2O

• The following New H2O Processors have been added :

– H2ODRF

– H2OGBM

– H2OGLM

– H2OIsolationForest

– H2OKMeans

710 Chapter 25. Release Notes

Sparkflows Documentation, Release 0.0.1

– H2OModelLoad

– H2OModelSave

– H2OMojoLoad

– H2OMojoSave

– H2ONaiveBayes

– H2ONeuralNetwork

– H2OPCA

– H2OScore

Improvements in UI

• Login Page of Fire Insights has been upgraded.

• Scatter Plot look and feel has been upgraded.

Improvements to HDFS Browser

• Ability to edit files and directories.

Improvements in Home Dashboard Page

Added New Features

• Added Search Box to Search Workflow, Node, Dataset & Dashboard available in an application.

• Added Self-Registration to create a user directly from Login page.

Upgradation of Running Server on Ports

• Fire Insights now enable us to run Fire & Pspark server on different ports.

25.1.11 June 2019

The following features have been released in June 2019.

Improvements in UI

• Displaying text in Workflow Execution Page with more details visible.

• CSV and other read file nodes, now display the name of the file.

• When cloning a node in the editor, the cloned node is created close to the original node.

Improvements to HDFS Browser

• Fire Insights now allows moving multiple files from one directory to another.

25.1. Release Notes 711

Sparkflows Documentation, Release 0.0.1

Support Of Authentication Using Token

• Fire now supports two methods Of getting tokens to access Fire

Grant Types – Password.

Grant Types – Authorization code.

Improvements in Dataset

• Look and feel of the edit Dataset page has been upgraded.

Running Applications Locally

• Workflows when running locally are now executed as separate Java or Python processes.

Node Updates

• JoinUsingSQL now allows joining multiple datasets at a time.

25.1.12 May 2019

The following features have been released in May 2019.

PySpark Engine

• New Engine for running PySpark

New Processors

Outlier Detection

• New Node for Outlier Detection

Improvements to HDFS Browser

• Displaying user permission for each file/directory

• Displaying an icon indicating whether it is file or directory

• Better display of error messages

Applications

• Datasets tab is the first tab now

712 Chapter 25. Release Notes

Sparkflows Documentation, Release 0.0.1

Datasets

• Better display of the Create/Edit dataset page

• Do not display JDBC passwords

Workflow Editor

• Ability to create DataSet Nodes by browsing the list of datasets

• HIVE DB Browser on the LHS

• Better display of the processors

• Fix for tabs in dialogs not showing up (eg. in Logistic Regression Processor)

25.1.13 April 2019

New Processors Added For Scala Engine

• MultiWindowAnalytics

• MultiWindowRanking

New Processors Added For Pyspark Engine

• SaveAvro

• SaveJSON

Improvement of RESTAPI

New Features

• Integrated File Watcher with AWS

• Database Cleanup for workflow execution & workflow execution results

• Export of all users

• Added search help with search option to quickstart guide, tutorials & FAQ

Upgrades for Security Vulnerabilties

• All the dependencies have been upgraded to handle security vulnerabilities.

UI Improvement

• Improvement of workflow editor page to make it easy to add the workflow parameters.

25.1.14 February 2019

The following features have been released in Feb 2019.

25.1. Release Notes 713

Sparkflows Documentation, Release 0.0.1

Correlation Node Output

In Heatmap the colors are not repeated.

Scheduled Workflow Edit

Fire now enables editing of already scheduled workflows for executions.

Multiple users in a Group

Fire now enables you to add multiple users to a group.

SaveMongoDB Node

Fire now enables you to save your data to MongoDB using this node.

Interactive Dashboard Improvements

• Allows 2 items or more in y-axis in Histogram Chart.

• When there are 2 items on x-axis, only one item is allowed on the y-axis.

25.1.15 January 2019

The following features have been released in Jan 2019.

Interactive Dashboards

Fire now enables you to create Interactive Dashboards. Interactive Dashboards pull data from JDBC sources.

Workflow Wizard

Workflow Wizard enables you to quickly create workflows of various kinds. These could be data cleaning, reporting,
spam detection, churn prediction etc.

Pipelines

Fire now supports Pipelines. Pipelines allow creating a DAG of workflows. In the future it would allow adding more
types of nodes to the DAG.

Charts Improvements

• Ability to display more than 1 heatmap in a workflow

• Display of X-values and X-axis in the Charts

714 Chapter 25. Release Notes

Sparkflows Documentation, Release 0.0.1

Processor Improvements

• In RowFilter Processor, the size of conditional expression textfield has been increased.

Support for Uploading Large Files

Fire now supports uploading very large files.

25.1.16 November 2018

The following features have been released in Nov 2018.

Support for Applications

You can now create Applications in Fire. Applications can contain:

• Datasets

• Workflows

• Dashboards

• Sharing information

This allows you to easily create complex Big Data and ML Applications and work in groups.

Structured Streaming

Fire now supports Structured Streaming. It provides a number of Processors for Structured Streaming. These include
Processors for reading from Kafka, reading from files etc. There are also a number of Processors for writing to files
etc.

25.1.17 3.1.0 Release Notes

• Release Date: 09/01/2018

• Download TGZ name: sparkflows-fire-3.1.0.tgz

• TGZ Size: 505 MB

Contents of this release

• New Processors Added

– Decision Node Processor

– JSON Parser Processor

– SortBy Processor

– Empty Dataset Processor

– Multi Validation Processor

– String Function Multiple Processor

25.1. Release Notes 715

Sparkflows Documentation, Release 0.0.1

– Math Function Multiple Processor

– Case When Processor

– Remove Duplicate Processor

• Support for uploading files to HDFS

• Support for LDAP

• Support for running the workflows in debug mode.

– In debug mode, the number of records processed at each Node are printed.

– SQL executed is printed where relevant

• Various Workflow Editor Upgrades

– Ability to rename the Nodes

– Richer support in JDBC Processor for interactive execution

– Save Warning when moving away from the Workflow Editor

– Rich widget support for Multi-Validations Processor

• Support for Caching Datasets in any Processor

• Support for Workflow Cloning

• Richer support in Dashboard Editor for drag and drop of Processors

25.1.18 2.1.0 Release Notes

• Release Date: 04/01/2018

• Download TGZ name: sparkflows-fire-2.1.0.tgz

• TGZ Size: 508 MB

Contents of this release

• Separation of Workflow Server from Workflow Engine

• Support for HDFS File Upload

• New Processors

– HBase Read Processor

– HBase Write Processor

– Split by Multiple Expressions Processor

– Fixes to Node Correlation

• Support for Rich REST API’s

25.1.19 1.4.0 Release Notes

• Release Date: 11/29/2017

• Download TGZ name: sparkflows-fire-1.4.3.tgz

• TGZ Size: 485 MB

716 Chapter 25. Release Notes

Sparkflows Documentation, Release 0.0.1

Contents of this release

• Scheduling Workflows

• Support for ORC files

• Support for ElasticSearch

• Running in YARN Cluster Mode

• Better browsing experience

• Support for more widget types

• Fixes to Node Correlation Matrix

• Elastic Search Integration

• Support for OpenNLP

25.1.20 1.3.0 Release Notes

• Release Date: 1/8/2017

• Download TGZ name: sparkflows-fire-1.3.0.tgz

• TGZ Size: 485 MB

Contents of this release

• Interactive Workflow Execution

• Streaming Workflow Engine

• Saving & Loading Models

• Support for Jython Nodes

• Many new Machine Learning Nodes added

• Many User Interface Improvements

25.1. Release Notes 717

Sparkflows Documentation, Release 0.0.1

718 Chapter 25. Release Notes

CHAPTER 26

REST API Authentication

26.1 REST API Authentication

Sparkflows provides REST API for interacting with it.

Swagger is also enabled and is available at http://<machine-name>:8080/swagger-ui.html

To authenticate and access Fire Insights REST APIs, you can use personal access tokens or passwords. We strongly
recommend that you use tokens. Like passwords, tokens should be treated with care. Unlike passwords, tokens expire
and can be revoked.

Tokens can be generated using Postman.

You can also log in with your username/password, get a session cookie, store it into a file and use it in subsequent
requests.

26.1.1 Acquire Session Cookie Using CURL

When invoking the REST APIs of Fire Insights with curl, the first step is to log in and save the incoming cookie into
a text file. This file would then be used in making subsequent REST calls via curl.

Save the incoming cookies using the -c option of curl into a file.

In the below example, the Fire Insights web server is running on the local machine at : localhost:8080

You can replace it with your machine name and port.

CURL:

curl -i -X POST -d username=admin -d password=admin -c /tmp/cookies.txt
→˓localhost:8080/login

In the above:

• username = admin

• password = admin

719

http:/

Sparkflows Documentation, Release 0.0.1

• Incoming cookie gets saved into : /tmp/cookies.txt

• REST API endpoint : localhost:8080/login

26.1.2 Acquire Session Cookie in Python

Fire Insights REST API’s can be accessed with Python. Session Cookie can be acquired using username and password
and used in the subsequent calls.

Get List of Processors

The below code in Python logs in the user and acquires the session cookie via the Fire Insights REST API.

It then gets the list of Processors in Fire Insights using the REST API and prints them.

1 #!/usr/bin/python
2

3 # This python script logs into an instance of sparkflows, and then gets the list of
→˓Processors/Operators supported

4

5 # -*- coding: utf-8 -*-
6 import json
7 import requests
8

9 payload = {'username':'admin', 'password':'admin'}
10

11 # login url
12 urllogin = 'http://localhost:8080/login'
13

14 # get list of processors url
15 urlprocessors = 'http://localhost:8080/nodeList'
16

17 with requests.session() as s:
18

19 # log into sparkflows
20 r = s.post(urllogin, data=payload)
21

22 # get list of processors
23 resp = s.get(urlprocessors)
24

25 parsed_resp = json.loads(resp.text)
26

27 for i in parsed_resp:
28 print (i['name'])

26.1.3 Acquire Token Using CURL

Tokens can be acquired from Fire Insights using curl. They would then be used in making subsequent curl requests.

This page work is in progress. . .

26.1.4 Acquire Token using Postman and Grant Type - Password

This document describes the steps to obtain and use OAuth 2.0 access tokens using Postman.

720 Chapter 26. REST API Authentication

Sparkflows Documentation, Release 0.0.1

Overview of Grant Type – Password

The Password grant is used when the application presents a traditional username and password login form to collect
the user’s credentials and makes a POST request to the server to exchange the password for an access token. The
POST requests that the application made looks like the example below.

Form the Post Request

The POST Request method requests that a web server accepts the data enclosed in the body of the request message,
most likely for storing it

Table 1: Below are the Relevant Request
Title URL
POST http://hostname:port/oauth/token?grant_type=password&username=<username>&password=<password>

Update the username and password in URL and use as request header.

Click on Authorization tab and select Type - Basic Auth

Basic Auth is an authorization type that requires a verified username and password to access a data resource.

Use default Username sparkflows and Password secret for client authentication. Click on Send to authorize
the user and get the access token.

Example

Now use access_token from previous step to access the REST API

An Access Token is a credential that can be used by an application to access an API. Below is an example to invoke
the nodeList REST API of Fire Insights.

26.1.5 Acquire token using Postman - Authorization code

The Authorization Code grant type is used to exchange an authorization code for an access token.

26.1. REST API Authentication 721

http://hostname:port/oauth/token

Sparkflows Documentation, Release 0.0.1

Get the access token

The app can obtain an access token that provides temporary, secure access to it. Below are steps involved to Request
an Access_token

Click on Authorization tab

• Select Type OAuth 2.0

Click on Request Token

It will redirect to sparkflows login URL Page.

722 Chapter 26. REST API Authentication

Sparkflows Documentation, Release 0.0.1

Fill the username and password and click on signIn

It will then display the OAuth Approval page.

OAuth Approval

OAuth is an authentication protocol that allows you to approve one application interacting with another on your behalf
without giving away your password. Below is the Screenshot for updating the Oauth approval.

Click on Use token

A security token (sometimes called an authentication token) is a small hardware device that the owner carries to
authorize access to a network service.

26.1. REST API Authentication 723

Sparkflows Documentation, Release 0.0.1

Using tokens for accessing REST API

Using above token we can access the REST API.

26.1.6 Acquire Token in Python - Grant Type Password

Below are examples of Python code for accessing the Fire REST API using Python.

Get Processor Count

The below code in Python does the following:

• Acquires the token using Grant Type Password

• Invokes the Fire Insights REST API to get the number of processors list available in Fire Insights.

#!/usr/bin/python

import requests

import json

import getpass

token_url = "http://hostname:8080/oauth/token"

processor_count_api_url = "http://hostname:8080/getNodeCount" # processor list
→˓count api of sparkflows

#Step A - resource owner supplies credentials
#Resource owner (enduser) credentials

RO_user = 'admin'
RO_password = 'admin'

#client (application) credentials
client_id = 'sparkflows'
client_secret = 'secret'

(continues on next page)

724 Chapter 26. REST API Authentication

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

#step B, C - single call with resource owner credentials in the body and client
→˓credentials as the basic auth header will return #access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_password}

access_token_response = requests.post(token_url, data=data, verify=False, allow_
→˓redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

Step C - now we can use the access_token to make another rest api call to get
→˓the processor count

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

api_call_response = requests.get(processor_count_api_url, headers=api_call_
→˓headers, verify=False)

print(api_call_response.text)

After running above REST API code in Python, we get the below results.

Infer Hadoop Cluster Configurations

The below code in Python invokes the Fire Insights REST API to infer Hadoop cluster configurations. It then saves
the infer cluster Hadoop configurations as updated values.

#!/usr/bin/python

import requests

import json

token_url = "http://hostname:8080/oauth/token"

infer_configuration_api_url = "http://hostname:8080/api/v1/configurations/infer"

save_configuration_api_url = "http://hostname:8080/api/v1/configurations"

#Step A - resource owner supplies credentials
#Resource owner (enduser) credentials

RO_user = 'admin' #input your own username
RO_password = 'admin' #input your own password

#client (application) credentials

(continues on next page)

26.1. REST API Authentication 725

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

client_id = 'sparkflows'
client_secret = 'secret'

#step B, C - single call with resource owner credentials in the body and client
→˓credentials as the basic auth header will return #access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_password}

access_token_response = requests.post(token_url, data=data, verify=False, allow_
→˓redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

#Step- now use the access_token to call infer configuration api and its save api.

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

#infer the hadoop configuration

infer_configuration_api_response = requests.get(infer_configuration_api_url,
→˓headers=api_call_headers, verify=False)
print(" infer configuration response : "+ infer_configuration_api_response.text)

#save the hadoop configuration

save_configuration_api_response = requests.post(save_configuration_api_url,json=infer_
→˓configuration_api_response.json(), headers=api_call_headers, verify=False)

print(" configuration after save : "+save_configuration_api_response.text)

After running above REST API code using Python, Will get the results as below

726 Chapter 26. REST API Authentication

CHAPTER 27

REST API’s using Python

27.1 REST API Examples using Python

Sparkflows provides REST API for interacting with it.

Below are examples using tokens. The first step is to log in with your username and password and acquire the token.

Swagger is also enabled and is available at http://<machine-name>:8080/swagger-ui.html

27.1.1 Accessing REST API using Python & Session

Fire Insights REST APIs can be accessed with Python. This page provides 2 examples of accessing the REST API’s
with Python.

Get List of Processors

The below code in Python gets the list of Processors in Fire Insights using the REST API and prints them.

1 #!/usr/bin/python
2

3 # This python script logs into an instance of sparkflows, and then gets the list of
→˓Processors/Operators supported

4

5 # -*- coding: utf-8 -*-
6 import json
7 import requests
8

9 payload = {'username':'admin', 'password':'admin'}
10

11 # login url
12 urllogin = 'http://localhost:8080/login'
13

(continues on next page)

727

http:/

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

14 # get list of processors url
15 urlprocessors = 'http://localhost:8080/nodeList'
16

17 with requests.session() as s:
18

19 # log into sparkflows
20 r = s.post(urllogin, data=payload)
21

22 # get list of processors
23 resp = s.get(urlprocessors)
24

25 parsed_resp = json.loads(resp.text)
26

27 for i in parsed_resp:
28 print (i['name'])

Create a New Workflow

The Workflow JSON is saved in a file called workflow.json.

The below code in Python creates a new Workflow in the Project with id 1.

1 #!/usr/bin/python
2

3 # This python script logs into an instance of sparkflows, and then gets the list of
→˓Processors/Operators supported

4

5 # -*- coding: utf-8 -*-
6 import json
7 import requests
8

9 payload = {'username':'admin', 'password':'admin'}
10

11 # login url
12 urllogin = 'http://localhost:8080/login'
13

14 # save workflow url
15 urlsaveworkflow = 'http://localhost:8080/saveWorkflow'
16

17 # read workflow json
18 wf = open("workflow.json","r", encoding='utf8')
19 workflow = wf.read()
20

21 # define other parameters
22 analysisFlowId = "null"
23 projectId = "1"
24 engine = "scala"
25

26 with requests.session() as s:
27

28 # log into sparkflows
29 s.get(urllogin)
30

31 r = s.post(urllogin, data=payload)
32

(continues on next page)

728 Chapter 27. REST API’s using Python

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

33 # save workflow
34 headers = {'Content-type': 'application/json', 'Accept': 'text/plain',

→˓'analysisFlowId': analysisFlowId, 'projectId': projectId, 'engine':engine }
35 resp = s.post(urlsaveworkflow, data=workflow, headers=headers)
36

37 print(resp)

27.1.2 Accessing REST API using Python & Tokens

Below are examples of Python code for accessing the Fire REST API using Python.

Get Processor Count

The below code in Python invokes the Fire Insights REST API to calculate number of processors list available in Fire
Insight.

#!/usr/bin/python

import requests

import json

import getpass

token_url = "http://localhost:8080/oauth/token"

processor_count_api_url = "http://localhost:8080/getNodeCount" # processor
→˓list count api of sparkflows

#Step A - resource owner supplies credentials
#Resource owner (enduser) credentials

RO_user = 'admin'
RO_password = 'admin'

#client (application) credentials
client_id = 'sparkflows'
client_secret = 'secret'

#step B, C - single call with resource owner credentials in the body and
→˓client credentials as the basic auth header will return #access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_
→˓password}

access_token_response = requests.post(token_url, data=data, verify=False,
→˓allow_redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

(continues on next page)

27.1. REST API Examples using Python 729

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

Step C - now we can use the access_token to make as many calls as we want.

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

api_call_response = requests.get(processor_count_api_url, headers=api_call_
→˓headers, verify=False)

print(api_call_response.text)

After running above REST API code using Python, will get the results as below:

Infer Hadoop Cluster Configurations

The below code in Python invokes the Fire Insights REST API to infer Hadoop cluster configurations. It then saves
the infer cluster Hadoop configurations as updated values.

#!/usr/bin/python

import requests

import json

token_url = "http://localhost:8080/oauth/token"

infer_configuration_api_url = "http://localhost:8080/api/v1/configurations/infer"

save_configuration_api_url = "http://localhost:8080/api/v1/configurations"

#Step A - resource owner supplies credentials
#Resource owner (enduser) credentials

RO_user = 'admin' #input your own username
RO_password = 'admin' #input your own password

#client (application) credentials

client_id = 'sparkflows'
client_secret = 'secret'

#step B, C - single call with resource owner credentials in the body and client
→˓credentials as the basic auth header will return #access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_password}

access_token_response = requests.post(token_url, data=data, verify=False, allow_
→˓redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

(continues on next page)

730 Chapter 27. REST API’s using Python

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

#Step- now use the access_token to call infer configuration api and its save api.

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

#infer the hadoop configuration

infer_configuration_api_response = requests.get(infer_configuration_api_url,
→˓headers=api_call_headers, verify=False)
print(" infer configuration response : "+ infer_configuration_api_response.text)

#save the hadoop configuration

save_configuration_api_response = requests.post(save_configuration_api_url,json=infer_
→˓configuration_api_response.json(), headers=api_call_headers, verify=False)

print(" configuration after save : "+save_configuration_api_response.text)

After running above REST API code using Python, will get the results as below

27.1. REST API Examples using Python 731

Sparkflows Documentation, Release 0.0.1

732 Chapter 27. REST API’s using Python

CHAPTER 28

REST API’s using Java

28.1 REST API Examples using Java

Fire Insighs provides REST API for interacting with it.

Below are examples using tokens. The first step is to log in with your username and password and acquire the token.

Swagger is also enabled and is available at http://<machine-name>:8080/swagger-ui.html

733

http:/

Sparkflows Documentation, Release 0.0.1

734 Chapter 28. REST API’s using Java

CHAPTER 29

REST API’s using curl

29.1 REST API Examples using curl

This topic contains a range of examples that demonstrate how to use the Fire Insights API using curl.

Acquire Session Cookie Using Curl

When invoking the REST APIs of Fire Insights with curl, the first step is to log in and save the incoming cookie into
a text file. This file would then be used in making subsequent REST calls via curl.

Save the incoming cookies using the -c option of curl into a file.

In the below examples, the Fire Insights web server is running on the local machine at : localhost:8080

You can replace it with your machine name and port.

Login and save the session cookie into /tmp/cookies.txt:

curl -i -X POST -d username=admin -d password=admin -c /tmp/cookies.txt
→˓localhost:8080/login

In the above:

• username = admin

• password = admin

• Incoming cookie gets saved into : /tmp/cookies.txt

• REST API endpoint : localhost:8080/login

There are various categories of REST API’s available:

29.1.1 Processors REST API’s

735

Sparkflows Documentation, Release 0.0.1

Overview

The Processors REST APIs, allow you to get the list of available Processors and details regarding each Processor.

Below are the various Processor APIs available in Fire Insights.

They should be executed after you have logged into Fire Insights. Use the -b option to use the cookies previously
saved.

GET Processors List

Gets the list of processors available.

An example request for getting list of processors:

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/nodes' -
→˓b /tmp/cookies.txt

An example response:

[
{

"id": "3",
"path": "/01-Connectors/",
"name": "ReadCassandra",
"iconImage": null,
"description": "This node reads data from Apache Cassandra",
"details": "",
"examples": "",
"type": "dataset",
"nodeClass": "fire.nodes.cassandra.NodeReadCassandra",
"x": null,
"y": null,
"fields": [
{

"name": "storageLevel",
"value": "DEFAULT",
"widget": "array",
"title": "Output Storage Level",
"description": "Storage Level of the Output Datasets of this Node",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"DEFAULT",
"NONE",
"DISK_ONLY",
"DISK_ONLY_2",
"MEMORY_ONLY",
"MEMORY_ONLY_2",
"MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2",
"MEMORY_AND_DISK",
"MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER",
"MEMORY_AND_DISK_SER_2",
"OFF_HEAP"

],
"required": false,

(continues on next page)

736 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "table",
"value": "",
"widget": "textfield",
"title": "Cassandra Table",
"description": "Cassandra Table from which to read the data",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": true,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "keyspace",
"value": "",
"widget": "textfield",
"title": "Cassandra Keyspace",
"description": "Cassandra Keyspace",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": true,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "cluster",
"value": "",
"widget": "textfield",
"title": "Cassandra Cluster",
"description": "The group of the Cluster Level ",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

}
],
"engine": "scala"

},

GET Node Count

Gets the count of the processors.

An example request for getting count of the processors:

29.1. REST API Examples using curl 737

Sparkflows Documentation, Release 0.0.1

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/nodes/
→˓count' -b /tmp/cookies.txt

An example response:

266

GET Processors list for Engine

Gets the list of processors for the specified engine(scala or pyspark or empty-field for all).

An example request for getting list of processors for scala

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/nodes?
→˓engine=scala' -b /tmp/cookies.txt

An example response:

[
{

"id": "3",
"path": "/01-Connectors/",
"name": "ReadCassandra",
"iconImage": null,
"description": "This node reads data from Apache Cassandra",
"details": "",
"examples": "",
"type": "dataset",
"nodeClass": "fire.nodes.cassandra.NodeReadCassandra",
"x": null,
"y": null,
"fields": [
{

"name": "storageLevel",
"value": "DEFAULT",
"widget": "array",
"title": "Output Storage Level",
"description": "Storage Level of the Output Datasets of this Node",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"DEFAULT",
"NONE",
"DISK_ONLY",
"DISK_ONLY_2",
"MEMORY_ONLY",
"MEMORY_ONLY_2",
"MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2",
"MEMORY_AND_DISK",
"MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER",
"MEMORY_AND_DISK_SER_2",
"OFF_HEAP"

],
"required": false,

(continues on next page)

738 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "table",
"value": "",
"widget": "textfield",
"title": "Cassandra Table",
"description": "Cassandra Table from which to read the data",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": true,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "keyspace",
"value": "",
"widget": "textfield",
"title": "Cassandra Keyspace",
"description": "Cassandra Keyspace",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": true,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "cluster",
"value": "",
"widget": "textfield",
"title": "Cassandra Cluster",
"description": "The group of the Cluster Level ",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

}
],
"engine": "scala"

},

GET Processor Details by Name

Gets Processor Details by Name

An example request for getting Processor Details by Name:

29.1. REST API Examples using curl 739

Sparkflows Documentation, Release 0.0.1

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/nodes/
→˓names/ReadCSV' -b /tmp/cookies.txt

An example response:

{
"id": "17",
"path": "/02-ReadStructured/",

"name": "ReadCSV",
"iconImage": null,
"description": "It reads in CSV files and creates a DataFrame from it",
"details": "",
"examples": "",
"type": "dataset",
"nodeClass": "fire.nodes.dataset.NodeDatasetCSV",
"x": null,
"y": null,
"fields": [
{

"name": "storageLevel",
"value": "DEFAULT",
"widget": "array",
"title": "Output Storage Level",
"description": "Storage Level of the Output Datasets of this Node",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"DEFAULT",
"NONE",
"DISK_ONLY",
"DISK_ONLY_2",
"MEMORY_ONLY",
"MEMORY_ONLY_2",
"MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2",
"MEMORY_AND_DISK",
"MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER",
"MEMORY_AND_DISK_SER_2",
"OFF_HEAP"

],
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "path",
"value": "",
"widget": "textfield",
"title": "Path",
"description": "Path of the Text file/directory",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": true,
"display": true,

(continues on next page)

740 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"editable": true,
"disableRefresh": false

},
{

"name": "separator",
"value": ",",
"widget": "textfield",
"title": "Separator",
"description": "CSV Separator",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "header",
"value": "false",
"widget": "array",
"title": "Header",
"description": "Does the file have a header row",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"true",
"false"

],
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "dropMalformed",
"value": "false",
"widget": "array",
"title": "Drop Malformed",
"description": "Whether to drop Malformed records or error",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"true",
"false"

],
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "outputColNames",
"value": "[]",
"widget": "schema_col_names",
"title": "Column Names for the CSV",
"description": "New Output Columns of the SQL",

(continues on next page)

29.1. REST API Examples using curl 741

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "outputColTypes",
"value": "[]",
"widget": "schema_col_types",
"title": "Column Types for the CSV",
"description": "Data Type of the Output Columns",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{

"name": "outputColFormats",
"value": "[]",
"widget": "schema_col_formats",
"title": "Column Formats for the CSV",
"description": "Format of the Output Columns",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

}
],
"engine": "all"

}

Node Rules

Gets the node rules used in the workflow editor.

An example request for getting the node rules:

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/node-
→˓rules' -b /tmp/cookies.txt

An example response:

[
{

"nodeType": "dataset",
"possibleSources": [

(continues on next page)

742 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"shellcommand"
],
"minNumOfInputs": 0,
"maxNumOfInputs": 1,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#F0F1F9",
"nodeIcon": "fa-th-list",
"nodeShape": "rectangle"

},
{

"nodeType": "shellcommand",
"possibleSources": [
"dataset",
"scala",
"pyspark",
"transform",
"join",
"ml-transformer",
"ml-predict",
"sparkstreaming"

],
"minNumOfInputs": 0,
"maxNumOfInputs": 1,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#F0F1F9",
"nodeIcon": "fa-th-list",
"nodeShape": "rectangle"

},
{

"nodeType": "sparkstreaming",
"possibleSources": [],
"minNumOfInputs": 0,
"maxNumOfInputs": 0,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#FFEB94",
"nodeIcon": "fa-external-link",
"nodeShape": "rectangle"

},
{

"nodeType": "transform",
"possibleSources": [
"dataset",
"scala",
"pyspark",
"transform",
"join",
"ml-transformer",
"ml-predict",
"sparkstreaming",
"shellcommand"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 1,
"maxNumOfOutputs": null,

(continues on next page)

29.1. REST API Examples using curl 743

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"sourceRestrictions": [],
"backgroundColor": "#AFD4F0",
"nodeIcon": "fa-tumblr-square",
"nodeShape": "rectangle"

},
{

"nodeType": "scala",
"possibleSources": [
"dataset",
"transform",
"join",
"ml-transformer",
"ml-predict",
"sparkstreaming",
"shellcommand"

],
"minNumOfInputs": 0,
"maxNumOfInputs": 1,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#AFD4F0",
"nodeIcon": "fa-tumblr-square",
"nodeShape": "rectangle"

},
{

"nodeType": "pyspark",
"possibleSources": [
"dataset",
"transform",
"join",
"ml-transformer",
"ml-predict",
"sparkstreaming",
"shellcommand"

],
"minNumOfInputs": 0,
"maxNumOfInputs": 1,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#AFD4F0",
"nodeIcon": "fa-tumblr-square",
"nodeShape": "rectangle"

},
{

"nodeType": "join",
"possibleSources": [
"dataset",
"transform",
"join",
"shellcommand",
"sparkstreaming"

],
"minNumOfInputs": 2,
"maxNumOfInputs": 8,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#D4A190",

(continues on next page)

744 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"nodeIcon": "fa-stumbleupon",
"nodeShape": "rectangle"

},
{

"nodeType": "ml-transformer",
"possibleSources": [
"dataset",
"transform",
"ml-transformer",
"join",
"shellcommand"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 1,
"maxNumOfOutputs": "2",
"sourceRestrictions": [],
"backgroundColor": "#dfe166",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
{

"nodeType": "ml-estimator",
"possibleSources": [
"dataset",
"transform",
"ml-transformer",
"join",
"shellcommand"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 1,
"maxNumOfOutputs": "2",
"sourceRestrictions": [],
"backgroundColor": "#F7EFE2",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
{

"nodeType": "ml-predict",
"possibleSources": [
"dataset",
"transform",
"join",
"ml-estimator",
"ml-transformer",
"ml-pipeline",
"ml-crossvalidator",
"ml-modelload"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 2,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#D7CFC2",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
(continues on next page)

29.1. REST API Examples using curl 745

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

{
"nodeType": "ml-evaluator",
"possibleSources": [
"ml-predict",
"ml-estimator",
"ml-pipeline"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 1,
"maxNumOfOutputs": "1",
"sourceRestrictions": [],
"backgroundColor": "#ff9900",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
{

"nodeType": "ml-pipeline",
"possibleSources": [
"ml-estimator",
"ml-transformer"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 1,
"maxNumOfOutputs": "1",
"sourceRestrictions": [],
"backgroundColor": "#1FFF62",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
{

"nodeType": "ml-crossvalidator",
"possibleSources": [
"ml-evaluator"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 1,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#F9FC81",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
{

"nodeType": "ml-trainvalidationsplit",
"possibleSources": [
"ml-evaluator"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 1,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#B681FC",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
{

"nodeType": "ml-modelsave",
(continues on next page)

746 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"possibleSources": [
"ml-estimator",
"ml-pipeline",
"ml-crossvalidator",
"ml-trainvalidationsplit"

],
"minNumOfInputs": 1,
"maxNumOfInputs": 1,
"maxNumOfOutputs": "1",
"sourceRestrictions": [],
"backgroundColor": "#FCB881",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
{

"nodeType": "ml-modelload",
"possibleSources": [
"dataset",
"transform",
"join",
"ml-estimator",
"ml-transformer",
"ml-pipeline",
"ml-crossvalidator",
"ml-modelsave"

],
"minNumOfInputs": 0,
"maxNumOfInputs": 1,
"maxNumOfOutputs": "1",
"sourceRestrictions": [],
"backgroundColor": "#FCB881",
"nodeIcon": "fa-qrcode",
"nodeShape": "rectangle"

},
{

"nodeType": "doc",
"possibleSources": [
"doc"

],
"minNumOfInputs": 0,
"maxNumOfInputs": 0,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#FFFF88",
"nodeIcon": "fa-file-text",
"nodeShape": "rectangle"

},
{

"nodeType": "sticky",
"possibleSources": [],
"minNumOfInputs": 0,
"maxNumOfInputs": 0,
"maxNumOfOutputs": null,
"sourceRestrictions": [],
"backgroundColor": "#FFFF88",
"nodeIcon": "fa-file-text",
"nodeShape": "rectangle"

(continues on next page)

29.1. REST API Examples using curl 747

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

},

29.1.2 Datasets REST API

Overview

The Dataset REST APIs, allow you to manage the Datasets.

Below are the various Dataset APIs available in Fire Insights, They should be executed after you have logged into Fire
Insights.

GET List of Datasets by Application

Returns the list of Datasets for the logged in user for a given application id:

curl -X GET --header 'Accept: application/json' --header 'api_key: cookies' 'http://
→˓localhost:8080/api/v1/datasets?sortPara=dsc&projectId=1'

Create / Update Dataset

If id value is not passed, new dataset will be created:

JSON

{
"id": 13,
"version": 0,
"name": "spam",
"header": true,
"path": "data\/spam.csv",
"delimiter": ",",
"schemaModel": {
"schemaColList": [

{
"colName": "label",
"colType": "DOUBLE",
"colFormat": "",
"colMLType": "NUMERIC"

},
{

"colName": "message",
"colType": "STRING",
"colFormat": "",
"colMLType": "TEXT"

},
{

"colName": "id",
"colType": "DOUBLE",
"colFormat": "",
"colMLType": "NUMERIC"

(continues on next page)

748 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

}
]

}
}

Curl

curl-X POST --header 'Content-Type: application/json' --header 'Accept: /' -d '{
→˓"id":13,"version":0,"name":"spam","header":true,"path":"data/spam.csv","delimiter":
→˓",","schemaModel":{"schemaColList":[{"colName":"label","colType":"DOUBLE","colFormat
→˓":"","colMLType":"NUMERIC"},{"colName":"message","colType":"STRING","colFormat":"",
→˓"colMLType":"TEXT"},{"colName":"id","colType":"DOUBLE","colFormat":"","colMLType":
→˓"NUMERIC"}]}}' localhost:8080/dataset/save -b /tmp/cookies.txt

Delete Dataset

• “datasetId”: “98”

• “projectId”: “33”

An example request for Deleting dataset:

curl -X DELETE --header 'Accept: text/plain' 'http://localhost:8080/api/v1/datasets/
→˓98?projectId=33'

An example response:

Dataset with id 98 deleted successfully

Get Dataset by Id

• “datasetId”: “65”

• “projectId”: “33”

An example request for Getting dataset by Id:

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/
→˓datasets/65?projectId=33'

An example response:

{
"id": 65,
"userId": 33,
"uuid": "1e13ec2a-4094-405e-a6e7-ffed3bd027f7",
"version": 0,
"name": "Test-dataset",
"category": null,
"description": "Test",
"header": true,
"readOptions": null,
"path": "/user/sparkflows/Clickthru.csv",

(continues on next page)

29.1. REST API Examples using curl 749

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"delimiter": ",",
"datasetType": "CSV",
"filterLinesContaining": null,
"datasetSchema": "{colNames:[\"Timestamp\",\"UserId\",\"IP Address\",\"Product Id\

→˓"],colTypes:[\"STRING\",\"INTEGER\",\"STRING\",\"INTEGER\"],colFormats:[\"\",\"\",\
→˓"\",\"\"],colMLTypes:[\"TEXT\",\"NUMERIC\",\"TEXT\",\"NUMERIC\"]}",

"dateCreated": 1566880637842,
"dateLastUpdated": 1566880637846,
"permission": null,
"readOptionsModel": null,
"schemaModel": {
"schemaColList": [
{

"colName": "Timestamp",
"colType": "STRING",
"colFormat": "",
"colMLType": "TEXT"

},
{

"colName": "UserId",
"colType": "INTEGER",
"colFormat": "",
"colMLType": "NUMERIC"

},
{

"colName": "IP Address",
"colType": "STRING",
"colFormat": "",
"colMLType": "TEXT"

},
{

"colName": "Product Id",
"colType": "INTEGER",
"colFormat": "",
"colMLType": "NUMERIC"

}
]
},
"sampleData": {
"headers": [
"Timestamp",
"UserId",
"IP Address",
" Product Id"

],
"cells": [
[

"9:03 AM",
"275",
"207.51.113.192",
"1"

],
[

"12:57 AM",
"586",
"62.34.98.94",
"2"

(continues on next page)

750 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

],
[

"2:45 AM",
"508",
"20.237.172.182",
"3"

],
[

"2:13 PM",
"378",
"69.215.255.150",
"4"

],
[

"9:27 AM",
"965",
"56.101.183.251",
"5"

],
[

"8:18 AM",
"263",
"9.151.97.180",
"6"

],
[

"9:40 AM",
"670",
"101.195.1.186",
"7"

],
[

"7:14 AM",
"447",
"232.29.216.95",
"8"

],
[

"12:57 AM",
"33",
"85.119.50.62",
"9"

],
[

"12:56 AM",
"589",
"185.132.243.178",
"10"

],
[

"11:04 PM",
"22",
"120.212.232.218",
"11"

],
[

"8:29 PM",
(continues on next page)

29.1. REST API Examples using curl 751

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"504",
"226.70.25.117",
"12"

],
[

"5:18 PM",
"228",
"213.53.100.18",
"13"

],
[

"2:56 PM",
"536",
"60.65.25.167",
"14"

],
[

"3:57 AM",
"46",
"149.156.17.120",
"15"

],
[

"8:05 AM",
"812",
"23.213.182.107",
"16"

],
[

"12:02 PM",
"980",
"93.20.165.16",
"17"

],
[

"12:53 PM",
"915",
"24.180.112.147",
"18"

],
[

"11:32 AM",
"814",
"110.81.139.11",
"19"

],
[

"11:01 PM",
"429",
"115.123.246.193",
"20"

]
]
},

"json": "{\"id\":65,\"userId\":33,\"uuid\":\"1e13ec2a-4094-405e-a6e7-ffed3bd027f7\",\
→˓"version\":0,\"name\":\"Test-dataset\",\"description\":\"Test\",\"header\":true,\
→˓"path\":\"/user/sparkflows/Clickthru.csv\",\"delimiter\":\",\",\"datasetType\":\
→˓"CSV\",\"datasetSchema\":\"{colNames:[\\\"Timestamp\\\",\\\"UserId\\\",\\\"IP
→˓Address\\\",\\\"Product Id\\\"],colTypes:[\\\"STRING\\\",\\\"INTEGER\\\",\\\
→˓"STRING\\\",\\\"INTEGER\\\"],colFormats:[\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\"],
→˓colMLTypes:[\\\"TEXT\\\",\\\"NUMERIC\\\",\\\"TEXT\\\",\\\"NUMERIC\\\"]}\",\
→˓"dateCreated\":\"Aug 27, 2019 4:37:17 AM\",\"dateLastUpdated\":\"Aug 27, 2019
→˓4:37:17 AM\",\"schemaModel\":{\"schemaColList\":[{\"colName\":\"Timestamp\",\
→˓"colType\":\"STRING\",\"colFormat\":\"\",\"colMLType\":\"TEXT\"},{\"colName\":\
→˓"UserId\",\"colType\":\"INTEGER\",\"colFormat\":\"\",\"colMLType\":\"NUMERIC\"},{\
→˓"colName\":\"IP Address\",\"colType\":\"STRING\",\"colFormat\":\"\",\"colMLType\":\
→˓"TEXT\"},{\"colName\":\"Product Id\",\"colType\":\"INTEGER\",\"colFormat\":\"\",\
→˓"colMLType\":\"NUMERIC\"}]},\"projectId\":33}",

(continues on next page)

752 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"projectId": 33
},

Get Dataset Count

Returns the count of datasets available:

curl -X GET --header 'Accept: application/json' --header 'api_key: cookies' 'http://
→˓localhost:8080/api/v1/datasets/count'

Get sample data

Delimiter and header are optional values

• path: data/spam.csv

• schema: {“colNames”:[“0.0”,”this is not a spam”,”3.0”],”colTypes”:[“DOUBLE”,”STRING”,”DOUBLE”],”colFormats”:[“”,””,””],”colMLTypes”:[“NUMERIC”,”TEXT”,”NUMERIC”]}

CURL:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' --header 'api_key: cookies' -d
'{"colNames":["0.0","this is not a spam","3.0"],"colTypes":["DOUBLE","STRING","DOUBLE
→˓"],"colFormats":["","",""],"colMLTypes":["NUMERIC","TEXT","NUMERIC"]}' http://
→˓localhost:8080/api/v1/datasets/sample-data

Returns schema of the files in the given path using the given delimiter

• delimiter and header are optional values

• path:data/spam.csv

• schema: {“colNames”:[“0.0”,”this is not a spam”,”3.0”],”colTypes”:[“DOUBLE”,”STRING”,”DOUBLE”],”colFormats”:[“”,””,””],”colMLTypes”:[“NUMERIC”,”TEXT”,”NUMERIC”]}

CURL:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' --header 'api_key: cookies' -d
'{"colNames":["0.0","this is not a spam","3.0"],"colTypes":["DOUBLE","STRING","DOUBLE
→˓"],"colFormats":["","",""],"colMLTypes":["NUMERIC","TEXT","NUMERIC"]}' http://
→˓localhost:8080/api/v1/datasets/schema

Get Latest Five Datasets

Returns the latest updated datasets:

curl -X GET --header 'Accept: application/json' --header 'api_key: cookies' 'http://
→˓localhost:8080/api/v1/datasets/latest'

29.1. REST API Examples using curl 753

Sparkflows Documentation, Release 0.0.1

Get the list of files/directories in the given path

• path:data/transaction.csv

CURL:

curl -X GET --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d 'data/transaction.csv' 'http://localhost:8080/filesInPathJSON -b /tmp/
→˓cookies.txt'

29.1.3 Workflow REST API

The Workflow REST API’s, allow you to interact with the Workflows.

Below are the various Workflow API’s available in Fire Insights. They should be executed after you have logged into
Fire Insights.

Create Workflow

Create a new Workflow.

An example request for creating workflow:

curl -X POST --header 'Content-Type: application/json' --header 'Accept:
→˓application/json' -d '{
"analysisflowId": 1,
"comment": "string",
"projectId": 33,
"workflow": {

"category": "string",
"dataSetDetails": [
{

"datasetSchema": "string",
"datasetType": "CSV",
"delimiter": "string",
"description": "string",
"filterLinesContaining": "string",
"header": true,
"id": 0,
"name": "string",
"path": "string",
"readOptions": "string",
"uuid": "string",
"version": 0

}
],
"description": "string",
"edges": [
{

"id": 0,
"source": "string",
"target": "string"

}
],
"engine": "string",
"h2OWorkflow": true,

(continues on next page)

754 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"name": "string",
"nodes": [
{

"description": "string",
"details": "string",
"engine": "string",
"examples": "string",
"fields": [

{
"datatypes": [

"string"
],
"description": "string",
"disableRefresh": true,
"display": true,
"editable": true,
"name": "string",
"optionsArray": [

"string"
],
"optionsMap": {},
"required": true,
"title": "string",
"value": "string",
"widget": "string"

}
],
"iconImage": "string",
"id": "string",
"name": "string",
"nodeClass": "string",
"path": "string",
"type": "string",
"x": "string",
"y": "string"

}
],
"parameters": "string",
"uuid": "string"

}
}' 'http://hostname:port/api/v1/workflows' -b /tmp/cookies.txt

An example response:

193

Execute Workflow

Execute specified Workflow.

An example request for Executing specified workflow:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d '{
"emailOnFailure": "string",

(continues on next page)

29.1. REST API Examples using curl 755

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"emailOnSuccess": "string",
"libJars": "string",
"programParameters": "string",
"sparkConfig": "string",
"workflowId": 1
}' 'http://hostname:port/api/v1/workflow/execute' -b /tmp/cookies.txt

An example response:

162

Update Workflow

Update specified Workflow.

An example request for updating workflow:

curl -X PUT --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' -d '{
"analysisflowId": 1,
"comment": "string",
"projectId": 33,
"workflow": {

"category": "string",
"dataSetDetails": [
{

"datasetSchema": "string",
"datasetType": "CSV",
"delimiter": "string",
"description": "string",
"filterLinesContaining": "string",
"header": true,
"id": 0,
"name": "string",
"path": "string",
"readOptions": "string",
"uuid": "string",
"version": 0

}
],
"description": "string",
"edges": [
{

"id": 0,
"source": "string",
"target": "string"

}
],
"engine": "string",
"h2OWorkflow": true,
"name": "string",
"nodes": [
{

"description": "string",
"details": "string",

(continues on next page)

756 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"engine": "string",
"examples": "string",
"fields": [

{
"datatypes": [
"string"

],
"description": "string",
"disableRefresh": true,
"display": true,
"editable": true,
"name": "string",
"optionsArray": [

"string"
],
"optionsMap": {},
"required": true,
"title": "string",
"value": "string",
"widget": "string"

}
],
"iconImage": "string",
"id": "string",
"name": "string",
"nodeClass": "string",
"path": "string",
"type": "string",
"x": "string",
"y": "string"

}
],
"parameters": "string",
"uuid": "string"

}
}' 'http://hostname:port/api/v1/workflows' -b /tmp/cookies.txt

An example response:

131

Get workflow by Id

Gets the workflow with the specified id.

• id: 1

An example request for getting workflow by id:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/
→˓workflows/id/1' -b /tmp/cookies.txt

An example response:

{
"id": 1,

(continues on next page)

29.1. REST API Examples using curl 757

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"userId": 1,
"uuid": "3a3dfa34-bbd7-4c05-8745-55628d90cbf6",
"name": "Analyze Flights Delay",
"category": "Analytics",
"content": "{\"name\":\"Analyze Flights Delay\",\"uuid\":\"3a3dfa34-bbd7-4c05-8745-
→˓55628d90cbf6\",\"category\":\"Analytics\",\"description\":\"Find Flights which are
→˓delayed by more than 40 minutes.\",\"nodes\":[{\"id\":\"1\",\"name\":\
→˓"DatasetStructured\",\"description\":\"This Node creates a DataFrame by reading
→˓data from HDFS, HIVE etc. The dataset has been defined earlier in Fire by using the
→˓Dataset Feature. As a user, you just have to select the Dataset of your interest.\",
→˓\"details\":\"This Node creates a DataFrame by reading data from HDFS, HIVE etc.
→˓\\u003cbr\\u003e\\n\\u003cbr\\u003e\\nThe data has been defined earlier in Fire by
→˓using the Dataset Feature. As a user, you just have to select the Dataset of your
→˓interest.\\u003cbr\\u003e\",\"examples\":\"\",\"type\":\"dataset\",\"nodeClass\":\
→˓"fire.nodes.dataset.NodeDatasetStructured\",\"x\":\"38.9492px\",\"y\":\"275.613px\",
→˓\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\
→˓"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output
→˓Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_
→˓ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\
→˓",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_
→˓DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"dataset\",\"value\":\"2ff32692-9b3c-49de-91a7-
→˓401daf2590c1\",\"widget\":\"dataset\",\"title\":\"Dataset\",\"description\":\
→˓"Selected Dataset\",\"required\":true,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"2\",\"name\":\"PrintNRows\
→˓",\"description\":\"Prints the specified number of records in the DataFrame. It is
→˓useful for seeing intermediate output\",\"details\":\"\",\"examples\":\"\",\"type\
→˓":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"38.
→˓4336px\",\"y\":\"59.1094px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\
→˓"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\
→˓"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\
→˓"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_
→˓ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_
→˓AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\
→˓":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"title\",\"value\":\
→˓"Row Values\",\"widget\":\"textfield\",\"title\":\"Title\",\"required\":false,\
→˓"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"n\",\"value\
→˓":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\
→˓"number of rows to be printed\",\"required\":false,\"display\":true,\"editable\
→˓":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"3\",\"name\":\
→˓"CastColumnType\",\"description\":\"This node creates a new DataFrame by casting
→˓input columns with a new data type\",\"details\":\"\",\"examples\":\"\",\"type\":\
→˓"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\"313.223px\
→˓",\"y\":\"61.8633px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\
→˓"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage
→˓Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\
→˓"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\
→˓"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_
→˓SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\
→˓"editable\":true,\"disableRefresh\":false},{\"name\":\"inputCols\",\"value\":\"[\\\
→˓"CRS_DEP_TIME\\\",\\\"CRS_ARR_TIME\\\",\\\"CRS_ELAPSED_TIME\\\"]\",\"widget\":\
→˓"variables\",\"title\":\"Columns\",\"description\":\"Columns to be cast to new data
→˓type\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\
→˓":false},{\"name\":\"outputColType\",\"value\":\"DOUBLE\",\"widget\":\"array\",\
→˓"title\":\"New Data Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING,
→˓LONG, SHORT)\",\"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DECIMAL\",\"DOUBLE\
→˓",\"FLOAT\",\"INTEGER\",\"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\
→˓":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\
→˓"replaceExistingCols\",\"value\":\"true\",\"widget\":\"array\",\"title\":\"Replace
→˓Existing Cols\",\"description\":\"Whether to replace existing columns or create new
→˓ones\",\"optionsArray\":[\"true\",\"false\"],\"required\":false,\"display\":true,\
→˓"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"4\",\
→˓"name\":\"CastColumnType\",\"description\":\"This node creates a new DataFrame by
→˓casting input columns with a new data type\",\"details\":\"\",\"examples\":\"\",\
→˓"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\
→˓"322.949px\",\"y\":\"275.633px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\
→˓"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\
→˓"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\
→˓"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_
→˓ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_
→˓AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\
→˓":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"inputCols\",\"value\
→˓":\"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_WEEK\\\"]\",\"widget\":\"variables\",\"title\
→˓":\"Columns\",\"description\":\"Columns to be cast to new data type\",\"required\
→˓":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\
→˓"outputColType\",\"value\":\"STRING\",\"widget\":\"array\",\"title\":\"New Data
→˓Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\
→˓"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DECIMAL\",\"DOUBLE\",\"FLOAT\",\
→˓"INTEGER\",\"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\":false,\
→˓"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\
→˓"replaceExistingCols\",\"value\":\"true\",\"widget\":\"array\",\"title\":\"Replace
→˓Existing Cols\",\"description\":\"Whether to replace existing columns or create new
→˓ones\",\"optionsArray\":[\"true\",\"false\"],\"required\":false,\"display\":true,\
→˓"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"5\",\
→˓"name\":\"StringIndexer\",\"description\":\"StringIndexer encodes a string column
→˓of labels to a column of label indices\",\"details\":\"\",\"examples\":\"\",\"type\
→˓":\"ml-transformer\",\"nodeClass\":\"fire.nodes.ml.NodeStringIndexer\",\"x\":\"630.
→˓238px\",\"y\":\"272.879px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\
→˓"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\
→˓"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\
→˓"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_
→˓ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_
→˓AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\
→˓":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"handleInvalid\",\
→˓"value\":\"skip\",\"widget\":\"array\",\"title\":\"Handle Invalid\",\"description\
→˓":\"Invalid entries to be skipped or thrown error\",\"optionsArray\":[\"skip\",\
→˓"error\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\
→˓":false},{\"name\":\"inputCols\",\"value\":\"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_
→˓WEEK\\\",\\\"CARRIER\\\",\\\"TAIL_NUM\\\",\\\"FL_NUM\\\",\\\"ORIGIN_AIRPORT_ID\\\",
→˓\\\"ORIGIN\\\",\\\"DEST_AIRPORT_ID\\\",\\\"DEST\\\",\\\"CRS_DEP_TIME\\\",\\\"DEP_
→˓TIME\\\",\\\"DEP_DELAY_NEW\\\",\\\"CRS_ARR_TIME\\\",\\\"ARR_TIME\\\",\\\"ARR_DELAY_
→˓NEW\\\",\\\"CRS_ELAPSED_TIME\\\",\\\"DISTANCE\\\"]\",\"widget\":\"variables_map\",\
→˓"title\":\"Input Columns\",\"description\":\"Column containing labels\",\"required\
→˓":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\
→˓"outputCols\",\"value\":\"[\\\"DAY_OF_MONTH_INDEX\\\",\\\"DAY_OF_WEEK_INDEX\\\",\\\
→˓"CARRIER_INDEX\\\",\\\"\\\",\\\"\\\",\\\"ORIGIN_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\
→˓"DEST_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\
→˓"\\\",\\\"\\\",\\\"\\\"]\",\"widget\":\"variables_map_edit\",\"title\":\"Output
→˓Columns\",\"description\":\"Output columns\",\"required\":false,\"display\":true,\
→˓"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"6\",\
→˓"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in
→˓the DataFrame. It is useful for seeing intermediate output\",\"details\":\"\",\
→˓"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.
→˓NodePrintFirstNRows\",\"x\":\"626.492px\",\"y\":\"63.1289px\",\"fields\":[{\"name\
→˓":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output
→˓Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\
→˓",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_
→˓ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_
→˓DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\
→˓"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\
→˓":false},{\"name\":\"title\",\"value\":\"Row Values\",\"widget\":\"textfield\",\
→˓"title\":\"Title\",\"required\":false,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\
→˓"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\
→˓"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\
→˓"engine\":\"scala\"},{\"id\":\"7\",\"name\":\"SQL\",\"description\":\"This node
→˓runs the given SQL on the incoming DataFrame\",\"details\":\"\",\"examples\":\"\",\
→˓"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeSQL\",\"x\":\"954.219px\",\
→˓"y\":\"59.8711px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\
→˓"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage
→˓Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\
→˓"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\
→˓"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_
→˓SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\
→˓"editable\":true,\"disableRefresh\":false},{\"name\":\"tempTable\",\"value\":\"fire_
→˓temp_table\",\"widget\":\"textfield\",\"title\":\"Temp Table\",\"description\":\
→˓"Temp Table Name to be used\",\"required\":false,\"display\":true,\"editable\":true,
→˓\"disableRefresh\":false},{\"name\":\"sql\",\"value\":\"select fire_temp_table.* ,
→˓case when fire_temp_table.DEP_DELAY_NEW \\u003e 40 then 1.0 else 0.0 END as label
→˓from fire_temp_table\",\"widget\":\"textarea_medium\",\"title\":\"SQL\",\
→˓"description\":\"SQL to be run\",\"required\":false,\"display\":true,\"editable\
→˓":true,\"disableRefresh\":false},{\"name\":\"schema\",\"value\":\"\",\"widget\":\
→˓"tab\",\"title\":\"Schema\",\"required\":false,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"outputColNames\",\"value\":\"[]\",\"widget\":\
→˓"schema_col_names\",\"title\":\"Output Column Names\",\"description\":\"Name of the
→˓Output Columns\",\"required\":false,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"outputColTypes\",\"value\":\"[]\",\"widget\":\
→˓"schema_col_types\",\"title\":\"Output Column Types\",\"description\":\"Data Type
→˓of the Output Columns\",\"required\":false,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"outputColFormats\",\"value\":\"[]\",\"widget\
→˓":\"schema_col_formats\",\"title\":\"Output Column Formats\",\"description\":\
→˓"Format of the Output Columns\",\"required\":false,\"display\":true,\"editable\
→˓":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"8\",\"name\":\
→˓"PrintNRows\",\"description\":\"Prints the specified number of records in the
→˓DataFrame. It is useful for seeing intermediate output\",\"details\":\"\",\
→˓"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.
→˓NodePrintFirstNRows\",\"x\":\"927.477px\",\"y\":\"291.137px\",\"fields\":[{\"name\
→˓":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output
→˓Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\
→˓",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_
→˓ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_
→˓DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\
→˓"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\
→˓":false},{\"name\":\"title\",\"value\":\"Row Values\",\"widget\":\"textfield\",\
→˓"title\":\"Title\",\"required\":false,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\
→˓"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\
→˓"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\
→˓"engine\":\"scala\"}],\"edges\":[{\"source\":\"1\",\"target\":\"2\",\"id\":1},{\
→˓"source\":\"2\",\"target\":\"3\",\"id\":2},{\"source\":\"3\",\"target\":\"4\",\"id\
→˓":3},{\"source\":\"4\",\"target\":\"5\",\"id\":4},{\"source\":\"5\",\"target\":\"6\
→˓",\"id\":5},{\"source\":\"6\",\"target\":\"7\",\"id\":6},{\"source\":\"7\",\"target\
→˓":\"8\",\"id\":7}],\"dataSetDetails\":[],\"engine\":\"scala\"}",

(continues on next page)

758 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"description": "Find Flights which are delayed by more than 40 minutes.",
"version": 1,
"dateCreated": 1566551544583,
"dateLastUpdated": 1566551544583,
"lockedByUserId": null,
"permission": null,
"workflow": {

"name": "Analyze Flights Delay",
"uuid": "3a3dfa34-bbd7-4c05-8745-55628d90cbf6",
"category": "Analytics",
"description": "Find Flights which are delayed by more than 40 minutes.",
"parameters": null,
"nodes": [
{

"id": "1",
"path": null,
"name": "DatasetStructured",
"iconImage": null,
"description": "This Node creates a DataFrame by reading data from HDFS, HIVE

→˓etc. The dataset has been defined earlier in Fire by using the Dataset Feature. As
→˓a user, you just have to select the Dataset of your interest.",

"details": "This Node creates a DataFrame by reading data from HDFS, HIVE etc.
→˓
\n
\nThe data has been defined earlier in Fire by using the Dataset Feature.
→˓As a user, you just have to select the Dataset of your interest.
",

"examples": "",
"type": "dataset",
"nodeClass": "fire.nodes.dataset.NodeDatasetStructured",
"x": "38.9492px",
"y": "275.613px",
"fields": [

{
"name": "storageLevel",
"value": "DEFAULT",
"widget": "array",
"title": "Output Storage Level",
"description": "Storage Level of the Output Datasets of this Node",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"DEFAULT",
"NONE",
"DISK_ONLY",
"DISK_ONLY_2",
"MEMORY_ONLY",
"MEMORY_ONLY_2",
"MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2",
"MEMORY_AND_DISK",
"MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER",
"MEMORY_AND_DISK_SER_2",
"OFF_HEAP"

],
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

(continues on next page)

29.1. REST API Examples using curl 759

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

},
{
"name": "dataset",
"value": "2ff32692-9b3c-49de-91a7-401daf2590c1",
"widget": "dataset",
"title": "Dataset",
"description": "Selected Dataset",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": true,
"display": true,
"editable": true,
"disableRefresh": false

}
],
"engine": "scala"

},

Delete Workflow

Deletes a workflow with the given workflowId.

• workflowId: 1955

An example request for deleting workflow:

curl -X DELETE --header 'Accept: application/json' 'http://localhost:8080/api/v1/
→˓workflows/id/1955' -b /tmp/cookies.txt

An example response:

Workflow deleted successfully.

Get Latest WorkFlows

Gets the latest workFlows available in the given application:

An example request for getting Latest WorkFlows availble in application:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/
→˓workflows/latest' -b /tmp/cookies.txt

An example response:

{
"id": 1954,
"userId": 3,
"uuid": "0e119cf1-2833-4c62-8466-21853fc1fb21",
"name": "aaaaawqw",
"category": "-",
"content": "{\"name\":\"aaaaawqw\",\"uuid\":\"0e119cf1-2833-4c62-8466-21853fc1fb21\",\
→˓"category\":\"-\",\"description\":\"1111\",\"parameters\":\"2222@1111\",\"nodes\":[
→˓{\"id\":\"1\",\"name\":\"ReadCSV\",\"description\":\"It reads in CSV files and
→˓creates a DataFrame from it\",\"details\":\"\",\"examples\":\"\",\"type\":\"dataset\
→˓",\"nodeClass\":\"fire.nodes.dataset.NodeDatasetCSV\",\"x\":\"243.5px\",\"y\":\
→˓"206px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\
→˓"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the
→˓Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",
→˓\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_
→˓SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_
→˓AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\
→˓":true,\"disableRefresh\":false},{\"name\":\"path\",\"value\":\"/user/sparkflows/
→˓Clickthru.csv\",\"widget\":\"textfield\",\"title\":\"Path\",\"description\":\"Path
→˓of the Text file/directory\",\"required\":true,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"separator\",\"value\":\",\",\"widget\":\
→˓"textfield\",\"title\":\"Separator\",\"description\":\"CSV Separator\",\"required\
→˓":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\
→˓"header\",\"value\":\"true\",\"widget\":\"array\",\"title\":\"Header\",\
→˓"description\":\"Does the file have a header row\",\"optionsArray\":[\"true\",\
→˓"false\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\
→˓":false},{\"name\":\"dropMalformed\",\"value\":\"false\",\"widget\":\"array\",\
→˓"title\":\"Drop Malformed\",\"description\":\"Whether to drop Malformed records or
→˓error\",\"optionsArray\":[\"true\",\"false\"],\"required\":false,\"display\":true,\
→˓"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColNames\",\"value\":\
→˓"[\\\"Timestamp\\\",\\\"UserId\\\",\\\"IP Address\\\",\\\" Product Id\\\"]\",\
→˓"widget\":\"schema_col_names\",\"title\":\"Column Names for the CSV\",\"description\
→˓":\"New Output Columns of the SQL\",\"required\":false,\"display\":true,\"editable\
→˓":true,\"disableRefresh\":false},{\"name\":\"outputColTypes\",\"value\":\"[\\\
→˓"STRING\\\",\\\"INTEGER\\\",\\\"STRING\\\",\\\"INTEGER\\\"]\",\"widget\":\"schema_
→˓col_types\",\"title\":\"Column Types for the CSV\",\"description\":\"Data Type of
→˓the Output Columns\",\"required\":false,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"outputColFormats\",\"value\":\"[\\\"\\\",\\\
→˓"\\\",\\\"\\\",\\\"\\\"]\",\"widget\":\"schema_col_formats\",\"title\":\"Column
→˓Formats for the CSV\",\"description\":\"Format of the Output Columns\",\"required\
→˓":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\
→˓"all\"},{\"id\":\"2\",\"name\":\"PrintNRows\",\"description\":\"Prints the
→˓specified number of records in the DataFrame. It is useful for seeing intermediate
→˓output\",\"details\":\"\",\"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\
→˓"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"424.83px\",\"y\":\"191.323px\",\
→˓"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\
→˓"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output
→˓Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_
→˓ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\
→˓",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_
→˓DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"title\",\"value\":\"Row Values\",\"widget\":\
→˓"textfield\",\"title\":\"Title\",\"required\":false,\"display\":true,\"editable\
→˓":true,\"disableRefresh\":false},{\"name\":\"n\",\"value\":\"10\",\"widget\":\
→˓"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be
→˓printed\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\
→˓":false}],\"engine\":\"all\"}],\"edges\":[{\"source\":\"1\",\"target\":\"2\",\"id\
→˓":1}],\"dataSetDetails\":[],\"engine\":\"scala\"}",

(continues on next page)

760 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"description": "1111",
"version": 4,
"dateCreated": 1566395460079,
"dateLastUpdated": 1566395644690,
"lockedByUserId": null,
"permission": null,
"workflow": {

"name": "aaaaawqw",
"uuid": "0e119cf1-2833-4c62-8466-21853fc1fb21",
"category": "-",
"description": "1111",
"parameters": "2222@1111",
"nodes": [
{

"id": "1",
"path": null,
"name": "ReadCSV",
"iconImage": null,
"description": "It reads in CSV files and creates a DataFrame from it",
"details": "",
"examples": "",
"type": "dataset",
"nodeClass": "fire.nodes.dataset.NodeDatasetCSV",
"x": "243.5px",
"y": "206px",
"fields": [

{
"name": "storageLevel",
"value": "DEFAULT",
"widget": "array",
"title": "Output Storage Level",
"description": "Storage Level of the Output Datasets of this Node",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"DEFAULT",
"NONE",
"DISK_ONLY",
"DISK_ONLY_2",
"MEMORY_ONLY",
"MEMORY_ONLY_2",
"MEMORY_ONLY_SER",
"MEMORY_ONLY_SER_2",
"MEMORY_AND_DISK",
"MEMORY_AND_DISK_2",
"MEMORY_AND_DISK_SER",
"MEMORY_AND_DISK_SER_2",
"OFF_HEAP"

],
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{
"name": "path",
"value": "/user/sparkflows/Clickthru.csv",

(continues on next page)

29.1. REST API Examples using curl 761

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"widget": "textfield",
"title": "Path",
"description": "Path of the Text file/directory",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": true,
"display": true,
"editable": true,
"disableRefresh": false

},
{
"name": "separator",
"value": ",",
"widget": "textfield",
"title": "Separator",
"description": "CSV Separator",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{
"name": "header",
"value": "true",
"widget": "array",
"title": "Header",
"description": "Does the file have a header row",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"true",
"false"

],
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{
"name": "dropMalformed",
"value": "false",
"widget": "array",
"title": "Drop Malformed",
"description": "Whether to drop Malformed records or error",
"optionsMap": null,
"datatypes": null,
"optionsArray": [

"true",
"false"

],
"required": false,
"display": true,
"editable": true,

(continues on next page)

762 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"disableRefresh": false
},
{
"name": "outputColNames",
"value": "[\"Timestamp\",\"UserId\",\"IP Address\",\" Product Id\"]",
"widget": "schema_col_names",
"title": "Column Names for the CSV",
"description": "New Output Columns of the SQL",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{
"name": "outputColTypes",
"value": "[\"STRING\",\"INTEGER\",\"STRING\",\"INTEGER\"]",
"widget": "schema_col_types",
"title": "Column Types for the CSV",
"description": "Data Type of the Output Columns",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

},
{
"name": "outputColFormats",
"value": "[\"\",\"\",\"\",\"\"]",
"widget": "schema_col_formats",
"title": "Column Formats for the CSV",
"description": "Format of the Output Columns",
"optionsMap": null,
"datatypes": null,
"optionsArray": null,
"required": false,
"display": true,
"editable": true,
"disableRefresh": false

}
],
"engine": "all"

},

Get Workflow Count

Gets the count of the workflows in the given application.

An example request for getting count of the Workflow:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/
→˓workflows/count' -b /tmp/cookies.txt

29.1. REST API Examples using curl 763

Sparkflows Documentation, Release 0.0.1

An example response:

92

Get Workflow Versions

Gets the versions of workflow.

• workflowId: 1

An example request for getting workflow by id:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/
→˓workflows/versions?workflowId=1' -b /tmp/cookies.txt

An example response:

[
{
"id": 1,
"analysisflowId": 1,
"content": "{\"name\":\"Analyze Flights Delay\",\"uuid\":\"3a3dfa34-bbd7-4c05-8745-

→˓55628d90cbf6\",\"category\":\"Analytics\",\"description\":\"Find Flights which are
→˓delayed by more than 40 minutes.\",\"nodes\":[{\"id\":\"1\",\"name\":\
→˓"DatasetStructured\",\"type\":\"dataset\",\"nodeClass\":\"fire.nodes.dataset.
→˓NodeDatasetStructured\",\"x\":\"38.9492px\",\"y\":\"275.613px\",\"fields\":[{\"name\
→˓":\"dataset\",\"value\":\"2ff32692-9b3c-49de-91a7-401daf2590c1\",\"widget\":\
→˓"dataset\",\"title\":\"Dataset\",\"description\":\"Selected Dataset\",\"required\
→˓":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"2\
→˓",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records
→˓in the DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.
→˓NodePrintFirstNRows\",\"x\":\"38.4336px\",\"y\":\"59.1094px\",\"fields\":[{\"name\
→˓":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\
→˓"description\":\"number of rows to be printed\",\"required\":false,\"display\
→˓":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"3\",\"name\":\
→˓"CastColumnType\",\"description\":\"This node creates a new DataFrame by casting
→˓input columns with a new data type\",\"type\":\"transform\",\"nodeClass\":\"fire.
→˓nodes.etl.NodeCastColumnType\",\"x\":\"313.223px\",\"y\":\"61.8633px\",\"fields\":[
→˓{\"name\":\"inputCols\",\"value\":\"[\\\"CRS_DEP_TIME\\\",\\\"CRS_ARR_TIME\\\",\\\
→˓"CRS_ELAPSED_TIME\\\"]\",\"widget\":\"variables\",\"title\":\"Columns\",\
→˓"description\":\"Columns to be cast to new data type\",\"required\":false,\"display\
→˓":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColType\",\
→˓"value\":\"DOUBLE\",\"widget\":\"array\",\"title\":\"New Data Type\",\"description\
→˓":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\"optionsArray\":[\
→˓"BOOLEAN\",\"BYTE\",\"DATE\",\"DOUBLE\",\"FLOAT\",\"INTEGER\",\"LONG\",\"SHORT\",\
→˓"STRING\",\"TIMESTAMP\"],\"required\":false,\"display\":false,\"editable\":true,\
→˓"disableRefresh\":false}]},{\"id\":\"4\",\"name\":\"CastColumnType\",\"description\
→˓":\"This node creates a new DataFrame by casting input columns with a new data type\
→˓",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\
→˓"322.949px\",\"y\":\"275.633px\",\"fields\":[{\"name\":\"inputCols\",\"value\":\
→˓"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_WEEK\\\"]\",\"widget\":\"variables\",\"title\":\
→˓"Columns\",\"description\":\"Columns to be cast to new data type\",\"required\
→˓":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\
→˓"outputColType\",\"value\":\"STRING\",\"widget\":\"array\",\"title\":\"New Data
→˓Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\
→˓"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DOUBLE\",\"FLOAT\",\"INTEGER\",\
→˓"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\":false,\"display\":false,\
→˓"editable\":true,\"disableRefresh\":false}]},{\"id\":\"5\",\"name\":\"StringIndexer\
→˓",\"description\":\"StringIndexer encodes a string column of labels to a column of
→˓label indices\",\"type\":\"ml-transformer\",\"nodeClass\":\"fire.nodes.ml.
→˓NodeStringIndexer\",\"x\":\"630.238px\",\"y\":\"272.879px\",\"fields\":[{\"name\":\
→˓"handleInvalid\",\"value\":\"skip\",\"widget\":\"array\",\"title\":\"Handle Invalid\
→˓",\"description\":\"Invalid entries to be skipped or thrown error\",\"optionsArray\
→˓":[\"skip\",\"error\"],\"required\":false,\"display\":false,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"inputCols\",\"value\":\"[\\\"DAY_OF_MONTH\\\",
→˓\\\"DAY_OF_WEEK\\\",\\\"CARRIER\\\",\\\"TAIL_NUM\\\",\\\"FL_NUM\\\",\\\"ORIGIN_
→˓AIRPORT_ID\\\",\\\"ORIGIN\\\",\\\"DEST_AIRPORT_ID\\\",\\\"DEST\\\",\\\"CRS_DEP_
→˓TIME\\\",\\\"DEP_TIME\\\",\\\"DEP_DELAY_NEW\\\",\\\"CRS_ARR_TIME\\\",\\\"ARR_TIME\\\
→˓",\\\"ARR_DELAY_NEW\\\",\\\"CRS_ELAPSED_TIME\\\",\\\"DISTANCE\\\"]\",\"widget\":\
→˓"variables_map\",\"title\":\"Input Columns\",\"description\":\"Column containing
→˓labels\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\
→˓":false},{\"name\":\"outputCols\",\"value\":\"[\\\"DAY_OF_MONTH_INDEX\\\",\\\"DAY_
→˓OF_WEEK_INDEX\\\",\\\"CARRIER_INDEX\\\",\\\"\\\",\\\"\\\",\\\"ORIGIN_AIRPORT_ID_
→˓INDEX\\\",\\\"\\\",\\\"DEST_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\
→˓",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\"]\",\"widget\":\"variables_map_edit\",
→˓\"title\":\"Output Columns\",\"description\":\"Output columns\",\"required\":false,
→˓\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"6\",\
→˓"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in
→˓the DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.
→˓NodePrintFirstNRows\",\"x\":\"626.492px\",\"y\":\"63.1289px\",\"fields\":[{\"name\
→˓":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\
→˓"description\":\"number of rows to be printed\",\"required\":false,\"display\
→˓":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"7\",\"name\":\"SQL\
→˓",\"description\":\"This node runs the given SQL on the incoming DataFrame\",\"type\
→˓":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeSQL\",\"x\":\"954.219px\",\"y\":\
→˓"59.8711px\",\"fields\":[{\"name\":\"tempTable\",\"value\":\"fire_temp_table\",\
→˓"widget\":\"textfield\",\"title\":\"Temp Table\",\"description\":\"Temp Table Name
→˓to be used\",\"required\":false,\"display\":false,\"editable\":true,\
→˓"disableRefresh\":false},{\"name\":\"sql\",\"value\":\"select fire_temp_table.* ,
→˓case when fire_temp_table.DEP_DELAY_NEW \\u003e 40 then 1.0 else 0.0 END as label
→˓from fire_temp_table\",\"widget\":\"textarea_medium\",\"title\":\"SQL\",\
→˓"description\":\"SQL to be run\",\"required\":false,\"display\":false,\"editable\
→˓":true,\"disableRefresh\":false},{\"name\":\"outputColNames\",\"value\":\"[]\",\
→˓"widget\":\"schema_col_names\",\"title\":\"Output Column Names\",\"description\":\
→˓"Name of the Output Columns\",\"required\":false,\"display\":false,\"editable\
→˓":true,\"disableRefresh\":false},{\"name\":\"outputColTypes\",\"value\":\"[]\",\
→˓"widget\":\"schema_col_types\",\"title\":\"Output Column Types\",\"description\":\
→˓"Data Type of the Output Columns\",\"required\":false,\"display\":false,\"editable\
→˓":true,\"disableRefresh\":false},{\"name\":\"outputColFormats\",\"value\":\"[]\",\
→˓"widget\":\"schema_col_formats\",\"title\":\"Output Column Formats\",\"description\
→˓":\"Format of the Output Columns\",\"required\":false,\"display\":false,\"editable\
→˓":true,\"disableRefresh\":false}]},{\"id\":\"8\",\"name\":\"PrintNRows\",\
→˓"description\":\"Prints the specified number of records in the DataFrame\",\"type\
→˓":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"927.
→˓477px\",\"y\":\"291.137px\",\"fields\":[{\"name\":\"n\",\"value\":\"10\",\"widget\
→˓":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to
→˓be printed\",\"required\":false,\"display\":false,\"editable\":true,\
→˓"disableRefresh\":false}]}],\"edges\":[{\"source\":\"1\",\"target\":\"2\",\"id\":1},
→˓{\"source\":\"2\",\"target\":\"3\",\"id\":2},{\"source\":\"3\",\"target\":\"4\",\
→˓"id\":3},{\"source\":\"4\",\"target\":\"5\",\"id\":4},{\"source\":\"5\",\"target\":\
→˓"6\",\"id\":5},{\"source\":\"6\",\"target\":\"7\",\"id\":6},{\"source\":\"7\",\
→˓"target\":\"8\",\"id\":7}],\"dataSetDetails\":[]}",

(continues on next page)

764 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

(continued from previous page)

"dateLastUpdated": 1566551544603,
"userName": null,
"userId": null,
"userComment": null

}
],

29.1.4 Workflow Execution REST API

Overview

The Workflow Execution REST API’s, allow you to execute Workflows, get results etc.

Below are the various Workflow Execution API’s available in Fire Insights, They should be executed after you have
logged into Fire Insights.

List all the Executions

List all the workflow executions.

An example request for List all the executions:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflow-
→˓executions?page=0&size=1000' -b /tmp/cookies.txt

An example response:

[
{
"id": 135,
"analysisFlowId": 161,
"userId": 33,
"projectId": 33,
"analysisFlowScheduleId": null,
"status": 2,
"name": "Test_csv",
"category": "-",
"description": "Fired Manually",
"logs": "/tmp/fire/workflowlogs/workflow-5342148677548385044.log",
"fireJobId": "02aedbe5-0713-4172-9f7c-c63272f7cbd9",
"applicationId": "application_1560754639341_5932",
"uiWebUrl": "http://hostname:4042",
"metrics": null,
"startTime": 1566821007783,
"endTime": 1566821024075,
"emailOnSuccess": null,
"emailOnFailure": null

},

List Executions of a Workflow

Return the list of Executions for given workflowId.

workflowId = 131:

29.1. REST API Examples using curl 765

Sparkflows Documentation, Release 0.0.1

An example request for List executions of a Workflow:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflow-
→˓executions/workflows/131' -b /tmp/cookies.txt

An example response:

[
{
"id": 99,
"analysisFlowId": 131,
"userId": 33,
"projectId": 33,
"analysisFlowScheduleId": null,
"status": 2,
"name": "Test_workflow",
"category": "-",
"description": "Fired Manually",
"logs": "/tmp/fire/workflowlogs/workflow-4439919411814145818.log",
"fireJobId": "7b7b7dd5-b27b-419e-b853-794b5f53a5b8",
"applicationId": "application_1560754639341_5929",
"uiWebUrl": "http://hostname:4041",
"metrics": null,
"startTime": 1566795625424,
"endTime": 1566795650970,
"emailOnSuccess": null,
"emailOnFailure": null

}
],

GET Status of Workflow Execution

Return status of workflow execution for given workflowId.

workflowId = 193:

An example request for status of workflow execution

curl -X GET --header 'Accept: text/plain' 'http://hostname:port/api/v1/workflow-
→˓executions/193/status'

An example response:

KILLED

Stop the Execution of workflow

Stops the execution of workflow with specified workflowExecutionId.

Workflow Execution Id = 100:

An example request for Stopping specified workflow:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/plain'
→˓'http://hostname:port/api/v1/workflow-execution/100/stop'' -b /tmp/cookies.txt

An example response:

766 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

{"status":"ok","message":"Stopping Analysis Flow Execution"}

Kill the Execution of workflow

Kill the execution of workflow with specified workflowExecutionId.

Workflow Execution Id = 100:

An example request for Killing specified workflow:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/plain'
→˓'http://hostname:port/api/v1/workflow-execution/100/kill' -b /tmp/cookies.txt

An example response:

Killed YARN application : yarn application -kill application_1560754639341_5930,Exit
→˓Value : 0

Delete Workflow Executions by days

Delete Workflow Executions by days

“days”: “7”:

An example request for deleting workflow executions by days:

curl -X DELETE --header 'Accept: text/plain' 'http://hostname:port/api/v1/workflow-
→˓executions/days/7' -b /tmp/cookies.txt

An Example response:

Workflow executions deleted successfully

Get Executed Task Count

Get Executed Task Count:

An example request for Getting Executed Task Count:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflow-
→˓executions/tasks/count' -b /tmp/cookies.txt

An example response:

92

Get Latest Executions

Get Latest Executions:

An Example request for Getting Latest Executions:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflow-
→˓executions/latest' -b /tmp/cookies.txt

29.1. REST API Examples using curl 767

Sparkflows Documentation, Release 0.0.1

An example response:

[
{
"id": 162,
"analysisFlowId": 131,
"userId": 33,
"projectId": 33,
"analysisFlowScheduleId": null,
"status": 2,
"name": "Test_workflow",
"category": "-",
"description": "Fired Manually",
"logs": "/tmp/fire/workflowlogs/workflow-3535160145732140945.log",
"fireJobId": "7b456feb-22fe-474e-a0c6-f31c40a1a9cd",
"applicationId": "application_1560754639341_5934",
"uiWebUrl": "http://hostname:4040",
"metrics": null,
"startTime": 1566834233892,
"endTime": 1566834262432,
"emailOnSuccess": null,
"emailOnFailure": null
},

29.1.5 Dashboard REST API

Overview

The Dashboards REST API’s, allow you to interact with the Dashboards.

Below are the various Dashboard API’s available in Sparkflows

They should be executed after you have logged into Sparkflows

Get List of Dashboards for the user

Returns the list of dashboards for the logged in user.

• Header: sortPara:asc/desc.

curl -i --header "Accept:application/json" -H "Content-Type:application/json" -H
→˓"sortPara:desc" -X GET -b /tmp/cookies.txt localhost:8080/dashboardsJSON

Create New Dashboard / Save Dashboard

Set dashboardId value null to create new dashboard:

curl - X POST --header 'Content-Type: application/json' --header 'Accept: text/plain'
→˓--header 'dashboardId: null' -d '{"category": "string", "description": "string",
→˓"name": "string","sheets": [{"description": "string","idx": "string","items": [{
→˓"description": "string","id": 0,"name": "string","nodeId": "string","type": "string
→˓", "workflowId": "string","workflowName": "string","x": "string","y": "string"}],
→˓"name":"string","type": "string"}],"uuid": "string"}' 'http://localhost:8080/
→˓saveDashboard' -b /tmp/cookies.txt

768 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

Get Dashboard by Id

• id:1(Url Parameter)

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/
→˓dashboards?sortPara=dsc&projectId=1' -b /tmp/cookies.txt

Get dashboard results

• dashboardId:1

• sheetId:0

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/
→˓dashboards/results?dashboardId=1&sheetId=0' -b /tmp/cookies.txt

update dashboard

• dashboardContent: abcd,

• dashboardId: 1,

curl -X PUT --header 'Content-Type: application/json' --header 'Accept: */*' -d 'abcd
→˓' 'http://localhost:8080/api/v1/dashboards/1'

Delete Dashboard

• dashboardId: 1,

• projectId: 1,

curl -X DELETE --header 'Accept: text/plain' 'http://localhost:8080/api/v1/dashboards/
→˓1?projectId=1' -b /tmp/cookies.txt

29.1.6 HDFS REST API

Overview

The HDFS REST API’s, allow you to interact with the HDFS of the Hadoop Cluster Sparkflows is connected to.

Below are the various HDFS API’s available in Sparkflows

They should be executed after you have logged into Sparkflows

Get List of Files in Directory

Returns list of all the files on hdfs in the users home directory

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hdfs'

29.1. REST API Examples using curl 769

Sparkflows Documentation, Release 0.0.1

Create HDFS directory

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/plain'
→˓'http://localhost:8080/api/v1/hdfs/dir/create'

Get list of files in HDFS in the specified directory

Returns list of files in HDFS in the specified directory(/user/sparkflows/)

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hdfs/
→˓dir/open?path=%2Fuser%2Fsparkflows%2F'

Get list of all the files on hdfs in the users home directory in sorted order

*sortPara: alphabetical

*path: /user/sparkflows/

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hdfs/
→˓files?sortPara=alphbetical&path=%2Fuser%2Fsparkflows%2F'

Upload file

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/
→˓json' 'http://localhost:8080/api/v1/hdfs/files/upload' -b /tmp/cookies.txt

Deletes a file from HDFS

*path: /user/sparkflows/Airline.csv

curl -X DELETE --header 'Accept: text/plain' 'http://localhost:8080/api/v1/hdfs/files/
→˓delete?path=%2Fuser%2Fsparkflows%2FAirline.csv'

Download HDFS file

*path: /user/sparkflows/Airline.csv

curl -X GET --header 'Accept: application/json' 'localhost:8080/api/v1/hdfs/files/
→˓download?path=%2Fuser%2Fsparkflows%2FAirline.csv'

Rename HDFS File

*sourceFilePath: /user/sparkflows/Airline.csv

*destinationFilePath: /user/sparkflows/airline.csv

curl -X GET --header 'Accept: text/plain' 'http://localhost:8080/api/v1/hdfs/files/
→˓rename?sourceFilePath=%2Fuser%2Fsparkflows%2FAirline.csv&destinationFilePath=%2Fuser
→˓%2Fsparkflows%2Fairline.csv'

770 Chapter 29. REST API’s using curl

Sparkflows Documentation, Release 0.0.1

Get first X bytes of content of a file

*path: /user/sparkflows/Airline.csv

curl -X GET --header 'Accept: text/plain' 'http://localhost:8080/api/v1/hdfs/files/
→˓open?path=%2Fuser%2Fsparkflows%2FAirline.csv'

29.1.7 HIVE REST API

Overview

The HIVE REST API’s, allow you to interact with the HIVE of the Hadoop Cluster Sparkflows is connected to.

Below are the various HIVE REST API’s available in Sparkflows

They should be executed after you have logged into Sparkflows

Get all Hive Databases

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hive/
→˓databases' -b /tmp/cookies.txt

Get Table for a given Database

• “db”: “default”,

• “table”: “sample_07”

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hive/
→˓tables?db=default&table=sample_07' -b /tmp/cookies.txt

Get all Hive Databases

* curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hive/
→˓databases' -b /tmp/cookies.txt

29.1.8 Scheduler REST API

Overview

The Scheduler REST API’s, allow you to schedule some jobs once Sparkflows connected to Hadoop Cluster.

Below are the various Scheduler REST API’s available in Sparkflows

They should be executed after you have logged into Sparkflows

29.1. REST API Examples using curl 771

Sparkflows Documentation, Release 0.0.1

Get list of all Workflows Scheduled

• analysisflowId = 1

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/
→˓workflow-schedules/projects/1/workflows/1' -b /tmp/cookies.txt

Schedule new Workflow

curl:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: */*' -d '1'
→˓'http://localhost:8080/api/v1/workflow-schedules'

JSON:

"analysisFlowId": 0,
"cronPattern": "string",
"dateCreated": "2019-08-06T11:77:17.221Z",
"dateLastUpdated": "2019-08-06T11:77:17.221Z",
"day": "string",
"dayOfTheMonth": 0,
"description": "string",
"emailonFailure":"string",
"emailonSuccess": "string"
"endTime": "2019-08-06T11:77:17.221Z",
"fireEvery": "string",
"firedTime": "2019-08-06T11:77:17.221Z",
"hour": 0,
"id": 0,
"Libjars": "string",
"minute": 0,

"name": "string",
"sparkSubmitOptions": "string",
"startTime": "22019-08-06T11:77:17.221Z",
"userId": "0",
"id": "string",
}' 'http://137.117.83.79:8080/api/v1/workflow-schedules' -b /tmp/cookies.txt

Delete Scheduled Workflow

It deletes a scheduled instance of a workflow:

curl -X GET --header 'Accept: application/json' --header 'id: 1' 'http://
→˓localhost:8080/api/v1/workflow-schedules/1' -b /tmp/cookies.txt

772 Chapter 29. REST API’s using curl

CHAPTER 30

Third Party Acknowledgements

30.1 Third Party Acknowledgements

Sparkflows uses and distributes the following third party software. These are open source software licensed as men-
tioned.

30.1.1 Server Libraries

• Apache Spark

– https://spark.apache.org/

– Copyright © 2018 The Apache Software Foundation

– License: Apache-2.0

• Apache Avro

– https://avro.apache.org/

– Copyright © 2012 The Apache Software Foundation

– License: Apache-2.0

• Apache Commons

– https://commons.apache.org/

– Copyright © 2019 The Apache Software Foundation.

– License: Apache-2.0

• Apache Hadoop

– https://hadoop.apache.org/

– Copyright © 2018 The Apache Software Foundation.

– License: Apache-2.0

773

https://spark.apache.org/
https://avro.apache.org/
https://commons.apache.org/
https://hadoop.apache.org/

Sparkflows Documentation, Release 0.0.1

• Apache HBase

– https://hbase.apache.org/

– Copyright ©2007–2019 The Apache Software Foundation

– License: Apache-2.0

• Apache Hive

– https://hive.apache.org/

– Copyright © 2011-2014 The Apache Software Foundation

– License: Apache-2.0

• Apache HTTP

– https://hc.apache.org/

– Copyright © 1999–2019 The Apache Software Foundation.

– License: Apache-2.0

• spark-streaming-kafka

– http://spark.apache.org/

– © 2017 Apache Software Foundation

– License: Apache-2.0

• Apache pdfbox

– https://pdfbox.apache.org

– Copyright © 2009–2019 The Apache Software Foundation

– License: Apache-2.0

• Apache OpenNLP

– https://opennlp.apache.org/

– Copyright © 2017 The Apache Software Foundation

– License: Apache-2.0

• Apache Tika

– https://tika.apache.org/

– Copyright © 2019 The Apache Software Foundation

– License: Apache-2.0

• Apache Tomcat

– http://tomcat.apache.org/

– Copyright © 1999-2019, The Apache Software Foundation

– License: Apache-2.0

• AWS Java SDK

– https://aws.amazon.com/

– Copyright © 2019, Amazon Web Services, Inc. or its affiliates

– License: Apache-2.0

774 Chapter 30. Third Party Acknowledgements

https://hbase.apache.org/
https://hive.apache.org/
https://hc.apache.org/
http://spark.apache.org/
https://pdfbox.apache.org
https://opennlp.apache.org/
https://tika.apache.org/
http://tomcat.apache.org/
https://aws.amazon.com/

Sparkflows Documentation, Release 0.0.1

• Eclipse jetty

– https://www.eclipse.org/jetty/

– Copyright © 2016 The Eclipse Foundation.

– License: EPL- v 2.0

• Elasticsearch-spark-20_2.11

– https://github.com/elastic/elasticsearch-hadoop

– © 2019. Elasticsearch B.V.

– License: Apache-2.0

• Guava

– https://github.com/google/guava

– https://github.com/google/guava/blob/master/COPYING

– License: Apache-2.0

• H2O

– https://www.h2o.ai/

– © Copyright 2013, 0xdata, Inc.

– License: Apache-2.0

• Json Java

– http://www.json.org

– Copyright (c) 2002 JSON.org

– License: BSD-style with “no evil” clause

• Log4J

– http://logging.apache.org/log4j/2.x/

– Author: The Apache Software Foundation

– License: Apache-2.0

• Sagemaker-spark_2.11

– https://github.com/aws/sagemaker-spark

– Author: The Apache Software Foundation

– License: Apache-2.0

• Mongo_spark_connector_2.11

– http://github.com/mongo-spark

– Author: The Apache Software Foundation

– License: Apache-2.0

• Python

– https://www.python.org/

– Copyright ©2001-2019. Python Software Foundation

– License: PSFL2

30.1. Third Party Acknowledgements 775

https://www.eclipse.org/jetty/
https://github.com/elastic/elasticsearch-hadoop
https://github.com/google/guava
https://github.com/google/guava/blob/master/COPYING
https://www.h2o.ai/
http://www.json.org
http://logging.apache.org/log4j/2.x/
https://github.com/aws/sagemaker-spark
http://github.com/mongo-spark
https://www.python.org/

Sparkflows Documentation, Release 0.0.1

• Quartz

– http://www.quartz-scheduler.org/

– Copyright© Terracotta, Inc., a wholly-owned subsidiary of Software AG USA, Inc. All rights reserved

– License: Apache-2.0

• Spring Framework

– https://spring.io/

– Copyright © 2019 Pivotal Software, Inc. All Rights Reserved

– License: Apache-2.0

• SLF4J

– http://www.slf4j.org/

– Copyright (c) 2004-2017 QOS.ch

– License: MIT

30.1.2 Frontend Libraries

• angularjs

– https://angularjs.org/

– Copyright (c) 2010-2014 Google, Inc.

– License: MIT

• bootstrap

– http://getbootstrap.com/2.3.2/

– Copyright 2011-2014 Twitter, Inc

– License: MIT

• jquery

– https://jquery.com/

– Copyright 2019 The jQuery Foundation. jQuery License

– License: MIT

• rxjs

– https://rxjs-dev.firebaseapp.com/

– Copyright 2015-2018 Google, Inc., Netflix, Microsoft Corp.

– License: Apache License 2.0

30.1.3 Definitions

• Apache-2.0 : Apache License, Version 2.0 : http://www.apache.org/licenses/LICENSE-2.0.html

• MIT : MIT License : https://en.wikipedia.org/wiki/MIT_License#Relation_to_Patents

• BSD-style: BSD-style License : http://json.org/license.html

• EPL: EPL - v 2.0 License: https://www.eclipse.org/legal/epl-2.0/

776 Chapter 30. Third Party Acknowledgements

http://www.quartz-scheduler.org/
https://spring.io/
http://www.slf4j.org/
https://angularjs.org/
http://getbootstrap.com/2.3.2/
https://jquery.com/
https://rxjs-dev.firebaseapp.com/
http://www.apache.org/licenses/LICENSE-2.0.html
https://en.wikipedia.org/wiki/MIT_License#Relation_to_Patents
http://json.org/license.html
https://www.eclipse.org/legal/epl-2.0/

Sparkflows Documentation, Release 0.0.1

• PSFL2 : Python Software Foundation License Version 2

30.1. Third Party Acknowledgements 777

Sparkflows Documentation, Release 0.0.1

778 Chapter 30. Third Party Acknowledgements

CHAPTER 31

Indices and tables

• genindex

• modindex

• search

779

	Architecture & Deployment
	Architecture & Deployment

	Installation
	Installation

	Configuration
	Configuration

	Authentication
	Authentication

	Security
	Security

	Operating Fire Insights
	Operating Guide

	Quick Start Guide
	Quickstart Guide

	User Guide
	User Guide

	Web App User Guide
	Analytical Apps User Guide

	Data Science
	Machine Learning User Guide

	Time Series
	Time Series Analysis

	Tutorials
	Tutorials

	Troubleshooting
	Troubleshooting

	Frequently Asked Questions
	FAQ

	Administration
	Administration Guide

	Databricks Integration
	Databricks Guide

	AWS Integration
	AWS Guide

	AZURE Integration
	AZURE Guide

	Load Balancer Integration
	Load Balancer

	Superset
	Superset

	Python
	Python Integration

	Performance
	Performance Tuning

	Developer Guide
	Developer Guide

	Processors
	Processors

	Release Notes
	Release Notes

	REST API Authentication
	REST API Authentication

	REST API’s using Python
	REST API Examples using Python

	REST API’s using Java
	REST API Examples using Java

	REST API’s using curl
	REST API Examples using curl

	Third Party Acknowledgements
	Third Party Acknowledgements

	Indices and tables

