

Getting Started with Fire Insights

Fire Insights makes it incredibly fast and easy to do Self-Serve Data Preparation and Advanced Analytics.

With the power of Fire Insights at your hands, seamlessly find value from your data and scale to Petabytes of data.

Install on the cloud, on-premise or even on your laptop. Fire Insights seamlessly integrates with the most complex of Enterprise Environments.

Architecture & Deployment

	Architecture & Deployment
	Fire Architecture

	Fire Deployment Options

Installation

	Installation

Configuration

	Configuration

Authentication

	Authentication

Security

	Security

Operating Fire Insights

	Operating Guide

Quick Start Guide

	Quickstart Guide

User Guide

	User Guide

Web App User Guide

	Analytical Apps User Guide

Data Science

	Machine Learning User Guide
	Feature Generation

	Feature Selection

	Clustering

	Regression

	Classification

	Prediction

	Model Evaluation

	Model Persistence

	Model Serving

Time Series

	Time Series Analysis
	Time Series Feature Engineering

	Time Series Visualizations

	Time Series Modeling

Tutorials

	Tutorials
	Reading - Writing Data

	Data Exploration

	Machine Learning

	Analytics

	Data Preparation

	Data Quality

	Code

	NLP

	Streaming

	OCR

	REST API

	Time Series

Troubleshooting

	Troubleshooting
	Installation

	LDAP

	Upgrade

	Dataset

	Running Workflows

	Fire Server & Workflow Execution Logs

	Dashboards

	Kerberos

	Python Installation

Frequently Asked Questions

	FAQ

Administration

	Administration Guide
	User Administration

Databricks Integration

	Databricks Guide
	Databricks Prerequisites

	Databricks Integration Steps

	Databricks Python Integration Steps

	Databricks User Guide

	Troubleshooting Fire/Databricks Integration

AWS Integration

	AWS Guide
	Introduction

	Planning Guide

	Deployment Guide

	S3 Integration

	Testing Fire Insights on AWS

	Operational Guide

	Copying files to S3 with aws-cli

	Reading/Writing from S3

	Saving ML Model to S3

	Fire Integration with HIVE

	Fire Integration with Redshift

	Fire Integration with SageMaker

	Fire Integration with Kinesis

	File Watcher with AWS & Sparkflows

	CloudFormation Template with Embedded H2 DB

	CloudFormation Template with MySQL

AZURE Integration

	AZURE Guide
	Introduction

	Deployment Guide

	Azure Databricks Integration Steps

	ADLS Integration

Load Balancer Integration

	Load Balancer
	AWS Network Load balancer

	Route 53

Superset

	Superset
	Installation

	Connecting Superset with Databricks

Python

	Python Integration
	PySpark Processor

	Jython Processor

	Pipe Python Processor

	Pipe Python2 Processor

Performance

	Performance Tuning
	Caching Level

	Executor Memory, vcores

	Repartioning

	Debug Mode

Developer Guide

	Developer Guide
	Custom Node Development in Browser

	Custom Node Development & Deployment (Java/Scala)

	Databricks Custom Node Example JSON

	Building and Running Custom Node

Processors

	Processors
	16-Utilities

	09-DataProfiling

	05-FeatureEngineering

	01-IO

	11-ML-SparkML

	ML-TS

	02-Parse

	06-Filter

	18-OpenNLP

	15-ScoreCardPy

	03-Prepare

	04-DataValidation

	CustomProcessors

	17-Documentation

	12-ML-H2O

	13-ML-AWSSagemaker

	14-ML-Sklearn

	08-Group

	06-Code

	10-Visualization

	19-Deprecated

	15-Streaming

	15-StructuredStreaming

	14-DL

	07-JoinUnion

Release Notes

	Release Notes
	Upcoming Features

	Aug 2020

	May 2020

	April 2020

	March 2020

	February 2020

	January 2020

	September 2019

	August 2019

	July 2019

	June 2019

	May 2019

	April 2019

	February 2019

	January 2019

	November 2018

	3.1.0 Release Notes

	2.1.0 Release Notes

	1.4.0 Release Notes

	1.3.0 Release Notes

REST API Authentication

	REST API Authentication
	Acquire Session Cookie Using CURL

	Acquire Session Cookie in Python

	Acquire Token Using CURL

	Acquire Token using Postman and Grant Type - Password

	Acquire token using Postman - Authorization code

	Acquire Token in Python - Grant Type Password

REST API’s using Python

	REST API Examples using Python
	Accessing REST API using Python & Session

	Accessing REST API using Python & Tokens

REST API’s using Java

	REST API Examples using Java

REST API’s using curl

	REST API Examples using curl
	Processors REST API’s

	Datasets REST API

	Workflow REST API

	Workflow Execution REST API

	Dashboard REST API

	HDFS REST API

	HIVE REST API

	Scheduler REST API

Third Party Acknowledgements

	Third Party Acknowledgements
	Server Libraries

	Frontend Libraries

	Definitions

Indices and tables

	Index

	Module Index

	Search Page

Architecture & Deployment

Sparkflows can be installed in one of two ways:

	On a standalone machine. In this case all the processing would happen within the single process.

	This can be used to run Sparkflows on your laptop/desktop.

	On the Edge node of a Hadoop/Spark Cluster.

	In this case, the jobs for processing would be submitted to the Hadoop/Spark Cluster.

	Fire Architecture

	Fire Deployment Options
	Deployment on an Apache Hadoop/Apache Spark Cluster

	Deployment on a Standalone Machine

Fire Architecture

[image: Sparkflows Fire Architecture]

Fire consists of three core components:

	Web Browser for defining end-to-end workflows for building data products and applications

	Users interact with the web based drag and drop user interface for creating Datasets and Workflows

	Workflows leverage the exhaustive set of functional and operational nodes such as Data Profiling, Data Cleaning, ETL, NLP, OCR, Machine Learning etc. displayed in the user interface.

	Web Server running on an Edge node in a Apache Spark Cluster

	For running the workflows, they are submitted to the web server. The web server submits the workflow to the Apache Spark cluster as a spark job using spark-submit. The results of the workflow execution are streamed back and displayed in the Browser.

	Web Server provides a host of other features likes interactive execution, schema inference and propagation, user permissions and roles, LDP integration etc.

	Apache Spark cluster on which the workflows are executed as Spark jobs

	Workflows are saved in a JSON string.

	Workflows can also be submitted on the spark cluster through spark-submit via a command line interface

Fire Deployment Options

Fire Insights can easily be deployed:

	On an Apache Hadoop/Apache Spark Cluster or

	On a standalone machine

Deployment on an Apache Hadoop/Apache Spark Cluster

The clusters could be based on the Apache Hadoop distribution from Cloudera, Hortonworks, MapR or any other Hadoop Cluster distributors.

The cluster can be on-premise or on the cloud.

[image: Fire Deployment]

Deployment on a Standalone Machine

In this mode, Fire is installed on a mac/windows/linux machine. All the executions happen on that machine, in the web server.

This mode can be used for:

	Designing Workflows to be finally deployed on a larger Apache Spark Cluster

	For analyzing smaller sets of data

[image: Fire Deployment on Standalone Machine]

Installation

	Installer for laptop/desktop
	Prerequisites

	Download

	Execute

	Linux/Mac OS Installation Prerequisites
	Downloading and Installing Java 8

	Download OpenJDK

	Linux/Mac OS Installation Steps
	Quick Installation Steps of Fire with H2 DB

	Detailed Installation Steps

	Stopping Fire

	Stopping the Fire Server

	Connecting to Apache Spark Cluster

	Windows Installation Prerequisites
	Check JDK 1.8 is installed

	Install JDK 1.8

	winutils.exe

	Troubleshooting

	Windows Installation Steps
	Installation Steps of Fire Insights with H2 DB

	Stopping the Fire Server

	Stopping Fire Helper Processes

	Python Installation on Linux - Redhat/CentOS
	Check if Python 3.7+ is Installed

	Install Python 3.7 (if not installed)

	Create Python virtual environment & Activate it

	Upgrade pip version

	Install dependency for fbprophet package (CentOS 7)

	Reference

	Install Other Packages

	Reference

	For Ubuntu

	Python Installation on MacOS
	Check if Python is Installed

	Install Python 3 (if not already there)

	Add below in .bash_profile

	Install Other Packages

	Python Installation on Windows
	Click Next to confirm the installation

	Agree to the License

	Advanced Installation Options screen

	Open the Anaconda Prompt from the Windows start menu

	Reference Link

	Create virtual environment using conda

	Activate Virtual environment and Check list of python package

	Install Other Dependent Packages

	Install dependency for fbprophet package (Windows 10)

	Enable PySpark Engine in Fire Insights

	Removing Conda virtual Environment

	Python Installation on Ubuntu
	Check if Python 3.7+ is Installed

	Install Python 3.7 (if not installed)

	Create Python virtual environment & Activate it

	Upgrade pip version

	Install dependency for fbprophet package (Ubuntu 18.04)

	Install Other Packages

	Running Diagnostics
	Linux

	Mac OS

	Windows

Installer for laptop/desktop

You can download and use the Installer for installing/upgrading Fire Insights on your laptop or desktop.

This is not recommended to use on the server, where you need better control over the Installation process.

Prerequisites

	JDK 1.8

Java 8 can be downloaded and installed from here : https://www.oracle.com/java/technologies/javase-jdk8-downloads.html

You may have to set JAVA_HOME after the installation.

Download

Download the installer from : https://www.sparkflows.io/download

Execute

Execute the installer with :

java -jar sparkflows-installer-1.0.jar

Default port for sparkflows is : 8080

You can also change the port number while installing or starting the server.

When you finish

	Browse to http://<system-ip>:port

	Login with below credentials :

	Username : admin

	Password : admin

Linux/Mac OS Installation Prerequisites

Below are the Prerequisites for installing Fire Insights on a mac or linux machine:

- JDK 1.8+ installed.
- java and jar have to be in the PATH
- 8 GB+ of RAM.
- Python 3.6+ (when running Python and PySpark, otherwise not needed)

If Fire would be connected to an Apache Spark Cluster:

- Spark 2.X is needed on the cluster
- Fire has to be installed on an Edge node of the Spark Cluster

If using Python and PySpark (not needed for the core features of Fire Insights)

- Python 3.X can be set up with the Python virtual environment and activated

Downloading and Installing Java 8

Java 8 can be downloaded and installed from here : https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html

You may have to set JAVA_HOME after the installation.

There are various ways for Installing Java 8 on Linux. Some are listed below.

Using Linux RPM Package

	Download the Linux x64 RPM Package

	yum localinstall jdk-8u202-linux-x64.rpm (this has to be run as the root user)

Update .bash_profile to add the below:

export JAVA_HOME=/usr/java/jdk1.8.0_202-amd64/
export PATH=$PATH:$JAVA_HOME/bin

Download OpenJDK

	https://openjdk.java.net/install/

	Install OpenJDK on Ubuntu

https://docs.datastax.com/en/jdk-install/doc/jdk-install/installOpenJdkDeb.html

Linux/Mac OS Installation Steps

Fire can run independently on any machine, since we package Apache Spark along with or it can be connected to a Spark cluster.

If Sparkflows Fire needs to be connected to a Spark Cluster, install it on an edge node of the cluster. The edge node has the hadoop binaries and spark configs.

Quick Installation Steps of Fire with H2 DB

	Download the fire tgz file from:

	https://www.sparkflows.io/download OR

	https://www.sparkflows.io/archives

	Unpack it:

tar xvf fire-x.y.z.tgz

	Create H2 DB:

cd <fire install_dir>
./create-h2-db.sh

	Launch Fire Server:

cd <fire install_dir>
./run-fire-server.sh start

	Open your web browser and navigate to:

<machine_name>:8080

	Login with:

admin/admin or test/test

Detailed Installation Steps

	Glossary

	<install_dir> : location where you unzipped fire tgz file. For example this can be your home directory.

	<machine_name> : hostname where your installed Fire

	# : used for comments and documentation

	Download the fire tgz file from:

	https://www.sparkflows.io/download OR

	https://www.sparkflows.io/archives

	Unzip it:

tar xvf fire-x.y.z.tgz

	Set up H2 or MySQL DB

Fire can be configured to run with H2 db or MySQL. H2 is very easy to set up with Fire. For production deployments MySQL is recommended.

	../database/h2-db

	../database/mysql-db

	Launch Fire:

cd <fire install_dir>
./run-fire.sh start

	Launch Fire Server:

cd <fire install_dir>
./run-fire-server.sh start

	Test by opening your web browser and going to:

localhost:8080

OR

<machine_name>:8080

	Login with:

username: admin and password: admin.

Note

Two user accounts come preconfigured with Fire.

	admin/admin

	test/test

You may change these usernames and passwords in Fire under the menu Administration/Users

Stopping Fire

Stop Fire with the below:

./run-fire.sh stop

Stopping the Fire Server

Stop the Fire Server with the below:

./run-fire-server.sh stop

Connecting to Apache Spark Cluster

Now that you have Fire installed, you may want to connect it to your Apache Spark Cluster.

	Connecting to Apache Spark Cluster

Windows Installation Prerequisites

Below are the Prerequisites for installing Fire Insights on a windows machine:

- JDK 1.8 installed.
- java and jar have to be in the PATH
- 8+ GB of RAM on the machine.
- Python 3.6+ (when running Python and PySpark, otherwise not needed)

Check JDK 1.8 is installed

	Check the JDK version installed on your machine:

Open the command window
Type the following command to check your java version : java -version

	If JDK 1.8 is not installed, follow the JDK installation steps mentioned below.

Install JDK 1.8

	Download JDK 1.8 for windows using the link below:

	https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

	Install java by double clicking on the downloaded exe file

	After installation, make sure that java 1.8 is in the path:

Open a new command window
Type the following command to check your java version : java -version

Note

If you have multiple versions of Java installed on you system, you can update the PATH using the steps outlined in either of the links below:

	https://javatutorial.net/set-java-home-windows-10

	https://www.java.com/en/download/help/path.xml

Note

With the above steps, you would have Fire Insights running locally on your laptop. It would not be able to submit jobs to a Spark cluster. For that, Fire Insights has to be installed on the edge node of the cluster.

winutils.exe

winutils.exe is needed for running Apache Spark/Hadoop on windows machines. Follow the below steps to setup winutils.exe on your machine:

- Download winutils.exe from https://github.com/steveloughran/winutils

	winutils.exe can be directly downloaded from link below:

	https://github.com/steveloughran/winutils/blob/master/hadoop-2.7.1/bin/winutils.exe

	Create hadoop folder in Your System : C:\hadoop.

[image: Installations]

	Create bin folder in hadoop directory : C:\hadoop\bin.

[image: Installations]

	Copy the downloaded winutils.exe to the bin directory : C:\hadoop\bin\winutils.exe.

[image: Installations]

	Add a new Environment Variable.

	HADOOP_HOME = C:\hadoop.

[image: Installations]

	Update the System Environment Variable PATH by adding : %HADOOP_HOME%\bin.

[image: Installations]

	Guide to setting Environment Variables on Windows

https://www.architectryan.com/2018/08/31/how-to-change-environment-variables-on-windows-10/

Troubleshooting

Running into an exception when saving files

org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 33.0 failed 1 times, most recent failure: Lost task 1.0 in stage 33.0 (TID 131, localhost): java.io.IOException: (null) entry in command string: null chmod 0644

If you run into an exception like above, then there is problem with the setup of winutils.exe.

Windows Installation Steps

Fire Insights can be installed to run independenly on Windows.

Installation Steps of Fire Insights with H2 DB

	Download the fire tgz file from:

	https://www.sparkflows.io/download OR

	https://www.sparkflows.io/archives

	Unpack the downloaded tgz file. Below are some tools which can be used for it:

WinRar : https://www.rarlab.com/download.htm
WinZip : https://www.winzip.com
7-Zip : https://www.7-zip.org/download.html

	Create H2 DB:

cd <fire install_dir>
.\create-h2-db.bat

	Launch Fire Server:

cd <fire install_dir>
.\run-fire-server.bat start

	Open your web browser and navigate to:

<machine_name>:8080

	Login with:

admin/admin or test/test

Note

Two user accounts come preconfigured with Fire Insights.

	admin/admin

	test/test

You may change these usernames and passwords in Fire under the menu Administration/Users

Stopping the Fire Server

Stop the Fire Server with the below:

.\run-fire-server.bat stop

Stopping Fire Helper Processes

Stop Fire helper processes with the below:

.\run-fire.bat stop

Python Installation on Linux - Redhat/CentOS

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire Insights use Python 3.7+.

Check if Python 3.7+ is Installed

Use the below commands:

python --version
python3.7 --version

Install Python 3.7 (if not installed)

Some References for Installing Python:

	CentOS : https://tecadmin.net/install-python-3-7-on-centos/

Prerequisites

Python installation requires the GCC compiler to be available on the machine. Use the following command to install the prerequisites for installing Python.

yum install gcc openssl-devel bzip2-devel libffi-devel zlib-devel

Download and extract the downloaded package

	
	Download python from below Link

	
	https://www.python.org/downloads/

	https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz

Download and untar:

wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz
tar xzf Python-3.7.0.tgz

Compile Python source code

Compile the Python source code on your system using altinstall:

cd Python-3.7.0
./configure --enable-optimizations
make altinstall
python3.7 –-version

[image: Installations]

Create Python virtual environment & Activate it

Create Python virtual environment & Activate it:

python3.7 -m venv venv
source venv/bin/activate
python --version

[image: Installations]

[image: Installations]

Upgrade pip version

Upgrade pip version with 20.0 or above:

pip install pip --upgrade

[image: Installations]

Install dependency for fbprophet package (CentOS 7)

Run below command with sudo privilege

	Install development tool:

yum install -y xz-devel

[image: Installations]

	Install the CentOS SCL release file:

yum install centos-release-scl

[image: Installations]

	Install Developer Toolset version 7:

yum install devtoolset-7

[image: Installations]

	launch a new shell instance using the Software Collection scl tool & Check GCC version:

scl enable devtoolset-7 bash
gcc --version``

[image: Installations]

	Install fbprophet package:

pip install fbprophet

[image: Installations]

	Check pip list:

pip list

[image: Installations]

Reference

Links

	https://linuxize.com/post/how-to-install-gcc-compiler-on-centos-7/

Install Other Packages

Install the required packages:

cd fire-x.y.x/dist/fire
pip install -r requirements.txt

requirements.txt file is available in the installation directory of fire insights:

fire-x.y.x/dist/fire/requirements.txt

Reference

Links

	https://docs.aws.amazon.com/cli/latest/userguide/install-linux-python.html

	https://aws.amazon.com/premiumsupport/knowledge-center/ec2-linux-python3-boto3/

	https://blog.teststation.org/centos/python/2016/05/11/installing-python-virtualenv-centos-7/

Delete a venv

To delete a virtual environment, follow below steps:

source venv/bin/activate
pip freeze > requirements.txt
pip uninstall -r requirements.txt -y
deactivate
rm -r venv/

Installing pip & wheel

	yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

	yum install python-pip

	yum install python-wheel

Add below in .bash_profile

	export PYSPARK_PYTHON=/usr/bin/python3

	export PYSPARK_DRIVER_PYTHON=/usr/bin/python3

For Ubuntu

	Ubuntu : https://docs.python-guide.org/starting/install3/linux/

Python Installation on MacOS

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire Insights use Python 3.6+.

Check if Python is Installed

	python –version

	python3 –version

Install Python 3 (if not already there)

	
	One way to install Python 3 on macOS is by installing Anaconda

	https://docs.anaconda.com/anaconda/install/mac-os/

	Use brew install python3

Add below in .bash_profile

	alias python=’python3’

	export PYSPARK_PYTHON=/usr/bin/python3

	export PYSPARK_DRIVER_PYTHON=/usr/bin/python3

	Sometimes a soft link to Pythons’s executables is broken for some reason.

	sudo ln -s /usr/bin/python3.x /usr/bin/python

Install Other Packages

Install the required python packages for Fire Insights:

	pip install -r requirements.txt

requirements.txt file is available in the installation directory of Fire Insights.

	fire-x.y.x/dist/fire/requirements.txt

Python Installation on Windows

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire Insights use Python 3.6+.

Below are steps for installing Anaconda.

	
	Download Anaconda from the below Link

	
	https://www.anaconda.com/products/individual

	https://www.anaconda.com/products/individual#Downloads

Once the download completes, run the .exe installer

Click Next to confirm the installation

[image: Installations]

Agree to the License

[image: Installations]

Advanced Installation Options screen

It is recommended to not check “Add Anaconda to my PATH environment variable”

[image: Installations]

Open the Anaconda Prompt from the Windows start menu

At the Anaconda prompt, check the conda --version

[image: Installations]

Reference Link

	https://problemsolvingwithpython.com/01-Orientation/01.03-Installing-Anaconda-on-Windows/

Create virtual environment using conda

Run below command to Create virtual environment using conda.

	conda create --name venv python=3.7

[image: Installations]

Activate Virtual environment and Check list of python package

Run Below command to activate and check list of python package available by default.

	conda activate venv

	python --version

	pip list

[image: Installations]

Install Other Dependent Packages

Install the other required packages:

	pip install -r requirements.txt

requirements.txt file is available in the installation directory of Fire Insights : fire-x.y.x/dist/fire/requirements.txt

[image: Installations]

Install dependency for fbprophet package (Windows 10)

Install pystan:

	conda install pystan -c conda-forge

[image: Installations]

Install fbprophet:

	conda install -c conda-forge fbprophet

[image: Installations]

Check the version of fbprophet Installed:

	pip list

[image: Installations]

Once the above steps have completed successfully, run the below command to ensure everything was setup correctly.

	python ./dist/__main__.py

[image: Installations]

Enable PySpark Engine in Fire Insights

Login to Fire Insights application and go to configurations and set app.enablePySparkEngine to true and save the changes. Now you can start using PySpark engine in Fire Insights.

[image: Installations]

Removing Conda virtual Environment

	conda deactivate

	conda env remove --name name of virtual environment

	Delete those package from exact location.

Python Installation on Ubuntu

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire Insights use Python 3.7+.

Check if Python 3.7+ is Installed

Use the below commands:

python --version
python3.7 --version

Install Python 3.7 (if not installed)

Some References for Installing Python:

	Ubuntu : https://linuxize.com/post/how-to-install-python-3-7-on-ubuntu-18-04/

Prerequisites

update the packages list and install the packages necessary to build Python source:

sudo apt update

[image: Installations]

	Install needed dependency:

sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libsqlite3-dev libreadline-dev libffi-dev wget libbz2-dev``

[image: Installations]

Download and extract the downloaded package

	
	Download python from below Link

	
	https://www.python.org/downloads/

	https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz

Download and untar:

wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz
tar xzf Python-3.7.0.tgz

[image: Installations]

Next, navigate to the Python source directory and run the configure script which will perform a number of checks to make sure all of the dependencies on your system are present:

cd Python-3.7.0

[image: Installations]

	Build & compile:

./configure --enable-optimizations

[image: Installations]

	Install the Python binaries by running the following command:

make altinstall

[image: Installations]

Note: Do not use the standard make install as it will overwrite the default system python3 binary.

Verify it by typing:

python3.7 –-version

[image: Installations]

Create Python virtual environment & Activate it

Create Python virtual environment & Activate it:

python3.7 -m venv venv
source venv/bin/activate
python --version

[image: Installations]

Upgrade pip version

Upgrade pip version with 20.0 or above:

pip install pip --upgrade

[image: Installations]

Install dependency for fbprophet package (Ubuntu 18.04)

	pystan dependency:

pip install pystan

[image: Installations]

	convertdate dependency:

pip install convertdate

[image: Installations]

	fbprophet dependency:

pip install fbprophet

[image: Installations]

	Check pip list:

pip list

[image: Installations]

Install Other Packages

Install the required packages:

cd fire-x.y.x/dist/fire
pip install -r requirements.txt

requirements.txt file is available in the installation directory of fire insights:

fire-x.y.x/dist/fire/requirements.txt

Delete a venv

To delete a virtual environment, follow below steps:

source venv/bin/activate
pip freeze > requirements.txt
pip uninstall -r requirements.txt -y
deactivate
rm -r venv/

Running Diagnostics

Linux

Fire Insights needs jdk 1.8 to be available

	java -version

java version “1.8.0_101”

Mac OS

Fire Insights needs jdk 1.8 to be available

	java -version

java version “1.8.0_101”

Windows

Fire Insights needs jdk 1.8 to be available

	java -version

java version “1.8.0_101”

Configuration

	Database Setup
	H2 Database

	MySQL Database

	Microsoft SQL Server Database

	Aurora MySQL Database

	Connecting to Apache Spark Cluster
	Overview

	Fire User Setup

	Infer Hadoop Configs

	Fire Configurations for connecting to an Apache Spark Cluster

	Create New Users in Fire

	Setting up PySpark

	Customizing Fire Installation
	Configuring Max Upload File Size

	Increasing Memory of Fire Server

	Configuring HTTPS for Fire Server
	HTTP

	HTTPS

	keystore.jks

	Generating New Keystore

	Copy the keystore into the Fire installation directory

	Use keytool commands

	HTTPS : Importing Self-Signed Certificates
	Export the certificate to your machine

	Add Certificate to Browser

	Running on Another Port
	Running Fire Server on Another Port

	Running Fire on Another Port

	YARN Configurations
	Client Mode

	Cluster Mode

	Impersonation

	Configuring HTTPS for Fire
	Generate a Keystore

	Copy the keystore into the Fire installation directory

	Update the keystore password

	Port Number

	Finally restart the Fire Server

	Configuring Kerberos
	Steps for configuring Kerberos on Fire

	Steps for generating the keytab for Fire

	Verifying that the keytab file was correctly created

	Configuring Pipelines
	Airflow Installation

	Different Default Values on Startup
	Overview

	Steps

	Remove properties from conf/configuration.properties

	Saving the new values into the DB

	Configuring LDAP/OAuth Authentication
	Database Authentication

	LDAP Authentication

	OAuth Authentication

	HDInsight Integration
	HDInsights and Ports

	Port Configuration

	Open the Port for access

	Add proxy user

	Connecting Fire Insights to the HDInsight Cluster

	MapR Integration
	Download Fire Insights

	Turn off Impersonation

	Update http port

	Fire User

	Upgrading Fire
	Stop Fire if it is running

	Download the new fire tgz file

	Unpack it

	Upgrade the H2 or MySQL database

	Restart Fire

	Running Apache Spark Standalone
	Installing Spark Standalone

	Install Scala

	Install Apache Spark

	Setup Spark Slave(Worker) Node

	Start spark as slave

	Installing Fire

	Configuring Fire

	configurations in spark

	Now go to application and try to run any workflows

	Running Fire as a Service

Database Setup

Fire stores metadata in a Relational Database. These include:

	Applications

	Dataset Definitions

	Workflows

	Users

	Groups

	Roles

	Dashboards

Below are the details for setting up a database for Fire:

	H2 Database

	MySQL Database

	Microsoft SQL Server Database

	Aurora MySQL Database

H2 Database

Fire can be setup up to easily run with H2 database. Fire runs H2 in embedded mode. The H2 database is used for storing the metadata of the DataSets, Workflows, Dashboards, Users, Groups, Roles etc.

More details of the H2 database can be found here : http://www.h2database.com/html/main.html

If you are want to run multiple instances of Fire for high availability, configure Fire to run with MySQL.

Creating/Upgrading the H2 database

Execute the following steps on your CLI:

	Mac/Linux:

cd <install_dir>/fire-x.y.z
./create-h2-db.sh

	Windows:

cd <install_dir>\fire-x.y.z
.\create-h2-db.bat

If you would like to use different values for the db, username, password, update them in <install_dir>/fire-1.4.0/conf/db.properties:

spring.datasource.url = jdbc:h2:file:~/firedb

spring.datasource.username = fire

spring.datasource.password = fire

spring.datasource.driverClassName = org.h2.Driver

Note

firedb is created in the users home directory and the name is firedb.mv.db

Recreating H2 database

If you need to recreate the H2 database, follow the steps below to create a new empty H2 DB:

Stop the running Fire server

Move the existing firedb files to another temp location on your disk

Recreate the H2 DB using the steps in the above section for creating a brand new empty H2 DB for Fire

MySQL Database

Fire can easily be setup up to run with MySQL

More details of the MySQL database can be found here : https://www.mysql.com/

Install MySQL

	Install MySQL on a machine.

	It might be easier to install it on the same machine you are installing Fire on.

Create the DB for Fire in MySQL

	Create the database for Fire in MySQL

	Let us call it firedb:

create database firedb;

Create the User for Fire in MySQL and grant it Permissions

Create the User for Fire in MySQL:

CREATE user 'fire'@'%' IDENTIFIED BY 'fire';

GRANT ALL PRIVILEGES ON firedb.* TO 'fire'@'%' WITH GRANT OPTION;

	In CREATE user, the user we are creating is fire who is allowed to access the database from anywhere % and his password is fire.

	Next, this user has been granted all permissions. This, of course can be further restricted based on your use case.

Configure Fire to connect to MySQL

	Copy db.properties.mysql file into the conf directory as db.properties:

cd fire-x.y.z
cp conf.orig/db.properties.mysql conf/db.properties

	Update the following fields in conf/db.properties based on the values you used in creating the DB for fire. The below assumes that the database name you created for Fire is firedb. It also assumes that MySQL has been installed on the same machine as Fire:

Connection url for the database "firedb"

spring.datasource.url=jdbc:mysql://localhost:3306/firedb

spring.datasource.driverClassName=com.mysql.jdbc.Driver

spring.jpa.database=MYSQL

Username and password

spring.datasource.username=fire

spring.datasource.password=fire

Install the MySQL Connector Jar file

	Download the MySQL JDBC driver from http://www.mysql.com/downloads/connector/j/5.1.html

	Extract the JDBC driver JAR file from the downloaded file. For example:

tar zxvf mysql-connector-java-8.0.11.tar.gz

	just copy the path location for `JDBC driver JAR file

	copy the mysql JDBC driver JAR file to the fire-server-lib directory of fire-x.y.z:

cd fire-x.y.z
cp /pathlocation of jdbc jar file/mysql-connector-java.jar fire-server-lib

Create the Tables for Fire in MySQL

	Create the tables for Fire in MySQL by executing the create-mysql-db.sh script:

cd fire-x.y.z

./create-mysql-db.sh

Troubleshooting

MySQL has a problem where one of the default users in the user table is '' @ localhost, which winds up denying all localhost users later in the table. If you are accessing mysql from localhost, assuming Fire and MySQL have been installed on the same machine, then you need to delete this entry in mysql.user table:

select user, host from user where user = ''

#you should see an entry for this and host equals localhost.

DELETE from user WHERE user = '' AND host = 'localhost';

flush privileges;

#this reloads privileges - important step. otherwise you will get access denied error even though you log in with the correct user.

Here is a link on stackoverflow that talks about this:

http://stackoverflow.com/questions/1412339/cannot-log-in-with-created-user-in-mysql

Microsoft SQL Server Database

Fire can easily be setup up to run with Microsoft SQL Server.

More details of the Microsoft SQL Server database can be found here : https://www.microsoft.com/en-us/sql-server/default.aspx

Install Microsoft SQL Server

	Install Microsoft SQL Server on a machine.

	It might be easier to install it on the same machine you are installing Fire on.

Create the DB for Fire in Microsoft SQL Server

	Create the database for Fire in Microsoft SQL Server

	Let us call it firedb:

CREATE DATABASE firedb;

Create the User for Fire in Microsoft SQL Server and grant it Permissions

Create the User for Fire in Microsoft SQL Server and give it Permissions.

Configure Fire to connect to Microsoft SQL Server

	Copy db.properties.sqlserver file into the conf directory as db.properties:

cd fire-x.y.z
cp conf.orig/db.properties.sqlserver conf/db.properties

	Update the following fields in conf/db.properties based on the values you used in creating the DB for fire. The below assumes that the database name you created for Fire is firedb. It also assumes that Microsoft SQL Server has been installed on the same machine as Fire:

Connection url for the database "firedb"

spring.datasource.url=jdbc:sqlserver://localhost:1433;databaseName=firedb

spring.datasource.driverClassName=com.microsoft.sqlserver.jdbc.SQLServerDriver

spring.jpa.database=SQLSERVER

Username and password

spring.datasource.username=fire

spring.datasource.password=fire

spring.jpa.hibernate.dialect=org.hibernate.dialect.SQLServer2008Dialect

Install the Microsoft SQL Server Connector Jar file

	Download the Microsoft SQL Server JDBC driver from https://www.microsoft.com/en-us/download/details.aspx?id=11774

	Untar the file sqljdbc_6.0.8112.200_enu.tar.gz

	You will get JDBC jar file on untaring sqljdbc42.jar

	Copy the Microsoft SQL Server JDBC driver JAR file to the fire-server-lib directory of fire-x.y.z

Create the Tables for Fire in Microsoft SQL Server

	Tables in Microsoft SQL Server can be created by using the DDL script : db/sqlserver/fire-schema.sqlserver.sql

	They can also be created by executing the create-sqlserver-db.sh script:

cd fire-x.y.z

./create-sqlserver-db.sh

Aurora MySQL Database

Fire can easily be setup up to run with Aurora MySQL

More details of the Aurora MySQL database can be found here : https://aws.amazon.com/rds/aurora/

Create Aurora MySQL database on AWS

	Login to AWS.

	Create Aurora MySQL Database which is accessible from machine where Fire is running.

Create the DB for Fire in Aurora MySQL

	Create the database for Fire in Aurora MySQL

	Let us call it firedb:

create database firedb;

Create the User for Fire in Aurora MySQL and grant it Permissions

Create the User for Fire in MySQL:

CREATE user 'fire'@'%' IDENTIFIED BY 'fire';

GRANT ALL PRIVILEGES ON firedb.* TO 'fire'@'%' WITH GRANT OPTION;

	In CREATE user, the user we are creating is fire who is allowed to access the database from anywhere % and his password is fire.

	Next, this user has been granted all permissions. This, of course can be further restricted based on your use case.

Configure Fire to connect to Aurora MySQL

	Copy db.properties.mysql file into the conf directory as db.properties:

cd fire-x.y.z
cp conf.orig/db.properties.mysql conf/db.properties

	Update the following fields in conf/db.properties based on the values you used in creating the DB for fire. The below assumes that the database name you created for Fire is firedb. It also assumes that MySQL has been installed on the same machine as Fire:

Connection url for the database "firedb"

spring.datasource.url=jdbc:mysql://Endpoint:3306/firedb

spring.datasource.driverClassName=com.mysql.jdbc.Driver

spring.jpa.database=MYSQL

Username and password

spring.datasource.username=fire

spring.datasource.password=fire

Install the MySQL Connector Jar file

	Download the MySQL JDBC driver from http://www.mysql.com/downloads/connector/j/5.1.html

	Extract the JDBC driver JAR file from the downloaded file. For example:

tar zxvf mysql-connector-java-8.0.11.tar.gz

	just copy the path location for `JDBC driver JAR file

	copy the mysql JDBC driver JAR file to the fire-server-lib directory of fire-x.y.z:

cd fire-x.y.z
cp /pathlocation_of_jdbc_jar_file/mysql-connector-java.jar fire-server-lib

Create the Tables for Fire in Aurora

	Create the tables for Fire in MySQL by executing the create-mysql-db.sh script:

cd fire-x.y.z

./create-mysql-db.sh

Troubleshooting

MySQL has a problem where one of the default users in the user table is '' @ localhost, which winds up denying all localhost users later in the table. If you are accessing mysql from localhost, assuming Fire and MySQL have been installed on the same machine, then you need to delete this entry in mysql.user table:

select user, host from user where user = ''

#you should see an entry for this and host equals localhost.

DELETE from user WHERE user = '' AND host = 'localhost';

flush privileges;

#this reloads privileges - important step. otherwise you will get access denied error even though you log in with the correct user.

Here is a link on stackoverflow that talks about this:

http://stackoverflow.com/questions/1412339/cannot-log-in-with-created-user-in-mysql

Connecting to Apache Spark Cluster

Overview

Fire can be configured to submit the spark jobs to run on an Apache Spark Cluster.

	
	Install Fire on an edge node of your Apache Spark Cluster.

	
	The edge node has the hadoop/hive/spark configuration files set up.

	Make sure that you are already able to run your spark jobs from this node using spark-submit.

	Update the below configurations under the menu, ``Administration/Configuration``

Note

In order for Fire to connect to the Apache Spark Cluster, it needs to be installed as a user which can impersonate other users. More details are below in the page. For the rest of the documentation on this page, we assume that it has been installed as the user sparkflows.

Fire User Setup

The user with which Fire is running has to be a proxy user in HDFS. That way it can impersonate the logged in user.

Below are the steps for setting the Fire user to be a proxy user on HDFS.

Update core-site.xml of Hadoop to allow Fire user to impersonate

https://www.cloudera.com/documentation/enterprise/5-8-x/topics/admin_hdfs_proxy_users.html

	In your core-site.xml file for Hadoop, allow sparkflows user to impersonate other users. Without impersonation enabled for this user, your Sparkflows application users trying to run jobs against a hadoop cluster would not be able to do so.

	Also, allow the appropriate groups that the sparkflows users will be able to impersonate belong to.

	In the example below, user sparkflows is allowed to impersonate users from hosts host1 and host2. The users being impersonated belong to the groups hive,hfs,hadoop,spark. Your permissions are likely going to be different and more restrictive.

Below is an example:

<property>
 <name>hadoop.proxyuser.sparkflows.hosts</name>
 <value>host1,host2</value>
</property>

<property>
 <name>hadoop.proxyuser.sparkflows.groups</name>
 <value>hive,hfs,hadoop,spark</value>
 </property>

Cloudera Manager

If you are using Cloudera Manager, you can set the above settings for impersonation in HDFS/Configuration.

[image: Cloudera Configs]

Ambari

If you are using Ambari, you can set the above settings for impersonation in HDFS/Configuration under Custom core-site

[image: Ambari Configs]

Infer Hadoop Configs

Infer Hadoop Configs button under Administration/Configuration automatically infers some of the configurations of the cluster from the hadoop config files on the edge node to help with the process. Use it to get the initial set of configurations.

[image: Infer Hadoop Configs]

Fire Configurations for connecting to an Apache Spark Cluster

Below are the configuration details for connecting Fire to an Apache Spark Cluster.

	Parameter

	Value

	Description

	app.runOnCluster

	true

	Indicate to run on the spark cluster. By default it is set to false

	app.postMessageURL

	http://localhost:8080/messageFromSparkJob

	Indicate the URL on fire server which receives messages from the spark jobs running on the cluster. Set localhost to the machine name on which Fire is running. Replace 8080 with the port number on which Fire is running.

	app.sparkSubmitJar

	/user/centos/fire-2.1.0/fire-lib/fire-core-2.1.0-jar-with-dependencies.jar

	fire-lib directory of the Sparkflows install contains the fire core jar used in submitting the workflows to the Spark cluster. Set it correctly to be the absolute path of the fire core jar.

	hdfs.namenodeURI

	hdfs://localhost:8020

	Update the hdfs namenode URI. Set localhost to the machine on which the namenode is running.

	hdfs.namenodeURI

	file://

	Set it to file:// when the files are on the local filesystem. This can be the case when HDFS is not there.

	hdfs.namenodeURI

	maprfs:///

	Set it to maprfs:/// for mapr.

	hive.JDBC_DB_URL

	jdbc:hive2://localhost:10000

	Update the hive JDBC DB URL if you would be accessing HIVE from Sparkflows. This is the URL of the HiveServer 2 server.

	spark.sql-context

	HIVEContext

	Set it to either HIVEContext or SQLContext based on whether you want to use HIVEContext or SQLContext in your job. Use HIVEContext if you would be accessing the HIVE tables.

	spark.master

	yarn

	Set it to yarn for connecting to a spark cluster running YARN

	spark.master

	spark://spark_master_hostname:port

	Set it to the spark master URL when connecting to a spark cluster running in standalone mode. Port is normally 7077.

	spark.spark-submit

	spark-submit

	Spark Submit command for submitting the Spark jobs to the cluster. It can be spark2-submit for Spark2 CDH clusters. Make sure to provide the full path or spark-submit should be in the path.

Create New Users in Fire

Fire allows creating multiple users. Create the users in Fire under Administration/Users who would be building and running workflows.

These users have to exist on HDFS. So ensure that these users Home Directory are created on HDFS

Also create the home directory for the users on HDFS. The example code below creates the home directory for the user xyz onto HDFS. It also changes the permission of the directory.

	su - hdfs

	hadoop fs -mkdir /user/xyz

	hadoop fs -chown xyz:hadoop /user/xyz

Setting up PySpark

If running with PySpark the following might need to be added to point PYSPARK to the right version of python on the cluster machines. Below is an example where python is at /home/ec2-user/venv/bin/python

It is also important that all the users are able to execute the python executable.

spark-env.sh:

export PYSPARK_PYTHON=/home/ec2-user/venv/bin/python
export PYSPARK_DRIVER_PYTHON=/home/ec2-user/venv/bin/python

spark-defaults.conf:

spark.yarn.appMasterEnv.PYSPARK_PYTHON=/home/ec2-user/venv/bin/python
spark.yarn.appMasterEnv.PYSPARK_DRIVER_PYTHON=/home/ec2-user/venv/bin/python

Customizing Fire Installation

Below are the details of Configuring Fire for various requirements:

	Configuring Max Upload File Size

	Increasing Memory of Fire Server

Configuring Max Upload File Size

Fire allows users to upload files into HDFS through their Browser.

The settings which controls it is in conf/application.properties:

max file size
multipart.maxFileSize: 10Mb
multipart.maxRequestSize: 10Mb

Increasing Memory of Fire Server

By default, when the Fire web server is started with run-fire-server.sh, it is given 1.5 GB of memory.

Below is from run-fire-server.sh:

nohup ${JAVA} -server -Djava.ext.dirs=./user-lib/ -Xmx1548m -Xms1356m -XX:+CMSClassUnloadingEnabled -XX:PermSize=512m -XX:MaxPermSize=512m -jar ./app/fire-ui-1.3.0.war --spring.config.name=application,db,log4j --spring.config.location=file:./conf/ &

	In order to increase the amount of memory for the Fire web server, increase the value of -Xmx based on the amount of memory available on your server.

	For example, you could raise it to 5 GB or 10 GB or more up to 25 GB.

	-Xmx5g

	-Xmx10g

	-Xmx25g

	The increased memory size, if available, allows Fire to handle more requests and return results faster. Of course, when connected to an Apache Spark cluster, the full jobs are submitted to the Spark cluster through spark-submit, allowing it to be very scalable and not dependent on the Fire web server.

	The interactive execution of the workflows in the workflow editor, is run within Fire on a small subset of the data. These interactive executions would benefit from increased memory.

Configuring HTTPS for Fire Server

You can choose to run the Fire Server either on http or https connection.

The ports for http and https are configured in the file conf/application.properties:

http.port=8080
https.port=8443

HTTP

http://hostname:8080/login

HTTPS

https://hostname:8443/login

keystore.jks

Fire Server comes with a pre-configured keystore in the conf folder of the install.

	conf/keystore.jks

	conf/keystore.properties : Stores the keystore password

Generating New Keystore

You can use the following command for generating a new keystore:

keytool -genkeypair -alias sparkflows -keyalg RSA -validity 365 -keystore keystore.jks

You will be prompted with the following questions and enter something similar to the SAMPLE answers:

Enter keystore password:
Re-enter new password:
What is your first and last name?
 [Unknown]: John Smith
What is the name of your organizational unit?
 [Unknown]: BigData
What is the name of your organization?
 [Unknown]: MyOrg
What is the name of your City or Locality?
 [Unknown]: San Francisco
What is the name of your State or Province?
 [Unknown]: California
What is the two-letter country code for this unit?
 [Unknown]: CA
Is CN=John Smith, OU=BigData, O=MyOrg, L=San Francisco, ST=California, C=CA correct?
 [no]: yes
Enter key password for <sparkflows>
 (RETURN if same as keystore password): Press the return key or Type and note down the password

Copy the keystore into the Fire installation directory

	Copy the generated keystore.jks file into the conf folder of your installation.

	Update keystore.properties with the new password.

Note

When the keystore is updated, the password also has to be updated in case it changes.

The Fire web server would also have to be restarted for the changes to take effect.

Use keytool commands

Listing entries in Keystore

List entries in keystore:

keytool -list -keystore keystore.jks

Importing a Certificate to an existing Keystore

Importing a Certificate to an existing Keystore:

keytool -import -trustcacerts -alias <Name of Cert> -file <Absolute Path to .crt File> -keystore <Absolute Path to Desired Keystore> -storepass <KEYSTORE_PASSWORD>

HTTPS : Importing Self-Signed Certificates

Fire Insights comes with a self-signed certificate. It is contained in conf/keystore.jks.

When using the self-signed certificate, the Browser will complain as it has not been issued by a Certificate Authority.

This warning message can be supressed by importing the self-signed certificate into the Browser inside Trusted Root Certification Authorities.

Below are the steps for importing self-signed certificate into your Browser.

Export the certificate to your machine

	
	Got to URL for the HTTPS port.

	
	https://privateip:8443/login

[image: certificate]

	Click on Not secure option.

[image: certificate]

	Click on Certificate.

[image: certificate]

	View Certificate.

[image: certificate]

	Click on Details option to see detail information of certificate.

[image: certificate]

	Click on copy to file option to copy certificate to local machine.

[image: certificate]

	Select below option and press Next.

[image: certificate]

	Select the Name & file location of certificate.

[image: certificate]

	After upadating the details Success msg will apear.

[image: certificate]

Next we need to add the exported certificate to the Browser.

Add Certificate to Browser

	Using Google chrome

	
	Go to below location after opening Google Chrome.

	
	Settings -> Advanced -> Privacy and Security-> Manage Certificates

[image: certificate]

	Click on Manage Certificate icon.

[image: certificate]

	Click on import.

[image: certificate]

	Select certificate from local system, use Trusted Root Certification Authorities option and press yes to save it.

[image: certificate]

[image: certificate]

[image: certificate]

	Once the above process complete, close the browser and start again and try to login with above URL, It should work without any warnings.

[image: certificate]

	Help Url: https://peacocksoftware.com/blog/make-chrome-auto-accept-your-self-signed-certificate

Running on Another Port

There are 2 processes involved when running Fire.

	fire server

	fire

User’s Browser talks with fire server, and in turn fire server talks with fire.

Both fire server and fire processes can be configured to listen on different ports.

Running Fire Server on Another Port

By default the fire server runs on the following ports:

	8080 (http)

	8443 (https)

Below are the steps for running fire server on a different port.

	Navigate to the conf folder under Sparkflows install directory

	Open application.properties file:

	Configure http and https port numbers: Default 8080 for http and 8443 for https

	http.port=8080

	https.port=8443

	
	In the Fire UI, under Administration/Configuration update the below property with the right port number.

	
	app.postMessageURL

	Restart Fire Server using one of the commands below depending on the environment (Unix/Linux or Windows)
- run-fire-server.sh start
- run-fire-server.bat

Running Fire on Another Port

Fire by default runs on port 8081.

In order to run Fire on a different port:

	
	Navigate to the conf folder under Sparkflows install directory

	
	Open application.properties file:

	Configure the http port

	fire.http.port=8081

	Restart Fire using ./run-fire.sh start

YARN Configurations

Fire can submit jobs to a YARN cluster. It can submit the spark jobs to run on YARN in either client or cluster mode.

Client Mode

For configuring to run in client mode, set the following parameter under Administration/Configuration:

spark.deploy-mode : client

In this mode, the spark driver runs on the same machine on which Fire is running. The workflow json file is written out to the directory /tmp/fire/workflows on the machine on which Fire is running.

Cluster Mode

For configuring to run in cluster mode, set the following parameter under Administration/Configuration:

spark.deploy-mode : cluster

In this mode, the spark driver runs on the spark cluster. The workflow json file is written out onto HDFS in the directory .fireStaging under the users HOME directory on HDFS.

The spark job reads the workflow json file from HDFS.

Impersonation

	Normally app.impersonateUsers is set to true so that the jobs are run as the logged in user.

Note

The logged in user into Fire should exist on HDFS

Configuring HTTPS for Fire

Fire server can listen on HTTPS. Fire Server comes with a pre-configured keystore.

Below are the steps for configuring Fire with your keystore and certificates.

Generate a Keystore

You can use the following command for generating the Keystore:

keytool -genkey -keyalg RSA -alias sparkflows -keystore keystore.jks -validity 365 -keysize 2048 -ext san=ip:< host machine ip address>

You will be prompted with the following questions and enter something similar to the SAMPLE answers:

Enter keystore password:
Re-enter new password:
What is your first and last name?
 [Unknown]: John Smith
What is the name of your organizational unit?
 [Unknown]: BigData
What is the name of your organization?
 [Unknown]: MyOrg
What is the name of your City or Locality?
 [Unknown]: San Francisco
What is the name of your State or Province?
 [Unknown]: California
What is the two-letter country code for this unit?
 [Unknown]: CA
Is CN=John Smith, OU=BigData, O=MyOrg, L=San Francisco, ST=California, C=CA correct?
 [no]: yes
Enter key password for <sparkflows>
 (RETURN if same as keystore password): Press the return key or Type and note down the password

Copy the keystore into the Fire installation directory

Copy the generated keystore.jks file into the conf folder of your installation.

Update the keystore password

Update keystore.properties to udpdate the password of the new keystore.jks file:

keystore.password=123456

Port Number

Fire by default listens on port 8443 for https.

This is configured in the file conf/application.properties:

#Configure http and https port numbers : Default 8080 for http and 8443 for https
http.port=8080
https.port=8443

Finally restart the Fire Server

Restart the Fire server for the changes to take effect:

./run-fire-server.sh stop
./run-fire-server.sh start

Configuring Kerberos

Fire runs with a kerberized Spark cluster.

Steps for configuring Kerberos on Fire

	Generate a keytab for Fire

	Place it in …/fire-x.y.z/conf directory:

While this is the recommended location, the keytab file can be placed in any another directory too.

	Make sure only the user running fire application has access to the keytab. For example:

-r-------- 1 fire staff 436 Jun 29 16:06 hive.keytab

	Go to Administration/Configuration and update the following configurations to enable Kerberos for Fire

	Configuration

	Example Value

	Details

	kerberos.enabled

	true

	Set it to true to enable Kerberos for Fire

	kerberos.keytab

	/user/ec2-user/fire.keytab

	Absolute path of the keytab generated for Fire

	kerberos.principal

	fire@EXAMPLE.COM

	Kerberos Principal of the keytab of Fire

	kerberos.KERBEROS_REALM

	EXAMPLE.COM

	Kerberos Realm

	kerberos.KERBEROS_KDC

	hostname.example.com

	KDC Server

	kerberos.hiveServer2Principal

	hive/hive2_host@EXAMPLE.COM

	HIVE Server2 Principal

Steps for generating the keytab for Fire

Below are the steps for generating the keytab file. We have chosen fire as the principal name. But you can have it as any user you are running Fire with.

	Start kadmin.local and add the new principal fire@EXAMPLE.COM:

$ kadmin.local

kadmin.local: addprinc -randkey fire@EXAMPLE.COM

WARNING: no policy specified for fire@EXAMPLE.COM; defaulting to no policy
Principal "fire@EXAMPLE.COM" created.

	Create fire keytab file:

kadmin.local: xst -norandkey -k fire.keytab fire@EXAMPLE.COM

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type aes256-cts-hmac-sha1-96 added to keytab

WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type aes128-cts-hmac-sha1-96 added to keytab

WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type des3-cbc-sha1 added to keytab WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type arcfour-hmac added to keytab WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type des-hmac-sha1 added to keytab WRFILE:fire.keytab.

Entry for principal fire@EXAMPLE.COM with kvno 1, encryption type des-cbc-md5 added to keytab WRFILE:fire.keytab.

	Exit kadmin.local:

kadmin.local: exit

Verifying that the keytab file was correctly created

Below are the steps for verifying the keytab file.

	Ensure that the keytab file was created and it has the right permissions:

$ ls -l fire.keytab

-rw------- 1 root root 382 Jul 24 17:55 fire.keytab

	Further verify the contents of keytab file. A normal keytab file depending on your krb5.conf settings, looks like this:

$ klist -e -k -t fire.keytab

Keytab name: FILE:fire.keytab

KVNO Timestamp Principal
...
1 07/24/16 17:55:07 fire@EXAMPLE.COM (aes256-cts-hmac-sha1-96)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (aes128-cts-hmac-sha1-96)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (des3-cbc-sha1)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (arcfour-hmac)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (des-hmac-sha1)

1 07/24/16 17:55:08 fire@EXAMPLE.COM (des-cbc-md5)

Configuring Pipelines

Fire uses Apache Airflow for executing Pipelines. Hence Airflow has to be installed on the same machine as Fire.

Below are the configurations needed in Fire for Airflow.

[image: Pipelines Configuration]

Airflow Installation

It explain the steps involved in installing Airflow on Centos and RHEL. Detailed Airflow Install Instructions is at:

https://airflow.apache.org/installation.html

	Login to machine

	Before installing airflow update installed package:

	yum -y update

	Install python-pip and any required packages:

	sudo yum install epel-release

	sudo yum install python-pip

	Check the version of pip that is installed and if reqd upgrade:

	pip -V

	pip install –upgrade setuptools

	Note that for 1.10 you now need to preface install commands or export this env var:

	export SLUGIFY_USES_TEXT_UNIDECODE=yes

	Install gcc , gcc-c++ and dependencies for python 2.7

	sudo yum -y install gcc gcc-c++ kernel-devel

	sudo yum -y install python-devel libxslt-devel libffi-devel openssl-devel

	Airflow needs a home, ~/airflow is the default

	export AIRFLOW_HOME=~/airflow

	Install from pypi using pip

	pip install apache-airflow

	To check airflow version

	airflow version

[image: airflow]

	Generate a Fernet key for Airflow(optional)

	python -c “from cryptography.fernet import Fernet; print(Fernet.generate_key().decode())”

	fgrc0MPUG1n3Q352Fp705A-bysNHX6EFRr7nYFTmXXA=

	update in airflow.cfa

	fernet key: fgrc0MPUG1n3Q352Fp705A-bysNHX6EFRr7nYFTmXXA=

	Initialize the Airflow database

	airflow initdb

	Start the web server, its default port is 8080, If any other application is running on 8080, we can update other port for airflow

	airflow webserver -p 8090

[image: airflow]

	Start the scheduler

	airflow scheduler

[image: airflow]

	Login in browser

	http://x.y.z.w:8090

[image: airflow]

Different Default Values on Startup

Overview

Fire has a number of properties under Administration / Configuration. When initially installed they have certain default values. Administrators can log into Fire through their Browser and update the Properties.

However, there might be cases where you want Fire to come up with different default values for the Configurations when installed. This enables more automation and the Administrator does not have to go in and manually change the default values.

Steps

Below are the Steps to override the default Configuration values:

	Update the file conf/configuration.properties with the new key/value pairs

Now the default values are populated with the values provided in configuration.properties.

Fire comes with an empty conf/configuration.properties file. You can put in your values into it.

Remove properties from conf/configuration.properties

Fire will continue to take the final values from conf/configuration.properties for any property which is there in the file.

If you would like Fire not to use any of the properties from conf/configuration.properties, but take it from the database, then remove or comment out those properties in conf/configuration.properties.

Saving the new values into the DB

When the configuration values are saved, they get updated in the database.

Even if they are removed from configuration.properties, they would have been saved in the database.

Configuring LDAP/OAuth Authentication

Fire Insights supports various types of authencations:

	Database Authentication

	LDAP Authentication

	OAuth Authentication

	Database Authentication

	LDAP Authentication
	LDAP Parameters

	Note

	LDAP Certificate

	Importing a user from LDAP into Sparkflows

	User Login

	Search Order

	Reference

	What if I get locked out

	Notes

	OAuth Authentication
	Create Users in Fire

	Configuring OAuth

	Fire OAuth URL

Database Authentication

Fire Insights can authenticate the user against its own database.

User’s password are stored encrypted.

This is the default authentication mechanism of Fire Insights. Users created in Fire are stored in the database.

LDAP Authentication

Fire Insights can be configured to authenticate the user against LDAP. Users have to be added to Fire, before they can log into Fire and start using it.

The following configurations have to be set appropriately.

[image: Sparkflows Ldap Order]

LDAP Parameters

LDAP Parameters

	Name of Parameter

	Description

	Example

	ldap.Order

	Order in which to authenticate the user. Possible values are DB, LDAP_DB, DB_LDAP.

	

	ldap.URL

	The URL of the LDAP server. The URL must be prefixed with ldap:// or ldaps://. The URL can optionally specify a custom port, for example: ldaps://ldap_server.example.com:1636.

	ldap://localhost:10389

	ldap.Base

	The distinguished name to use as a search base for finding users and groups. This should be similar to ‘dc=sparkflows,dc=com’.

	dc=sparkflows,dc=com

	ldap.UserDn

	Distinguished name of the user to bind as. This is used to connect to LDAP/AD for searching user and group information. This may be left blank if the LDAP server supports anonymous binds.

	uid=john,ou=development,dc=sparkflows,dc=com

	ldap.Password

	The password of the bind user.

	xyz

	ldap.UserSearchBase

	User Search Base

	ou=development

	ldap.UserSearchFilter

	The base filter for searching for users. For Active Directory, this is typically ‘(objectClass=user)’.

	For Active Directory : (objectClass=user) Other Example : (uid={0})

	ldap.GroupSearchBase

	Group Search Base

	ou=groups

	ldap.GroupSearchFilter

	Group Search Filter

	For Active Directory : (objectClass=group) Other Example : (member={0})

Note

For ldap.UserSearchFilter we can use strings like (uid={USERNAME})
In this case {USERNAME} would be replaced by the real username of the user when searching in LDAP during Add User.

LDAP Certificate

If ldaps is being used, the ldap certificate needs to be imported into cacerts.

For Reference : https://docs.oracle.com/cd/E19509-01/820-3399/ggfrj/index.html

Importing a user from LDAP into Sparkflows

Once LDAP is enabled in Sparkflows, users can be imported into Sparkflows from LDAP.

	Go to Administration/User

	Click on Add/Sync User

	Enter the username and click on Search

	User details are fetched from LDAP

	Click on Add User to create the user in Sparkflows

User Login

Once LDAP is enabled in Sparkflows, all the authentication for login in Sparkflows are done against LDAP.

Search Order

Sparkflows would search in LDAP and then in its DB. Search order is determined by the parameter ldap.Order.

If it is set to LDAP_DB, it would first search for the User in LDAP and then in its own DB. This allows having the admin user in the Sparkflows DB if needed, so that all users are not locked out of the system in case LDAP goes down or ends up with invalid Configurations.

Reference

Below are some great links for reference:

	Active Directory Search Filter Syntax : https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

What if I get locked out

ldap.Order determines the order in which Sparkflows tries to log in the user.
In case you are locked out of Sparkflows and are not able to log in, you can do the following:

	Add the below line to conf/configuration.properties:

ldap.Order=DB

	Then restart the fire server. Now you should be able to log in with your admin account.

Once things are back to normal, you can remove the line you added to configuration.properties and restart the fire server.

Notes

	Search strings are not case sensitive

OAuth Authentication

Fire Insights supports OAuth Authentication.

Create Users in Fire

First create the user in Fire under Administration/Users.

Log into Fire with the admin user in order to be able to create the New Users.

Configuring OAuth

In order the configure OAuth in Fire Insights, add the OAuth configuration parameters to conf/application.properties.

Below is an example of configuring OAuth in Fire with Okta.

Okta settings
oauth.client.clientId: 0oadvfdsfsdA7Y68356
oauth.client.clientSecret: YSWFdZf9kfdsfsdfsdfsdnI0SVrswOJpHl
oauth.client.accessTokenUri: https://xyz.okta.com/oauth2/default/v1/token
oauth.client.userAuthorizationUri: https://xyz.okta.com/oauth2/default/v1/authorize
oauth.client.clientAuthenticationScheme: form
oauth.client.scope: openid profile email
oauth.resource.userInfoUri: https://xyz.okta.com/oauth2/default/v1/userinfo

Fire OAuth URL

In order to log in the user into Fire using OAuth, use the following URL:

	http://machine_name:port/login/oauth

This URL will take the user to the OAuth login page. After the user logs in there, the user is redirected back to Fire and is logged in.

If the user is already logged in, going to the above URL, automatically brings up the Fire page for the user.

HDInsight Integration

Fire Insights runs seamlessly on Azure HDInsight.

Fire can be installed on the master or edge nodes of the cluster.

HDInsights and Ports

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-port-settings-for-services

Linux-based HDInsight clusters only expose three ports publicly on the internet; 22, 23, and 443. These ports are used to securely access the cluster using SSH and services exposed over the secure HTTPS protocol.

Internally, HDInsight is implemented by several Azure Virtual Machines (the nodes within the cluster) running on an Azure Virtual Network. From within the virtual network, you can access ports not exposed over the internet. For example, if you connect to one of the head nodes using SSH, from the head node you can then directly access services running on the cluster nodes.

To join additional machines to the virtual network, you must create the virtual network first, and then specify it when creating your HDInsight cluster. For more information, see Extend HDInsight capabilities by using an Azure Virtual Network

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-extend-hadoop-virtual-network

Port Configuration

Fire Insights by default listens on ports 8080 and 8443.

On HDInsight, port 8080 generally is already in use. So configure Fire Insights to listen on another port, say 8090.

Edit conf/application.properties:

#Configure http and https port numbers : Default 8080 for http and 8443 for https
http.port=8090
https.port=8443

Open the Port for access

Now the port 8090 needs to be opened to be accessed by the users using their Browser.

	https://stackoverflow.com/questions/45239566/accessing-http-on-custom-port-in-azure-hdinsight-cluster

Add proxy user

Fire needs to impersonate the logged in user.

In Ambari for the HDInsight cluster, add the Fire user in HDFS to be the proxy user.

Suppose Fire is installed as the user fire. Add the below to HDFS/Configuration in Ambari:

hadoop.proxyuser.fire.groups=*
hadoop.proxyuser.fire.hosts=*

Connecting Fire Insights to the HDInsight Cluster

In Fire Insights, under Administration/Configuration, configure the following for it to be able to connect to the HDInsight cluster.

	hdfs.namenodeURI=wasb://

	app.runOnCluster=true

	app.postMessageURL=

	app.sparkSubmitJar=

Clicking on Infer Hadoop Configuration would correctly infer these. Hit Save after that.

MapR Integration

This document describes details when installing Fire Insights on a MapR cluster.

Download Fire Insights

	Download MapR specific binary from : https://www.sparkflows.io/archives

Turn off Impersonation

	In Administration / Configuration of Sparkflows:

Turn off impersonation : Set app.impersonateUsers = false
Set maprfs : hdfs.namenodeURI = maprfs:///
Set spark-submit appropriately : spark.spark-submit = /opt/mapr/spark/xyz/bin/spark-submit

Update http port

	Set http port` to be different in `conf/application.properties if there are other processes using the specified ports

Fire User

	Fire has to be installed as a user which can submit jobs to the MapR cluster. Say we installed Fire as user mapr:

Create a mapr user in sparkflows and log in as that user
Start using Sparkflows

Upgrading Fire

Stop Fire if it is running

Stop Fire with the below command from the directory in which it is installed:

run-fire-server.sh stop

Download the new fire tgz file

Download Fire tgz file from:

- https://www.sparkflows.io/download OR

- https://www.sparkflows.io/archives

Unpack it

Unpack the tgz file with below on unix/linux:

tar xvf fire-x.y.z.tgz

Upgrade the H2 or MySQL database

	If you have updated the conf/db.properties file, copy it from your old location to the new directory

	Backup your existing H2 db files. By default they are in your home directory as firedb.mv.db

	If you are using MySQL, backup the fire database in MySQL.

	Execute the following commands on the Command Line to upgrade the Fire database:

cd <install_dir>/fire-x.y.z

./create-h2-db.sh OR ./create-mysql-db.sh

the above command creates or updates the existing db if one already exists

Restart Fire

Restart the Fire Server:

run-fire-server.sh start

Running Apache Spark Standalone

Fire can be run on Spark Standalone cluster. In this case, Hadoop does not need to be installed.

Installing Spark Standalone

	Install Java

	wget –no-cookies –no-check-certificate –header “Cookie: gpw_e24=http%3A%2F%2Fwww.oracle.com%2F; oraclelicense=accept-securebackup-cookie” “https://download.oracle.com/otn-pub/java/jdk/8u201-b09/42970487e3af4f5aa5bca3f542482c60/jdk-8u201-linux-x64.rpm”

	yum localinstall jdk-8u201-linux-x64.rpm

	Java -version

[image: Standalone spark]

Install Scala

	Install Scala

	wget http://www.scala-lang.org/files/archive/scala-2.10.1.tgz

	tar xvf scala-2.10.1.tgz

	sudo mv scala-2.10.1 /usr/lib

	sudo ln -s /usr/lib/scala-2.10.1 /usr/lib/scala

	export PATH=$PATH:/usr/lib/scala/bin (we can add in .bash_profile)

	scala -version

[image: Standalone spark]

Install Apache Spark

	Download Spark

	wget http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-hadoop2.7.tgz

	Extract, create a new directory under the /usr/local called spark and copy the extracted connect into it

	tar xf spark-2.1.0-bin-hadoop2.7.tgz

	mkdir /usr/local/spark

	cp -r spark-2.1.0-bin-hadoop2.7/* /usr/local/spark

	Setup some Environment variables before you start spark-shell (in .bash_profile)

	export SPARK_EXAMPLES_JAR=/usr/local/spark/examples/jars/spark-examples_2.11-2.0.0.jar

	PATH=$PATH:$HOME/bin:/usr/local/spark/bin

	Start you Scala Shell and run Spark

	Go to sparkflows home directory

	cd /usr/local/spark/bin

	./spark-shell

[image: Standalone spark]

	Start a standalone master server by executing:

	./sbin/start-master.sh (from spark home directory)

	Once started, the master will print out a spark://HOST:PORT URL

	You can also find this URL on the master’s web UI,

	http://Master_host_ip:8080/ by default

[image: Standalone spark]

Setup Spark Slave(Worker) Node

	Go to SPARK_HOME/conf/ directory.

	Edit the file spark-env.sh – Set SPARK_MASTER_HOST

	If spark-env.sh is not present, spark-env.sh.template would be present. Make a copy of spark-env.sh.template with name spark-env.sh and add/edit the field SPARK_MASTER_HOST. Part of the file with SPARK_MASTER_HOST

	cp ./conf/spark-env.sh.template ./conf/spark-env.sh

	Add a line in spark-env.sh :

	SPARK_MASTER_HOST=’MASTER_HOST_IP’

Start spark as slave

	Goto SPARK_HOME/sbin and execute the following command.

	./start-slave.sh spark://MASTER_HOST_IP:7077

Installing Fire

Install Fire on the master node.

	Download Fire Jar from website

	wget https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

	tar xvf fire-x.y.z.tgz

	Go to below directory:

	cd fire-x.y.z

	Update the port of Fire-ui & Fire to 8090 & 8082 as default port 8080 & 8081 is used by standalone spark, we can chose any other also.

	From fire-x.y.z directory, we need to go conf/application.properties and update the port No.

[image: Standalone spark]

	Create database & run fire & fire-ui server

	./create-h2-db.sh

	./run-fire.sh start

	./run-fire-server.sh start

Configuring Fire

Below are the configuration for Fire to submit the jobs to the Spark Standalone Cluster.

	
	Once The server fire & fire-ui start

	
	Login to http://Machine_ip:8090/#/dashboard

	With password admin/admin.

	Upload default applications.

	Create a user ec2-user.

	Login with ec2-user

configurations in spark

The following configurations have to be set appropriately

	
	Go to administration section and open Spark configuration there we need to add Below details in specific setup like below:

	
	spark.master: spark://Master_host_ip:7077

	spark.deploy-mode: client

	spark.sql-context: SQLContext

	After above updates save the configurations.

[image: Standalone spark]

Now go to application and try to run any workflows

[image: Standalone spark]

Running Fire as a Service

Fire Insights can be configured to run as a service. This way when the machine reboots, Fire Insights would be automatically restarted.

Below are the steps for configuring Fire Insights as a service.

Authentication

Fire Insights supports various types of authencations:

	Database Authentication

	LDAP Authentication

	OAuth Authentication

	Database Authentication

	LDAP Authentication
	LDAP Parameters

	Note

	LDAP Certificate

	Importing a user from LDAP into Sparkflows

	User Login

	Search Order

	Reference

	What if I get locked out

	Notes

	OAuth Authentication
	Create Users in Fire

	Configuring OAuth

	Fire OAuth URL

	SSO
	SAML OneLogin setup

	Fire Insights SAML oneLogin Configuration

	SAML okta setup

	Fire Insights SAML Okta Configuration

Database Authentication

Fire Insights can authenticate the user against its own database.

User’s password are stored encrypted.

This is the default authentication mechanism of Fire Insights. Users created in Fire are stored in the database.

LDAP Authentication

Fire Insights can be configured to authenticate the user against LDAP. Users have to be added to Fire, before they can log into Fire and start using it.

The following configurations have to be set appropriately.

[image: Sparkflows Ldap Order]

LDAP Parameters

LDAP Parameters

	Name of Parameter

	Description

	Example

	ldap.Order

	Order in which to authenticate the user. Possible values are DB, LDAP_DB, DB_LDAP.

	

	ldap.URL

	The URL of the LDAP server. The URL must be prefixed with ldap:// or ldaps://. The URL can optionally specify a custom port, for example: ldaps://ldap_server.example.com:1636.

	ldap://localhost:10389

	ldap.Base

	The distinguished name to use as a search base for finding users and groups. This should be similar to ‘dc=sparkflows,dc=com’.

	dc=sparkflows,dc=com

	ldap.UserDn

	Distinguished name of the user to bind as. This is used to connect to LDAP/AD for searching user and group information. This may be left blank if the LDAP server supports anonymous binds.

	uid=john,ou=development,dc=sparkflows,dc=com

	ldap.Password

	The password of the bind user.

	xyz

	ldap.UserSearchBase

	User Search Base

	ou=development

	ldap.UserSearchFilter

	The base filter for searching for users. For Active Directory, this is typically ‘(objectClass=user)’.

	For Active Directory : (objectClass=user) Other Example : (uid={0})

	ldap.GroupSearchBase

	Group Search Base

	ou=groups

	ldap.GroupSearchFilter

	Group Search Filter

	For Active Directory : (objectClass=group) Other Example : (member={0})

Note

For ldap.UserSearchFilter we can use strings like (uid={USERNAME})
In this case {USERNAME} would be replaced by the real username of the user when searching in LDAP during Add User.

LDAP Certificate

If ldaps is being used, the ldap certificate needs to be imported into cacerts.

For Reference : https://docs.oracle.com/cd/E19509-01/820-3399/ggfrj/index.html

Importing a user from LDAP into Sparkflows

Once LDAP is enabled in Sparkflows, users can be imported into Sparkflows from LDAP.

	Go to Administration/User

	Click on Add/Sync User

	Enter the username and click on Search

	User details are fetched from LDAP

	Click on Add User to create the user in Sparkflows

User Login

Once LDAP is enabled in Sparkflows, all the authentication for login in Sparkflows are done against LDAP.

Search Order

Sparkflows would search in LDAP and then in its DB. Search order is determined by the parameter ldap.Order.

If it is set to LDAP_DB, it would first search for the User in LDAP and then in its own DB. This allows having the admin user in the Sparkflows DB if needed, so that all users are not locked out of the system in case LDAP goes down or ends up with invalid Configurations.

Reference

Below are some great links for reference:

	Active Directory Search Filter Syntax : https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx

What if I get locked out

ldap.Order determines the order in which Sparkflows tries to log in the user.
In case you are locked out of Sparkflows and are not able to log in, you can do the following:

	Add the below line to conf/configuration.properties:

ldap.Order=DB

	Then restart the fire server. Now you should be able to log in with your admin account.

Once things are back to normal, you can remove the line you added to configuration.properties and restart the fire server.

Notes

	Search strings are not case sensitive

OAuth Authentication

Fire Insights supports OAuth Authentication.

Create Users in Fire

First create the user in Fire under Administration/Users.

Log into Fire with the admin user in order to be able to create the New Users.

Configuring OAuth

In order the configure OAuth in Fire Insights, add the OAuth configuration parameters to conf/application.properties.

Below is an example of configuring OAuth in Fire with Okta.

Okta settings
oauth.client.clientId: 0oadvfdsfsdA7Y68356
oauth.client.clientSecret: YSWFdZf9kfdsfsdfsdfsdnI0SVrswOJpHl
oauth.client.accessTokenUri: https://xyz.okta.com/oauth2/default/v1/token
oauth.client.userAuthorizationUri: https://xyz.okta.com/oauth2/default/v1/authorize
oauth.client.clientAuthenticationScheme: form
oauth.client.scope: openid profile email
oauth.resource.userInfoUri: https://xyz.okta.com/oauth2/default/v1/userinfo

Fire OAuth URL

In order to log in the user into Fire using OAuth, use the following URL:

	http://machine_name:port/login/oauth

This URL will take the user to the OAuth login page. After the user logs in there, the user is redirected back to Fire and is logged in.

If the user is already logged in, going to the above URL, automatically brings up the Fire page for the user.

SSO

Single sign-on (SSO) enables you to authenticate your users using your organization’s identity provider. If your identity provider supports the SAML 2.0 protocol, you can use Fire Insights SSO to integrate with your identity provider.

Below are the steps for setting up & configuring OneLogin with Fire Insights.

	SAML OneLogin setup

	Fire Insights SAML oneLogin Configuration

	SAML okta setup

	Fire Insights SAML Okta Configuration

SAML OneLogin setup

Below are steps to setup SAML 2.0 OneLogin

	Create an account at one Login

	SignIn into oneLogin

[image: sso]

	Go to administrator >> Click on applications menu >>

[image: sso]

	Add an app

[image: sso]

	Select an application:

Search application 'SAML Test Connector'
Select the application SAML Test Connector (Advanced).

[image: sso]

	Input an application name and save it.

[image: sso]

	Configure the newly created app and add below information:

Audience (EntityID)
Recipient
ACS (Consumer) URL Validator*
ACS (Consumer) URL*
Single Logout URL
Login URL

[image: sso]

Fire Insights SAML oneLogin Configuration

Fire Insights can be Configured with SAML 2.0 OneLogin as below.

Go to folder conf/sso.saml.properties file:

Add below information from newly created application in oneLogin:

	Enable sso in sparkflows:

sparkflows.sp.sso.enable=true

	Create user locally in application if user doesn’t exist in Fire Insights, otherwise app will show page ‘User not found’:

sparkflows.sp.auto.user.create=true

	Metadata url of identity provider.

[image: sso]

saml2.idp.metadata-url=https://sparkflows-dev.onelogin.com/saml/metadata/5f5d16a1-07d1-4167-a305-489d2ee0b18b

	Identifier of the SP entity (must be a URI) Audience URI

[image: sso]

saml2.sp.entityid=https://localhost:8443/sparkflow/saml/metadata

	Identifier of the IdP entity (must be a URI)

[image: sso]

saml2.idp.entityid=https://app.onelogin.com/saml/metadata/5f5d16a1-07d1-4167-a305-489d2ee0b18b

	Algorithm that the toolkit will use on signing process.

[image: sso]

saml2.security.signature_algorithm=http://www.w3.org/2001/04/xmldsig-more#rsa-sha1

Note

Make sure to change localhost to your domain name or your ip

SAML okta setup

Below are steps to setup SAML 2.0 okta

	Create an account at okta

[image: sso]

	SignIn into okta

[image: sso]

	After login go to home and Click on Admin

[image: sso]

	Click on Developer Console

[image: sso]

	Add an app:

[image: sso]

	Create New App:

[image: sso]

	Select SAML 2.0

[image: sso]

	Input app name and click next:

[image: sso]

	Configure the newly created app and add below information

[image: sso]

	Click finish

[image: sso]

Note

Make sure to change localhost to your domain name or your ip

Fire Insights SAML Okta Configuration

Fire Insights can be configured with SAML 2.0 Okta as below.

Go to folder conf/okta.saml.properties file:

Add below information from newly created application in oneLogin:

	Enable sso in sparkflows:

sparkflows.sp.sso.enable=true

	Create user locally in application if user doesn’t exist in Fire Insights, otherwise app will show page ‘User not found’:

sparkflows.sp.auto.user.create=true

	Copy Okta config info

Identifier of the SP entity (must be a URI) Audience URI
saml2.sp.entityid=https://localhost:8443/sparkflow/saml/metadata
Algorithm that the toolkit will use on signing process
saml2.security.signature_algorithm=http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

[image: sso]

	Right click on identity provider metadata and select Copy link address

#Metadata url of identity provider
saml2.idp.metadata-url=https://dev-514411.okta.com/app/exk6sc27dyq4istqO357/sso/saml/metadata

[image: sso]

	Capture Issuer url

[image: sso]

[image: sso]

Note

Make sure to change localhost to your domain name or your ip

Security

	User Group Role Permission
	Groups

	Users

	Permissions

	Roles

	Sharing Projects

	Databricks Security
	Viewing DB/Tables

	Executing Workflows

	Databricks Connections

	Admin user
	Permissions supported by Fire Insights

	Permissions for Admin User

	Admin User Rights

	Superuser

	Details on the Admin user rights

User Group Role Permission

Fire Insights supports Users, Groups, Roles, Permissions. A User can belong to multiple groups and have multiple roles.

Each role can have multiple permissions.

Groups

There can be multiple groups in Fire Insights.

[image: security]

Users

Fire Insights supports multiple users. Each user can belong to multiple groups, and also have multiple Roles.

[image: security]

[image: security]

Permissions

Fire Insights supports the following Permissions. Permissions are associated with Roles.

	Title

	Description

	users.manage

	create, modify & disable user

	groups.manage

	Create, modify & delete the group

	roles.manage

	Create, modify & delete the roles

	projects.manage

	Create, modify & delete the projects

	configurations.manage

	modify diifferent configurations

	datasets.view

	view dataset in specified project

	datasets.modify

	modify datasets in specified project

	workflows.view

	view workflows in specified project

	workflows.modify

	modify workflows in specified project

	workflows.execute

	execute workflow in specified project

	apps.modify

	modify analytics application

	apps.execute

	execute analytics application

	apps.view

	view analytics application

[image: security]

Roles

A user can have multiple Roles. The actions which a user can do depends on the Roles they belong to.

[image: security]

Sharing Projects

A project can be shared with multiple Groups. A Project is visible only to those users who belong to the groups with whom it has been shared with.

Below, the Project is shared with the DEFAULT group.

[image: security]

The following permissions can be given to a group during sharing of the project.

[image: security]

All users belonging to the group get the associated permissions on the Project.

Databricks Security

Users in Fire Insights access Databricks via Databricks Tokens.

Whenever users interact with Databricks in Fire Insights, they have the access which is assigned to the token in Databricks.

Below diagrams show the integration of Fire Insights with Databricks.

[image: security]

[image: security]

Viewing DB/Tables

In Fire Insights users can view the databases and tables. They are accessed via JDBC from Databricks cluster using the token.

The same applies if users chose to execute a query to view a few records from the table.

[image: security]

Executing Workflows

When users execute workflows in Fire Insights, they are submitted to the Databricks cluster view the REST API using the Databricks token. These jobs post back messages to Fire Insights. They use a token generated specifically for the job to post back the messages.

Databricks Connections

The Databricks cluster details and token are specified in a Connection. The user uses the connections when talking to Databricks.

Connections can be at the global level or at the Project level. Global level connections are created by the admin user. Project level connections are created by the Project users.

Fire Insights would also support defining Group level connections.

[image: security]

Admin user

Fire Insights support variety of permissions for Roles. Each user can be assigned one more more Roles.

Permissions supported by Fire Insights

Below are the permissions supported by Fire Insights.

[image: security]

	Title

	Description

	users.manage

	create, modify & disable user

	groups.manage

	Create, modify & delete the group

	roles.manage

	Create, modify & delete the roles

	projects.manage

	Create, modify & delete the projects

	configurations.manage

	modify diiferent configurations

	connections.manage

	add & modify diifferent connections

	datasets.view

	view dataset in specified project

	datasets.modify

	modify datasets in specified project

	workflows.view

	view workflows in specified project

	workflows.modify

	modify workflows in specified project

	workflows.execute

	execute workflow in specified project

	apps.modify

	modify analytics application

	apps.execute

	execute analytics application

	apps.view

	view analytics application

Permissions for Admin User

In Fire Insights generally the below permissions are associated with Admin features

	users.manage

	groups.manage

	roles.manage

	configurations.manage

An admin user in Fire Insights is one who has users.manage permission.

Admin User Rights

The Admin user gets the following rights.

Operating Fire Insights

In Fire Insights an admin user can do the following administration tasks:

	Configure Fire Insights

	Run Diagnostics

	Manage Users, Groups, Permissions

	Load Sample Projects

	View Server Logs

	Cleanup Data

Projects/Data etc

As regards to Projects, the Admin user can do the following:

	View all the Projects

	View the executions of all the workflows

	View the executions of all the Analytical Apps

	
	Onboarding Analytics Apps for a Customer

	
	Who creates that Project which will hold the Analytics App? Admin user. Now the admin user becomes the owner of that Project and be able to see everything.

	Who shares that project with the Group of the Customer? Admin user.

Deleting Users/Groups

In Fire Insights, users and groups cannot be deleted. Users can be made inactive.

Superuser

A user in Fire Insights can be marked to be a super-user. A super-user has all the same rights as the admin user.

Details on the Admin user rights

Diagnostics

The admin user can view detailed informations about Machine environments.

[image: security]

Usage Statistics

The admin user can view Total Users, Groups, Roles, Projects, Workflows & Workflows Executions

[image: security]

Runtime Statistics

The admin user can view Total Logged In Users, Total Fire Spark Processes, Total Fire Pyspark Processes & Total Running Jobs

[image: security]

Sample Projects

The admin user can RELOAD SAMPLE PROJECTS, as by default Fire Insights comes with sample projects containing different types of workflows & datasets

[image: security]

Global Connections

The admin user can Add Connections which everyone can use and also connections at the Group Level.

[image: security]

Server Logs

The admin user can view Fire Server Logs, Fire Logs, Fire Exception Logs & Fire Pyspark Logs

[image: security]

Cleanup Data

The admin user can Delete old workflow executions for cleaning the DB which is Older than Last 7 days, Older than Last 30 days, Older than Last 90 days & Delete All Executions

[image: security]

Operating Guide

	Logs in Fire Insights
	Logs for Fire Web Server

	Logs for Fire Engine

	Installing JDBC Drivers for Workflows
	Download the JDBC jar file

	Copy it into fire-user-lib

	Stop Fire Processes

	Running Workflows depending on the jars added

	Downloading the JDBC jar files

	JDBC Drivers

	Example JDBC URL

	Installing JDBC Drivers for Interactive Dashboard
	Download the JDBC jar file

	Copy it into fire-server-lib

	Restart Fire Server

	Downloading MySQL Connector

	Running Tesseract in Fire
	Download & Install the Tesseract Language Data files

	Set TESSDATA_PREFIX as an Environment Variable and restart the Sparkflows server

	Include TESSDATA_PREFIX in spark configs when submitting the job

	Error if TESSDATA_PREFIX is not set correctly

	Running Apache OpenNLP Model Jars in Fire Insights
	When running locally

	When running on a Spark cluster

	Installing/Using OpenNLP model jars
	When running locally

	When running on a Spark cluster

	Using OpenNLP model jars

	Using Juypter
	Overview

	Maintenance Tasks
	Cleaning H2 DB

	Deleting old files

	Installing MySQL
	Steps for installing MySQL on Centos7

	Install MySQL

	Harden MySQL Server

	Using MySQL

	To Provide access from remote pcs

	Create a New MySQL User and Database

	Create a Sample Table

	Reset the MySQL Root Password

	MySQL JDBC Driver

Logs in Fire Insights

In Fire Insights there are 2 processes which run:

	fire server

	fire engine

Logs for Fire Web Server

The logs for Fire Web Server go into fireserver.log. The logging level is determined by the properties file conf/log4j.properties.

Example log4j.properties

How to change the various logging levels

Logs for Fire Engine

The logs for Fire Engine go into fire.log.

Installing JDBC Drivers for Workflows

Fire has JDBC Processors for reading from JDBC sources or writing to JDBC sinks.

In order to connect to a JDBC source like Oracle/DB2 etc. the JDBC driver needs to be installed in Fire.

Below are the steps for installing the JDBC driver into Fire:

	Download the JDBC jar file

	Copy it into `fire-user-lib` directory under the Fire installation

	Restart fire

Download the JDBC jar file

Download the JDBC jar file for the Database you are looking to connect to.

Copy it into fire-user-lib

Under the Fire installation directory, there is fire-user-lib directory.

Copy the downloaded JDBC jar file into it.

Stop Fire Processes

Stop the running Fire processes with ./run-fire.sh stop

They will be restarted automatically.

Running Workflows depending on the jars added

When running workflows which depend on the jar file, select the checkbox for that jar file in the Workflow Execution Page.

Downloading the JDBC jar files

MySQL

	MySQL connector can be downloaded from : https://dev.mysql.com/downloads/connector/j/

	After downloading untar it with : tar xvf mysql-connector-java-5.1.46.tar.gz

	After untaring the jdbc jar file is available in the directory

	Use the jar file (mysql-connector-java-5.1.46.jar) for installation in Fire

PostgreSQL

	PostgresSQL JDBC drivers can be downloaded from : https://jdbc.postgresql.org/download.html

Oracle

	Oracle JDBC drivers can be downloaded from : https://www.oracle.com/technetwork/database/features/jdbc/jdbc-drivers-12c-download-1958347.html

JDBC Drivers

When using the JDBC processors, the following can be used for the JDBC Driver. Below are the JDBC URL’s for some databases:

	MySQL : com.mysql.jdbc.Driver

	PostgreSQL : org.postgresql.Driver

	Oracle : oracle.jdbc.driver.OracleDriver

Example JDBC URL

Below are some example JDBC URL for reading from Relational sources when using the JDBC Processors:

	MySQL : jdbc:mysql://localhost:3306/mydb

	PostgreSQL : jdbc:postgresql://localhost:5432/mydb

Installing JDBC Drivers for Interactive Dashboard

Interactive Dashboard work with JDBC sources. The appropriate JDBC jars have to be installed.

Below are the steps for installing the JDBC driver for Interactive Dashboards:

	Download the JDBC jar file

	Copy it into `fire-server-lib` directory under the Fire installation

	Restart fire-server

Download the JDBC jar file

Download the JDBC jar file for the Database you are looking to connect to.

Copy it into fire-server-lib

Under the Fire installation directory, there is fire-server-lib directory.

Copy the downloaded JDBC jar file into it.

Restart Fire Server

Restart Fire with ./run-fire-server.sh restart

Fire does not need to be restarted.

Downloading MySQL Connector

	MySQL connector can be downloaded from : https://dev.mysql.com/downloads/connector/j/

	After downloading untar it with : tar xvf mysql-connector-java-5.1.46.tar.gz

	After untaring the jdbc jar file is available in the directory

	Use the jar file (mysql-connector-java-5.1.46.jar) for installation in Fire

Running Tesseract in Fire

In order to run Tesseract, perform the below installation steps:

Download & Install the Tesseract Language Data files

	Download and Install the tesseract language data files on each of the worker nodes of the cluster

	Install them in the same directory on each of the worker nodes

	git clone https://github.com/tesseract-ocr/tessdata.git

	Make sure that the tessdata directory is accessible to all the users.

Set TESSDATA_PREFIX as an Environment Variable and restart the Sparkflows server

	Point the environment variable TESSDATA_PREFIX to the tessdata directory

	export TESSDATA_PREFIX=/home/centos/tessdata

	Restart the sparkflows server

	If the above is not done correctly, then the Sparkflows server would exit when any OCR node is run

Include TESSDATA_PREFIX in spark configs when submitting the job

Include the following in spark configs when running workflows containing the OCR node:

	--conf spark.executorEnv.TESSDATA_PREFIX=/home/centos/tessdata

	where the tesseract language data files are in /home/centos/tessdata directory on each of the worker nodes

Error if TESSDATA_PREFIX is not set correctly

If TESSDATA_PREFIX is not set, the spark program would run into the error below.

	Error opening data file /Users/saudet/projects/bytedeco/javacpp-presets/tesseract/cppbuild/macosx-x86_64/share/tessdata/eng.traineddata

	Please make sure the TESSDATA_PREFIX environment variable is set to the parent directory of your “tessdata” directory.

	Failed loading language ‘eng’

	Tesseract couldn’t load any languages!

Running Apache OpenNLP Model Jars in Fire Insights

When running locally

	Create a directory called opennlp-models-1.5 on the local file system

	Download the Apache OpenNLP model jar from : http://opennlp.sourceforge.net/models-1.5/

	eg: wget http://opennlp.sourceforge.net/models-1.5/en-ner-person.bin

	Copy the Apache OpenNLP model jar into the opennlp-models-1.5 directory created

When running on a Spark cluster

	Copy the model file onto HDFS into a directory called opennlp-models-1.5

	For example /user/centos/opennlp-models-1.5/en-ner-person.bin

	The model file should be accessible by all the users who would use it

[image: Apache OpenNLP]

Installing/Using OpenNLP model jars

When running locally

	Create a directory called opennlp-models-1.5 on the local file system

	Download the OpenNLP model jar from : http://opennlp.sourceforge.net/models-1.5/

	eg: wget http://opennlp.sourceforge.net/models-1.5/en-ner-person.bin

	Copy the OpenNLP model jar into the opennlp-models-1.5 directory created

When running on a Spark cluster

	Copy the model file onto HDFS into a directory called opennlp-models-1.5

	For example /user/centos/opennlp-models-1.5/en-ner-person.bin

	The model file should be accessible by all the users who would use it

Using OpenNLP model jars

	Specify the path of the jar file in the dialog box of the Open NLP nodes in the workflow

	For example for the OpenNLPNameFinder node the path can be : /user/centos/opennlp-models-1.5/en-ner-person.bin

[image: OpenNLP]

Using Juypter

Jupyter is extensively used by Data Scientists.

Overview

Fire can be used to easily create a downsampled dataset. Fire provides a sample processor for it.

Once the dataset size has been reduced, Data Scientists can model with it in Jupyter.

Once the modeling process is complete, the algorithm can be run on the full data in Fire.

Maintenance Tasks

Cleaning H2 DB

Fire Insights by default uses the H2 embedded database.

It is important to keep the size of the database in control. All the Fire Insights tables are relatively small except those which store the result of workflow execution.

Cleaning Old Workflow Executions

It is important to regularly delete the old workflow executions in order to keep the size of the H2 DB in control.

	Go to the Administration/Cleanup Data

	Click on Delete old Workflow Executions in order to delete the old workflow executions.

Compact H2 DB File

If the H2 DB file size grows too large (> 3GB), then follow the steps below for compacting it.

By default H2 DB file is in the home folder of the user running Fire Insights. It is named as firedb.mv.db

	Store Fire Insights

	Make a copy of firedb.mv.db file to be safe

	Use the commands below for compacting it

java -cp ~/fire-3.1.0/db/h2/h2-1.4.199.jar org.h2.tools.Shell
URL: jdbc:h2:./firedb
Driver : org.h2.Driver
User : fire
Password : fire

SHUTDOWN COMPACT

Deleting old files

Regularly delete the following folders:

	/tmp/fire/workflowlogs

	/tmp/fire/workflows

Installing MySQL

This document captures the details for installing MySQL on Centos7

Steps for installing MySQL on Centos7

	Check your hostname

To check your hostname run:

hostname
hostname -f

	Update your system

Run below command to update your system:

sudo yum update

	Install wget if its not on your system

You will need wget to complete this guide. It can be installed as follows:

sudo yum install wget

Install MySQL

MySQL must be installed from the community repository.

	Download and add the repository

Download and add the repository, then update:

wget http://repo.mysql.com/mysql-community-release-el7-5.noarch.rpm
sudo rpm -ivh mysql-community-release-el7-5.noarch.rpm
sudo yum update

	Install MySQL as usual and start the service

Install MySQL as usual and start the service. During installation, you will be asked if you want to accept the results from the .rpm file’s GPG verification. If no error or mismatch occurs, enter y:

sudo yum install mysql-server
sudo systemctl start mysqld

Harden MySQL Server

	Harden security Concern

Run the mysql_secure_installation script to address several security concerns in a default MySQL installation:

sudo mysql_secure_installation

	To check Existing password generated

To check Existing password generated:

sudo grep 'temporary password' /var/log/mysqld.log

	You can also create new password while installing too.

Using MySQL

The standard tool for interacting with MySQL is the mysql client which installs with the mysql-server package. The MySQL client is used through a terminal

	Root Login

To log in to MySQL as the root user:

mysql -u root -p

	When prompted, enter the root password you assigned when the mysql_secure_installation script was run

You’ll then be presented with a welcome header and the MySQL prompt as shown below:

mysql>

To Provide access from remote pcs

Inorder to Access MySQL from Remote PC, run below command:

CREATE USER 'root'@'%' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' WITH GRANT OPTION;
FLUSH PRIVILEGES;

NOTES * The Port on which MySQL Running ie 3306, should be accessible from target machine.

Create a New MySQL User and Database

In the example below, testdb is the name of the database, testuser is the user, and password is the user’s password:

create database testdb;
create user 'testuser'@'localhost' identified by 'password';
grant all on testdb.* to 'testuser' identified by 'password';

Create a Sample Table

	Log back in as testuser

Login with testuser:

mysql -u testuser -p

	Create a sample table

Create a sample table called customers. This creates a table with a customer ID field of the type INT for integer (auto-incremented for new records, used as the primary key), as well as two fields for storing the customer’s name:

use testdb;
create table customers (customer_id INT NOT NULL AUTO_INCREMENT PRIMARY KEY, first_name TEXT, last_name TEXT);

Reset the MySQL Root Password

If you forget your root MySQL password, it can be reset.

	Stop the current MySQL server instance

Stop the current MySQL server instance, then restart it with an option to not ask for a password:

sudo systemctl stop mysqld
sudo mysqld_safe --skip-grant-tables &

	Reconnect to the MySQL server

Reconnect to the MySQL server with the MySQL root account:

mysql -u root

	Use the following commands to reset root’s password

Use the following commands to reset root’s password. Replace password with a strong password:

use mysql;
update user SET PASSWORD=PASSWORD("password") WHERE USER='root';
flush privileges;
exit

	Restart MySQL

Then restart MySQL:

sudo systemctl start mysqld

MySQL JDBC Driver

Download the MySQL JDBC driver from http://www.mysql.com/downloads/connector/j/5.1.html

Extract the JDBC driver JAR file from the downloaded file. For example:

tar zxvf mysql-connector-java-8.0.11.tar.gz

mysql-connector-java.jar

Quickstart Guide

The quickstart gets you started with Fire Insights.

Let’s get started!

	Step 1: Create Project

	Step 2 : Upload Data Files

	Step 3 : Create Dataset

	Step 4 : Create Workflow

	Step 5 : Execute Workflow

	Step 6 : Create Dashboard

Step 1: Create Project

Before you can start creating a workflow, you will need to create a ‘Project’. Project is a bucket where all your artifacts such as datasets, workflows, dashboards etc. related to a project would reside. Projects are equivalent to workspaces in IDEs.

From the landing page of Fire Insights, click on “Create Application” to create a new application.

[image: Quickstart]

[image: Quickstart]

Specify name and description, and click on “Create/Update” button. The new application is created and it is now ready to use.

[image: Quickstart]

Step 2 : Upload Data Files

Every workflow needs data to work on. As a next step, you will upload a CSV file that you want to process in your workflow.

If you have your data in CSV file, click on “Data Browsers” and select “HDFS”. Your home directory will be displayed. Initially, it will be empty as you have not uploaded any file.

[image: Quickstart]

Click on “Upload File” button. Choose one or more CSV files that you want to upload.

[image: Quickstart]

After selecting the files, click “Upload All”.

[image: Quickstart]

In order to use CSV files in workflow, Fire Insights requires that you wrap them in datasets. In the next step, you will create datasets from the files you have just uploaded.

Step 3 : Create Dataset

Before any data can be used in a workflow, it needs to be wrapped in a dataset. If you uploaded CSV files in the previous step, in this step you will wrap them in a dataset.

The steps involved in creating a dataset are:

	Open the Application where you want to create dataset

	Click on “Datasets” tab

	Click on “Create” and choose “Datasets”

	Select your dataset type and enter the fields in the dialog

	Update the schema of the dataset

	Click “Save”

When you open your application, all existing datasets specific to the application are displayed in the Datsets tab.

[image: Dataset]

Click on “Create” and choose “Dataset” from the dropdown.

[image: Dataset]

In the pop-up choose “CSV” and then click “OK”.

Fill in the required fields as below.

	Name : Name of the new dataset

	Description : Description of the new dataset

	Has Header Row : Indicate whether the dataset has a header row specifying the name of the columns or not

	Delimiter : Indicates the delimiter to be used between the fields in the data

	Path : Path for the location of the file or directory containing the data files for the dataset

[image: Dataset]

Now click on “Update dataset/schema” to update the schema of the dataset. Sample data for the dataset will be displayed followed by the schema.

In the example below, a dataset is created from a housing.csv file. It is a comma separated file with a header row specifying the names of the various columns.

[image: Dataset]

If the data file did not have a header row, Fire Insights will give standard column names of “C0, C1” etc.

You can update the column names in the schema based on your data.

[image: Dataset]

Now click “Save’ to save the new dataset and you are ready to use it in your workflows.

Step 4 : Create Workflow

After you have created the datasets, you can start building workflows to process them.

A typical workflow takes one or more dataset, cleans them and joins them, and creates an enriched dataset. After the enriched dataset is created, you can add additional processors to build machine learning models.

At a high level,creating a workflow involves the following steps:

	Open the Application where you want to create your workflow

	Click “Workflows” tab

	Create empty workflow

	Add processors

	Save workflow

Application

Open the application where you want to create your new workflow.

[image: Quicstart]

Workflows Tab

Click “Workflows” tab to view the list of workflows already in the application. The workflow list will be empty if no workflows have been created earlier.

[image: Quicstart]

Create Empty Workflow

Click “Create” button and choose the type of workflow you want to create. In the “Create Workflow” page, enter a name, category and description of the workflow. Category is used to group various workflows. For instance, if you have several workflows for customer reports, you can group them by specifying “Customer Reports” category.

Click “Save” to save the empty workflow.

Add Processors

After you have saved the empty workflow, you can start adding processors to process the datasets that you had defined earlier. Click on the processors on the left hand side pane. This will make the processor appear on the workflow canvas. Add other procesors,configure and connect them as needed. Two processors can be connected by clicking on the yellow box in the first processor and dragging it to the second processor.

[image: Quickstart]

Save Workflow

Once you are satisfied with your workflow, save the workflow by clicking on ‘Save’ button.

Each time the workflow is saved, a new version of workflow is created.

Step 5 : Execute Workflow

After you have created a workflow, it is time to execute it and view the results.

Executing a workflow involves the following steps:

	Go to Application page where you want to execute the workflow

	Click “Workflows” tab

	Click on the play button

	Specify parameter(if any)

	Click on Execute

Application page

Open the application where you have created the workflow to be executed.

[image: Workflow Listings]

Workflows

Click “Workflows” tab to view the list of workflows in the application.

[image: Workflow Listings]

Click on the Play Button

Against each workflow there are a list of icons under “Actions” column for performing various actions on a specific workflow.

Click “Play” icon under “actions” column to execute the workflow.

Execute workflow page

Specify any paramters for your workflow.

[image: Workflow Execute]

Execute Workflow

Once you have specified the parameters, click on “Execute” button. The results of execution are streamed back into your browser.

Step 6 : Create Dashboard

Dashboards allow you to display the output of multiple workflows in one place.

The steps involved in creating a dashboard are:

	Go to Dashboard tab

	Click on Create New Dashboard

	Drag and drop selected Nodes from the workflows into the Dashboard canvas

	Save the Dashboard

Dashboards

Selecting Dashboard tab will take to Dashboard page.

[image: Dashboard]

Create Dashboard

This would open up the Dashboard Designer Page.

[image: Dashboard]

Name Dashboard

Give a name to your dashboard. You can also add a description for the new dashboard.

Build Dashboard

On the left hand side of the Dashboard Designer, the list of workflows would show up. With each workflow, the nodes inside the workflow would be displayed.

Nodes inside the workflow can be dragged and dropped onto the dashboard to make them part of the dashboard.

In the dashboard below we have added two nodes to the dashboard.

[image: Dashboard]

Save Dashboard

Finally save the dashboard.

In order to view the dashboard, click on the ‘View’ button.

View Dashboard

Click on the ‘View’ button to view the dashboard.

The dashboard shows the content from the latest execution of the workflow.

If the workflow has never been executed, the dashboard would not show anything.

[image: Dashboard]

User Guide

	Datasets
	Creating New Datasets

	Workflows
	Creating Workflows

	Executing Workflows

	Passing Parameters to Workflows

	Workflow Execution Results

	Visualizations
	Visualization Processors

	Batch Dashboards

	Interactive Dashboard

	Exporting Visuals

	Scheduling
	Scheduling Workflows

	Notifications & Alerts

	Triggering Workflows by Event

	Export / Import of Applications
	Exporting Applications

	Importing Applications

	Data profiling
	Go to the Applications Page

	Pipeline
	Pipeline List

	Creating a Pipeline

	Executing a Pipeline

	Pipeline Execution

	OCR with Tesseract
	Download & Install the Tesseract Language Data files

	Include TESSDATA_PREFIX in spark configs when submitting the job

	Error if TESSDATA_PREFIX is not set correctly

Datasets

Fire Insights allows you to define your DataSets. These DataSets are then used in Workflows as data sources. DataSet sources can be local file system when running in local mode, or HDFS & HIVE when running on a Spark cluster.

Schema

	DataSets have Schema defined for them. This allows Fire Insights to read and create a DataFrame out of it. The DataFrame is then used for transforms, machine learning etc.

File formats

	Sparkflows supports various File formats and is able to infer the schema. These include CSV/TSV, Parquet, Avro, JSON, XML files.

	Sparkflows also supports creating datasets from HIVE tables. This is not necessary as in the Workflows HIVE Processors can be directly connected to specific HIVE tables (instead of creating a Dataset in Fire for them).

Dataset Listing Page

When you open any application, all existing Datasets specific to the application are displayed in the Datasets tab.

[image: Dataset]

	Creating New Datasets
	Entering Field Details

	Updating the Schema of the Dataset

	Saving the New Dataset

Creating New Datasets

You can define a New Dataset by clicking on the Create Dataset button in the Dataset page.

It will bring up the dialog box below. Select the format of the file for which the new Dataset is being created.

[image: Dataset]

Entering Field Details

Below are the details of the fields in the Create Dataset page:

	NAME : Name of the New Dataset we are creating.

	DESCRIPTION : Description of the New Dataset.

	HAS HEADER ROW : This is used for CSV/TSV files. It indicates whether the dataset has a header row specifying the name of the columns or not.

	DELIMITER : Delimiter field is also used for CSV/TSV files. It indicates the delimiter to be used between the fields in the data.

	PATH : It defines the location of the file or directory containing the data files for the Dataset. It can either point to a single file, or to a directory containing a set of files. All the files have to have the same schema.

[image: Dataset]

Updating the Schema of the Dataset

You can update the Schema of the Dataset by clicking on Update Sample Data/Schema. It would display sample data for the dataset followed by the Schema inferred by Fire Insights.

In this example, the data file did not have a header row. So Fire gave it standard column names of C0, C1 etc.

You can update the column names in the schema based on your data.

[image: Dataset]

Saving the New Dataset

Click on the Save button to save the New Dataset created.

Workflows

	Creating Workflows
	Define New Workflow

	Adding New Nodes to the Workflow

	Creating Edges

	Deleting Edges

	Saving Workflow

	View Workflows

	Executing Workflows
	Interactively within the User Interface

	Executing Workflows with spark-submit

	Workflow JSON

	Scheduling Workflow execution with Scheduler of choice

	Debugging Workflows

	Passing Parameters to Workflows
	Through Program Parameters in Fire during Workflow Execution

	By specifying the parameters in the Workflow Editor

	Through a Parameter Processor in the Workflow

	A Processor creating a variable during execution time

	Through --var parameters with spark-submit

	Specifying --var parameters for all in Sparkflows User Interface

	Workflow Execution Results

Creating Workflows

Fire Insights enables users to define end-to-end workflows for data pipelining leveraging pre-packaged nodes for common ETL and Machine Learning models. Workflows are then saved and executed to produce results. Sparkflows provides a a very intuitive and user friendly editor to achieve the same.

Define New Workflow

Click on ‘Create New Workflow’ for creating a New Workflow, It supports two engines - spark & pyspark. It will open the Workflow Editor where the workflow can be created.

[image: workflow]

Adding New Nodes to the Workflow

	Workflows editor has a list of Nodes menu on the LHS. Clicking on any of the Nodes creates it in the workspace.

Creating Edges

	Nodes can be connected by edges.

	Click on the orange box and drag to the next node to create an edge between them.

Deleting Edges

	Edges can be deleted by double clicking on them.

Saving Workflow

	Give the workflow a name.

	Click on the Save button to create the new workflow.

View Workflows

You can view the workflows by going to the Workflows Page inside specific applications.

[image: workflow]

Executing Workflows

Fire Workflows can be executed in the following ways:

	Interactively within the User Interface

	Submitting the workflows using spark-submit through the command line

	Scheduling for execution with your scheduler of choice

Interactively within the User Interface

Workflows can be executed from the browser by going into the Execute page of the workflow.

[image: Workflow]

Executing Workflows with spark-submit

Workflows are saved as text files in JSON format.
Workflows can be submitted to be run on the cluster with spark-submit:

spark-submit --class fire.execute.WorkflowExecuteFromFile --master yarn --deploy-mode client --executor-memory 1G --num-executors 1 --executor-cores 1 fire-core-1.4.2-jar-with-dependencies.jar --postback-url http://<machine>:8080/messageFromSparkJob --job-id 1 --workflow-file kmeans.wf

In the above:

For providing extra variables to the workflow, the following parameters can be added to spark-submit:

--var name1=value1 --var name2=value2 --var name3=value3

In the workflow, these variables can be used with $name1 $name2
Specific nodes make use of the variables by substituting $name with the value provided for the name.

For running the workflow in debug mode, add the following parameters:

--debug true

Workflow JSON

In Sparkflows, workflows are saved as JSON Strings.

The View JSON Workflow page of the Workflow displays the JSON representations of the workflow.

[image: Sparkflows Json Workflow]

Scheduling Workflow execution with Scheduler of choice

Since Fire workflows can be submitted with spark-submit, you can use your scheduler of choice for scheduling the execution of the workflows.

	Click on Schedule Button of Workflow we want to schedule

[image: Workflow]

	Click on Tab Schedule New Job for Workflow

[image: Workflow]

	Update the scheduled timing & email notifications after success & failure of workflow as per our requirments.

[image: Workflow]

	Click on OK to save the changes.

[image: Workflow]

Debugging Workflows

Many times it is helpful to be able to debug the workflows. One easy way is to check the debug checkbox in the UI when executing the workflow.

Running in debug mode does a few things:

	Performs a count() after executing each Processor. This makes it easier to track errors. It takes out Sparkflows lazy execution from the picture.

	Displays the number of records processed at each stage.

	Display more information, for each SQL etc. which are being executed.

Passing Parameters to Workflows

Fire Insights runs the spark jobs with spark-submit. It takes in the workflow JSON as a parameter. There are multiple ways to pass extra parameters to the workflow. If the same parameter is specified multiple times, the order of precendence in which they are applied is as shown below:

	Through Program Parameters passed during Workflow Execution

	By specifying the parameters in the Workflow Editor

	Through a Parameter Processor in the workflow

	A Node creating a variable during execution time

Through Program Parameters in Fire during Workflow Execution

Key/Value pairs can be passed to Fire during Workflow Execution. An example of it is --var doctor=1
These Key/Value pairs would override any Key/Value pair passed through the Parameter Processor in the workflow.

Below is a screenshot:

[image: Passing Parameters to Workflows]

By specifying the parameters in the Workflow Editor

Parameters can be specified in the Workflow Editor. They can be specified in the following format:

They can be passed with --var name1=value1 --var name2=value2

Through a Parameter Processor in the Workflow

A Parameter Processor can be added to the workflow. It allows passing key/value pairs to the workflow.

[image: Passing Parameters to Workflows]

A Processor creating a variable during execution time

A Processor can also create a parameter during run time. A Processor creates a new variable and puts it into the JobContext.

jobContext.nodeGeneratedParameters.put(variable, “”+count);

This parameter can then be later used by another Processor.

For example NodeCount puts the count of records into a variable in the Job Context.

NodeAssert uses this variable when evaluating expressions.

Through --var parameters with spark-submit

Fire Insights workflow can also be directly executed on the cluster with spark-submit.

In this case, extra parameters can be passed with --var:

spark-submit --class fire.execute.WorkflowExecuteFromFile --master yarn --deploy-mode client fire-core-3.1.0-jar-with-dependencies.jar --postback-url http://<machine>:8080 --job-id 1 --workflow-file kmeans.wf --var name1=value1 --var name2=value2

In the workflow, these parameters can be used with $name1 $name2

Specific nodes make use of the parameters by substituting $name with the value provided for the name.

An example would be : --var id=3

When specifying the expression in the RowFilter Node we can use : id > $id

In the above $id would be replaced with 3.

Specifying --var parameters for all in Sparkflows User Interface

Sparkflows also allows specifying the –var parameters to be passed to all the jobs submitted through Sparkflows. Below is the screen under Administration/Configuration.

[image: Passing Parameters to Workflows]

In the above, app.vars parameter allows specifying a space separated list of name=value pairs.

Each of these are passed to the jobs submitted by Sparkflows with --var name=value

Workflow Execution Results

The results of Workflow Execution are streamed into the Browser as they are executed and displayed in rich Format. A workflow may run for a very long time.

The results of past executions can also be viewed in the Workflow Executions page.

[image: Sparkflows Workflow Execution]

Visualizations

	Visualization Processors

	Batch Dashboards
	Creating Dashboards

	Editing Dashboards

	Viewing Dashboards

	Streaming Dashboards

	Interactive Dashboard
	Creating I-Dashboard

	Exporting Visuals
	Exporting dashboard

	Exporting output

Visualization Processors

There are a number of Nodes/Processors in Fire which produce rich visualizations.

These Processors can be added to any workflow and are applied to the data.

Visualization Processors include:

	Graph Values

	Geo

	Group by Column

	Weekday Distribution

	Monthly Distribution

	Yearly Distribution

	Heatmaps

	Tables

Batch Dashboards

Fire allows you to create Dashboards.

Processors in Fire can output data in Tables, Charts, Maps and Simple Strings. Dashboards allow combining the output of various processors into one User Interface.

For example we might want to output a chart of number of bike rentals per hour, another by per day and another map displaying the total number of bike rentals per city for the day. Dashboards can combine all these into one view.

Creating Dashboards

	For creating Dashboards, drag and drop the required processors from the workflows into the Dashboard Canvas.

	When the corresponding workflows are run, the output is stored by Fire into the relational store. These get displayed into the dashboard.

Editing Dashboards

Editing Dashboards is like creating dashboards, except that you click the edit button to edit the corresponding Dashboard.

[image: Sparkflows Editing Dashboards]

Viewing Dashboards

Once a Dashboard has been created you can view it, by clicking on the View button.

[image: Sparkflows Dashboard]

Streaming Dashboards

	Fire allows you to create Streaming Workflows.

	Streaming workflows have a mini-batch duration - say 30 seconds.

	In this case, the output in the Dashboards get updated every 30 seconds as new data come in.

Interactive Dashboard

Fire allows you to create interactive Dashboard.

Fire allows us to create New Dataset using JDBC data type from MYSQL DB & use datasets in creating charts & dashboard.

Creating I-Dashboard

	For creating I-Dashboard, Create JDBC datasets if not available.

You can define a New Dataset by clicking on the Create Dataset button in the Dataset page.

It will bring up the dialog box below. Select the format of the file for which the new Dataset is being created.

[image: Dataset]

Entering Field Details

Below are the details of the fields in the Create Dataset page:

	NAME : Name of the New Dataset we are creating.

	DESCRIPTION : Description of the New Dataset.

	CATEGORY : category of the New Dataset.

	JDBC DRIVER : Enter JDBC DRIVER.

	JDBC URL : Enter JDBC URL for MYSQL DB.

	USER : username for MYSQL DB.

	PASSWORD : password for MYSQL DB.

	DB : Database for MYSQL DB.

	TABLE : Table for MYSQL.

[image: Dataset]

Updating the Schema of the Dataset

You can update the Schema of the Dataset by clicking on Update Sample Data/Schema. It would display sample data for the dataset followed by the Schema inferred by Fire Insights.

You can update the column names in the schema based on your data.

[image: Dataset]

Saving the New Dataset

Click on the Save button to save the New Dataset created.

Interactive Dashboard

Click on Interactive Dashboard tab in the same application where you have created JDBC Dataset.

[image: Dataset]

Click on chart tab & select Choose a JDBC dataset, there you will find all JDBC datasets created under your application.

[image: Dataset]

Select any JDBC dataset for which you want to create chart & select CREATE NEW

It will take you to new page, as below

[image: Dataset]

Select the chart type, you want to see chart

[image: Dataset]

Selected Bar chart & updated column for x & y axis and add some filter

Add NAME, DESCRIPTION & save it

[image: Dataset]

Once you save it, the chart will appear in chart list page

Similarly you can create different chart using specified chart type

[image: Dataset]

Now using existing chart, you can create new dashboard

Select Dashboard tab & Click on CREATE DASHBOARD

[image: Dataset]

it will take us to New Dashboard page

[image: Dataset]

Using drag & drop you need to add chart in canvas, Add NAME, DESCRIPTION & SAVE it.

[image: Dataset]

Once the Dashboard got saved successfully, it will show in dashboard list page from where you can view, edit & delete it.

[image: Dataset]

Exporting Visuals

Fire Insights enables you to export the output, dashboards and visuals in various ways.

Exporting dashboard

Since Fire Insights is Browser based end to end, its easy to export the pages as PDF files.

	Go to dashboard under your application where you have created batch dashboard

	On clicking on view option, able to visualize etc. added in that dashboard, there you will have Export option, Click on that.

[image: Dataset]

It will Export the whole batch dashboard in pdf format on local machine.

[image: Dataset]

Exporting output

Once the workflow successfully completed, the output result can be exported.

	Go to application page where you created workflow & successfully executed.

Clicking on Executions tab the latest workflow execution will show in list page.

[image: Dataset]

On action icon you can see view result, it will take to next page.

[image: Dataset]

On opening above link, able to view result of specific workflow submitted & have Export option through which you can export result in local machine in pdf format & view that.

[image: Dataset]

[image: Dataset]

Scheduling

Fire allows you to schedule workflows by time to be executed.

	Scheduling Workflows
	Scheduling New Workflow

	Viewing Workflows Scheduled

	Editing a Scheduled Workflow

	Viewing Results of Workflow Executions

	Deleting a Scheduled Workflow

	Notifications & Alerts
	Email Notifications/Alerts when Executing Workflows

	Email Notifications/Alerts when Scheduling Workflows

	SMTP Configurations

	Triggering Workflows by Event
	Use Case

	Event Format

	Example Events

	Configuring Fire to listen for Events from the Kafka Topic

Scheduling Workflows

Fire allows you to schedule workflows to be run at regular intervals.

Scheduling New Workflow

The workflows page displays the list of various workflows.

Under Action column, there is an icon to schedule any given workflow.

Clicking on the icon takes you to a page for creating new schedules for the workflow. Clicking on Schedule New Job for Workflow opens the dialog for creating a new schedule.

[image: Scheduling New Workflow]

Viewing Workflows Scheduled

Scheduled/By Time page displays the various workflows scheduled.

[image: Workflows Scheduled]

Editing a Scheduled Workflow

You can edit a schedule by clicking on the edit icon, updating the new values and saving it.

Viewing Results of Workflow Executions

When workflows are scheduled, they are executed by Fire at the specified schedule.

The results of the execution of the workflows can be viewed in the Workflow Executions Page. This allows us to view the results of past execution, logs of the run etc.

[image: Workflow Executions]

Deleting a Scheduled Workflow

Go to the Scheduled/By Time page. It would display the list of scheduled workflows.

Click on the delete icon next to any schedule workflow to delete the schedule.

Notifications & Alerts

Users in general like to be alerted when a job completes or fails, specially in Big Data where Jobs can run for hours together.

Email Notifications/Alerts when Executing Workflows

When executing the workflows, you can specify email addresses for receiving emails when the workflow fails or succeeds.

[image: Email Alerts]

Email Notifications/Alerts when Scheduling Workflows

When scheduling the workflows, you can specify email addresses for receiving emails when the workflow fails or succeeds.

[image: Email Alerts]

SMTP Configurations

Administrator has to set up the SMTP configurations under Administration/Configuration

[image: SMTP Configuration]

Triggering Workflows by Event

Workflow Executions can be triggered by sending an event to a Kafka Topic.

Fire can be configured to poll for events from those topics.

Use Case

The kind of use cases this can handle are:

	A job loads data into HIVE

	Now the job wants to trigger another workflow

	It pushes an event to a Kafka Topic to trigger the workflow

Event Format

Events which are pushed to Kafka are string with the fields separated by | (pipe).

Below is the format of the event.

Type|Value|Spark Submit Configs|Extra Jar Files|Program Parameters|Emails on Success|Emails on Failure

	Type : Type determines the kind of data in the Value column

	0 : workflow id

	1 : workflow name

	2 : workflow uuid

	Value : This defines the value. Values are based on the Type used:

	ID of the workflow

	Name of the workflow

	UUID of the workflow

	Spark Submit Configs : Extra Spark Submit configurations to be applied when running the Spark Job.

	Extra Jar files : Extra jar files to use in spark-submit.

	Program parameters : Extra program parameters if any.

	Program Parameters are passed to the workflow. Example : --var key1=value1.

	Email on Success : email addresses to send Success email on Job Completion.

	Email on Failure : email addresses to send Failure email on Job Failure.

Example Events

	0|5| | | |success@sparkflows.io|failure@sparkflows.io

In the above example:

	0 : Trigger by workflow id

	5 : Workflow id to trigger

	success@sparkflows.io : Email address to send regarding success of the workflow

	failure@sparkflows.io : Email address to send regarding failure of the workflow

Configuring Fire to listen for Events from the Kafka Topic

Fire has to be configured to listen for Events from the Kafka Topic. Each user can configure their own. The Jobs would be fired as a user who configured it.

Export / Import of Applications

Fire enables you to export your Applications and download them to your computer.

It then also enables you to import your Applications back into any instance of Fire.

This is useful when you need to move/copy your Application from one environment to another.

	Exporting Applications
	Go to the Applications Page

	Select the Applications you want to export

	Importing Applications
	Go to the Applications Page

	Select the Options for importing the Application

	On Success

Exporting Applications

Fire allows you to export Applications and download them to your computer.

Below are the steps for exporting Applications in Fire.

Go to the Applications Page

[image: userguide]

Select the Applications you want to export

	Select the Applications you would like to export.

	Then click on the Export button.

[image: userguide]

	In the dialog box which comes up, select whether you want to export workflows or datasets or both.

[image: userguide]

	Fire will now export the selected applications and download them to your computer.

[image: userguide]

Importing Applications

Fire allows you to import Applications. Below are the steps for importing Applications in Fire.

Go to the Applications Page

	Click on the Import button.

	Choose the zip file from your computer to Import from. You would have previously downloaded this zip file from Fire during the export process.

	Select the name of the Application which you would like to import from the zip file. Fire would display all the available Applications in your zip file.

[image: userguide]

Select the Options for importing the Application

There are two options when importing Applications:

	Import to a New Application

	In this case, the selected Application would be imported as a new Application in Fire Insights.

	Import to an Existing Application

When importing to an existing Application, there are 3 possible methods to choose from:

	Create new workflows and datasets when matching UUID’s found.

	Overwrite datasets and workflows if matching UUID found.

	Delete all workflows and datasets in the selected Application and create the imported workflows and datasets as new ones.

On Success

On successful import of the Application into Fire Insights, the success dialog is displayed along with the details of the import.

[image: userguide]

Data profiling

Fire Insights allows you to clean the datasets using dataset profile.

Below are the steps for Data Profiling in Fire.

Go to the Applications Page

Go to application page where you need to create dataset or already have existing.

select dataset tab.

[image: Dataset]

Select a dataset & under action icon choose Dataset profile.

[image: Dataset]

Once you Click on Dataset profile, it will take us to next page.

Click on RUN DATA PROFILING option

[image: Dataset]

Once you click on above option, will get notifications about process is getting started.

[image: Dataset]

Once the execution process completed, after refresh the status will updated to green, if its completed and check its execution result in RHS

[image: Dataset]

[image: Dataset]

Pipeline

Fire supports Pipelines. Pipelines allow running workflows in a defined order.

Pipeline List

The Pipeline tab displays the list of Pipelines for the current Application.

[image: Pipeline List]

Creating a Pipeline

Each Application now allows creating Pipelines.

Below is an example Pipeline with 3 Workflows.

[image: Pipeline]

Executing a Pipeline

Pipelines can be executed like workflows. When a Pipeline is executed, its execution is submitted to Airflow.

The Pipeline tab displays the list of Pipelines for the current Application.

[image: Pipeline List]

Clicking on the Execute Action icon opens the Pipeline Execute Page.

[image: Pipeline Execute]

Pipeline Execution

Once a Pipeline is fired, its details are visible in Pipeline Executions.

[image: Pipeline Execution]

OCR with Tesseract

In order to run Tesseract, the below Installation steps have to be performed.

Download & Install the Tesseract Language Data files

	Download and Install the tesseract language data files for Version 3.X on each of the worker nodes of the cluster:

https://github.com/tesseract-ocr/tessdata/releases
wget https://github.com/tesseract-ocr/tessdata/archive/3.04.00.tar.gz

	Install them in the same directory on each of the worker nodes:

git clone https://github.com/tesseract-ocr/tessdata.git

Include TESSDATA_PREFIX in spark configs when submitting the job

	Include the following in spark submit configs when running workflows containing the OCR node:

--conf spark.executorEnv.TESSDATA_PREFIX=/home/ec2-user/tessdata

	Where the tesseract language data files are in /home/ec2-user/tessdata directory on each of the worker nodes

Error if TESSDATA_PREFIX is not set correctly

If TESSDATA_PREFIX is not set, the spark program would run into the error below:

Error opening data file /Users/saudet/projects/bytedeco/javacpp-presets/tesseract/cppbuild/macosx-x86_64/share/tessdata/eng.traineddata
Please make sure the TESSDATA_PREFIX environment variable is set to the parent directory of your "tessdata" directory.
Failed loading language 'eng'
Tesseract couldn't load any languages!

The above error would be in the Job logs. If yarn is being used it would be in the yarn logs:

yarn logs -applicationId job_application_id

When the job is being executed, Fire displays the job_application_id in the browser.

Analytical Apps User Guide

	Creating Analytics App
	Go to Analytics Apps

	Click on Create Analytics App

	Adding Stages
	Examples for adding various Stages

	Integrating with Databricks Notebook
	Add wheel file to your Databricks Notebook

	Outputing details to Fire Insights

	Running Analytics App
	Click on Analytics App Name

	Go through the various Stages

	Examples of the various Stage Pages

Creating Analytics App

Fire Insights enables you to create Analytics Apps.

Below is the process for creating a new Analytics App.

	Go to APPLICATIONS / ANALYTICS APPS

	Click on “Create Analytics App”

	Add mandatory fields i.e. “Name”, “select notebook”

	Click on add stage button to add different stages

	Click “Save” Or “Publish”

Go to Analytics Apps

When you go to ANALYTICS APPS under APPLICATIONS all existing analytics app are displayed. Where you can EDIT, VIEW and DELETE existing analytics app.

[image: web-app]

Click on Create Analytics App

Fill in the required fields as below.

	Name : Name of the new analytics app

	category : Category of the new analytics app

	Description : Description of the new analytics app

	Execution Type: : Select execution type i.e notebook and select notebook from the available notebook list

[image: web-app]

“Save” or “Publish” the analytics app before adding stages.

Adding Stages

Click on “Add stages” button to add a new stage. Select stage type and enter the stage name.

[image: web-app]

	You can rearrange the stages by dragging and dropping.

	You can EDIT, VIEW and REMOVE stages.

Examples for adding various Stages

1 : Upload Stage

	In upload stage we will first add column component and divide in two columns

[image: web-app]

	In first column add file component to choose files to upload to databricks. In this component in File tab in “STORAGE” select “Base64”

[image: web-app]

	In other column we will add one textfield to add “DESTINATION PATH” where the browse file should get uploaded. Set its property name to destinationPath.

[image: web-app]

	Add upload button and set action to event. Set the button event name to upload.

[image: web-app]

[image: web-app]

	Also add next button to go to next stage and perform actions depending upon event. Set the event name as next for the next button.

[image: web-app]

[image: web-app]

Click on “DONE” or “SAVE” to save added components for that stage

2 : Parameters Stage

	In parameters stage we can add select, text-field, select boxes, buttons etc components

For example:

	First we will add column component and divide it in two columns

	Then, lets add select boxes example in first column by adding select boxes component. In this component in Data tab add all possible values you want to add.

[image: web-app]

	Then, lets add select example in the second column by adding select component. In this component in Data tab add all possible values you want to add.

[image: web-app]

	Now, lets add column component in the bottom and divide into two columns for adding back and next button.

	Add back button in first column to go to back stage and perform actions depending upon event, where we will add event name as back.

[image: web-app]

	Add next button in second column to go to next stage and perform actions depending upon event. Set its event name as next. We can also add CUSTOM CSS CLASS like float-right, float-left etc

[image: web-app]

[image: web-app]

Click on “DONE” or “SAVE” to save the added components for that stage.

3 : Run Stage

	In run stage we will execute the notebook with all parameters added in the App.

	Let’s first add title in page if needed with “html element” component like below.

[image: web-app]

	Now, lets add column component in the bottom and divide it into two columns for adding the back and run buttons.

	Add back button in first column to go to back stage and perform actions depending upon event. Set its event name as back.

	Add next button in second column to go to next stage and perform actions depending upon event. Set its add event name as execute. We can also can add CUSTOM CSS CLASS like float-right, float-left etc

[image: web-app]

[image: web-app]

Click on “DONE” or “SAVE” to save added components for that stage

Integrating with Databricks Notebook

The Web App in Fire Insights can trigger a Notebook in Databricks.

Fire Insights passes 2 parameters to the Notebook:

	postback-url

	job-id

Add wheel file to your Databricks Notebook

Add the wheel file to your Databricks Notebook. This is to enable using the Fire Insights API’s for sending data to it.

Outputing details to Fire Insights

The Databricks Notebook can output text, tables and charts to be dispalyed in Fire Insights.

Below are the examples for it.

Create a RestWorkflowContext Object

First create a RestWorkflowContext for communicating with Fire Insights Server

jobId = dbutils.widgets.get("job-id")
webserverURL = dbutils.widgets.get("postback-url")

print(webserverURL)
print(jobId)

from fire_notebook.output.workflowcontext import RestWorkflowContext

restworkflowcontext = RestWorkflowContext(webserverURL, jobId)

Outputing Text

Below is how to output text to Fire Insights

restworkflowcontext.outStr(9, "Test String")

Outputing PySpark Dataframe as Table

The below code outputs the contents of PySpark Dataframe to Fire Insights as a table

from pyspark.sql.types import *

schema = StructType([StructField("c1", DoubleType())\
 ,StructField("c2", IntegerType())])
test_list = [[0.0, 2], [1.0, 4], [2.0, 8], [3.0, 16], [4.0, 32], [5.0, 64], [6.0, 128]]
df = spark.createDataFrame(test_list,schema=schema)
restworkflowcontext.outDataFrame(9, "PySpark Dataframe", df)

Outputing Pandas Dataframe as Table

The below code outputs the contents of Pandas Dataframe to Fire Insights as a table

list of strings
lst = ['Geeks', 'For', 'Geeks', 'is',
 'portal', 'for', 'Geeks']

Calling DataFrame constructor on list
df = pd.DataFrame(lst, columns=['name'])
print(df)

restworkflowcontext.outPandasDataframe(9, "Names", df)

Outputing CHART

Output the chart in fire by selecting x & y column and Different type of chartType: COLUMNCHART, BARCHART & LINECHART

from pyspark.sql.types import *

	schema = StructType([StructField(“c1”, DoubleType())

	,StructField(“c2”, IntegerType())])

test_list = [[0.0, 2], [1.0, 4], [2.0, 8], [3.0, 16], [4.0, 32], [5.0, 64], [6.0, 128]]

df = spark.createDataFrame(test_list,schema=schema)

	restworkflowcontext.outDataframeChart(title= “Example Chart”, x_column = “c1”, y_columns = [“c2”],

	chart_type =”LINECHART”, df = df, numRowsToDisplay = 10)

Outputing HTML

Below is how to output html to Fire Insights

htmlstr1 = "<h3>You can view HTML code in notebooks.</h3>"

restworkflowcontext.outHTML(9, title="Example HTML", text = htmlstr1)

Outputing Plotly

Below is how to output plotly to Fire Insights

import plotly.graph_objs as go
import plotly

test = plotly.offline.plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])],
 output_type='div',
 include_plotlyjs=False)
example_plotly = f'{test}'

restworkflowcontext.outPlotly(9, title="Example Plotly", text = example_plotly)

Running Analytics App

Once the Analytics App has been created, they can be executed.

Below are the steps for executing an Analytics App.

Click on Analytics App Name

[image: web-app]

Go through the various Stages

[image: web-app]

Examples of the various Stage Pages

1 : Upload

	Browse files you want to upload to databricks.

	Add destination path of dbfs where you want to upload choose file.

	If added path is not there in dbfs then it will first create the folder in dbfs and then upload the file.

[image: web-app]

	Then, click on upload button to upload to DBFS and see the csv file data in tabular format.

[image: web-app]

	You can browse dbfs and check if the file uploaded successfully.

[image: web-app]

	Click on “NEXT” button to go to next stage.

2 : Parameters

	Select the parameters of your interest

	If you click on “BACK” or “NEXT” button the selected value will remain as it is and you can change it if needed

[image: web-app]

	Click on “NEXT” button to move to next page

3 : Run

	In this stage you will execute the Analytics App with the added parameters in the earlier stages.

	You can click on back button and change the value and run Analytics App again.

	Click on “RUN” button to execute the app and view the results.

[image: web-app]

Machine Learning User Guide

	Feature Generation

	Feature Selection
	Feature Selection Processors in Fire Insights

	VectorSlicer

	RFormula

	ChiSqSelector

	Clustering
	Clustering Processors in Fire Insights

	Clustering Algorithms in Apache Spark

	Regression
	Apache Spark

	Scikit Learn

	Classification
	Apache Spark MLlib

	Scikit Learn

	Classification Algorithms in Scikit Learn

	Prediction
	What is Prediction?

	Why are Predictions Important?

	Predictor => Predicted

	Usual Examples

	Techniques

	Model Evaluation
	Evaluation Processors in Fire Insights

	Model Evaluation Techniques

	Holdout

	Cross-Validation

	Model Evaluation in Fire Insights

	Model Persistence
	Persisting SparkML Models

	Persisting H2O Models

	Persisting Scikit Learn Models

	Model Serving
	Scoring with Workflows

	Serving Spark MLlib Models

	Serving H2O Models

	Serving AWS SageMaker models

	Serving Scikit Learn Models

	Serving Tensorflow Models

	Integration with MLflow

Feature Generation

Feature generation is the process of creating new features from one or multiple existing features, potentially for using in statistical analysis. This process adds new information to be accessible during the model construction and therefore hopefully result in more accurate model.

Fire Insights provides a number of processors for Feature Generation. These include:

	Title

	Description

	DateToAge

	Convert Date to Age

	CaseWhen

	Based on the value, convert it to another value

	Scala

	Write Scala code in Spark for generating new Features

	SQL

	Write SQL code for generating new features

	StopWOrdRemover

	Removes Stop Words

	Tokenizer

	Tokenizes a string into Tokens

	OneHotEncoder

	Applies one hot encoding

	TF/IDF

	Finds the TF and IDF

	IndexString

	Converts a column containg String to numeric values

Feature Selection

In machine learning and statistics, feature selection, also known as variable selection, attribute selection or variable subset selection, in the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons:

	simplification of models to make them easier to interpret by researchers/users

	shorter training times

	to avoid the curse of dimensionality

	enhanced generalization by reducing overfitting (formally, reduction of variance)

	https://en.wikipedia.org/wiki/Feature_selection

Apache Spark has the following Feature Selectors. Fire Insights provides them as Processors to be easily used in the workflows:

Feature Selection Processors in Fire Insights

Apache Spark based Feature Selection Processors in Fire Insights

	Title

	Description

	VectorSlicer

	VectorSlicer is a transformer that takes a feature vector and outputs a new feature vector with a sub-array of the original features. It is useful for extracting features from a vector column. VectorSlicer accepts a vector column with specified indices, then outputs a new vector column whose values are selected via those indices.

	RFormula

	RFormula selects columns specified by an R model formula. RFormula produces a vector column of features and a double or string column of label. Like when formulas are used in R for linear regression, string input columns will be one-hot encoded, and numeric columns will be cast to doubles. If the label column is of type string, it will be first transformed to double with StringIndexer. If the label column does not exist in the DataFrame, the output label column will be created from the specified response variable in the formula.

	ChiSqSelector

	ChiSqSelector stands for Chi-Squared feature selection. It operates on labeled data with categorical features. ChiSqSelector uses the Chi-Squared test of independence to decide which features to choose. It supports five selection methods: numTopFeatures, percentile, fpr, fdr, fwe

More details regarding the Feature Selectors in Spark can be found at:

https://spark.apache.org/docs/2.2.0/ml-features.html#feature-selectors

	VectorSlicer

	RFormula

	ChiSqSelector

VectorSlicer

VectorSlicer is a transformer that takes a feature vector and outputs a new feature vector with a sub-array of the original features. It is useful for extracting features from a vector column.
VectorSlicer accepts a vector column with specified indices, then outputs a new vector column whose values are selected via those indices. There are two types of indices,

Integer indices that represent the indices into the vector, setIndices().

String indices that represent the names of features into the vector, setNames(). This requires the vector column to have an AttributeGroup since the implementation matches on the name field of an Attribute.

Specification by integer and string are both acceptable. Moreover, you can use integer index and string name simultaneously. At least one feature must be selected. Duplicate features are not allowed, so there can be no overlap between selected indices and names. Note that if names of features are selected, an exception will be thrown if empty input attributes are encountered.

RFormula

RFormula selects columns specified by an R model formula. Currently Spark supports a limited subset of the R operators, including ‘~’, ‘.’, ‘:’, ‘+’, and ‘-‘. The basic operators are:

	~ separate target and terms

	
	concat terms, “+ 0” means removing intercept

	
	remove a term, “- 1” means removing intercept

	: interaction (multiplication for numeric values, or binarized categorical values)

	. all columns except target

Suppose a and b are double columns, we use the following simple examples to illustrate the effect of RFormula:

	y ~ a + b means model y ~ w0 + w1 * a + w2 * b where w0 is the intercept and w1, w2 are coefficients.

	y ~ a + b + a:b - 1 means model y ~ w1 * a + w2 * b + w3 * a * b where w1, w2, w3 are coefficients.

RFormula produces a vector column of features and a double or string column of label. Like when formulas are used in R for linear regression, string input columns will be one-hot encoded, and numeric columns will be cast to doubles. If the label column is of type string, it will be first transformed to double with StringIndexer. If the label column does not exist in the DataFrame, the output label column will be created from the specified response variable in the formula.

ChiSqSelector

ChiSqSelector stands for Chi-Squared feature selection. It operates on labeled data with categorical features. ChiSqSelector uses the Chi-Squared test of independence to decide which features to choose. It supports five selection methods: numTopFeatures, percentile, fpr, fdr, fwe. * numTopFeatures chooses a fixed number of top features according to a chi-squared test. This is akin to yielding the features with the most predictive power. * percentile is similar to numTopFeatures but chooses a fraction of all features instead of a fixed number. * fpr chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection. * fdr uses the Benjamini-Hochberg procedure to choose all features whose false discovery rate is below a threshold. * fwe chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection. By default, the selection method is numTopFeatures, with the default number of top features set to 50. The user can choose a selection method using setSelectorType.

Clustering

Clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data mining, and a common technique for statistical data analysis, used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, data compression, and computer graphics.

	https://en.wikipedia.org/wiki/Cluster_analysis

Clustering Processors in Fire Insights

Apache Spark based Clustering Processors in Fire Insights

	Title

	Description

	Gaussian Mixture

	A Gaussian Mixture Model represents a composite distribution whereby points are drawn from one of k Gaussian sub-distributions, each with its own probability. The spark.ml implementation uses the expectation-maximization algorithm to induce the maximum-likelihood model given a set of samples.

	KMeans

	k-means is one of the most commonly used clustering algorithms that clusters the data points into a predefined number of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||.

	LDA

	LDA is implemented as an Estimator that supports both EMLDAOptimizer and OnlineLDAOptimizer, and generates a LDAModel as the base model.

H2O based Clustering Processors in Fire Insights

	Title

	Description

	KMeans

	K-Means falls in the general category of clustering algorithms. Clustering is a form of unsupervised learning that tries to find structures in the data without using any labels or target values. Clustering partitions a set of observations into separate groupings such that an observation in a given group is more similar to another observation in the same group than to another observation in a different group.

Clustering Algorithms in Apache Spark

Apache Spark provides a number of Algorithms for Clustering.

https://spark.apache.org/docs/latest/ml-clustering.html

	K-means

	Latent Dirichlet allocation (LDA)

	Bisecting k-means

	Gaussian Mixture Model (GMM)

	Power iteration clustering (PIC)

	Streaming k-means

K-means

https://spark.apache.org/docs/latest/ml-clustering.html#k-means

k-means is one of the most commonly used clustering algorithms that clusters the data points into a predefined number of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||.
The implementation in spark.mllib has the following parameters:

k is the number of desired clusters. Note that it is possible for fewer than k clusters to be returned, for example, if there are fewer than k distinct points to cluster.
- maxIterations is the maximum number of iterations to run.
- initializationMode specifies either random initialization or initialization via k-means||.
- runs This param has no effect since Spark 2.0.0.
- initializationSteps determines the number of steps in the k-means|| algorithm.
- epsilon determines the distance threshold within which we consider k-means to have converged.
- initialModel is an optional set of cluster centers used for initialization. If this parameter is supplied, only one run is performed.

Latent Dirichlet allocation (LDA)

https://spark.apache.org/docs/latest/ml-clustering.html#latent-dirichlet-allocation-lda

LDA is implemented as an Estimator that supports both EMLDAOptimizer and OnlineLDAOptimizer, and generates a LDAModel as the base model. Expert users may cast a LDAModel generated by EMLDAOptimizer to a DistributedLDAModel if needed.

Latent Dirichlet allocation (LDA) is a topic model which infers topics from a collection of text documents. LDA can be thought of as a clustering algorithm as follows:

	Topics correspond to cluster centers, and documents correspond to examples (rows) in a dataset.

	Topics and documents both exist in a feature space, where feature vectors are vectors of word counts (bag of words).

	Rather than estimating a clustering using a traditional distance, LDA uses a function based on a statistical model of how text documents are generated.

LDA supports different inference algorithms via setOptimizer function. EMLDAOptimizer learns clustering using expectation-maximization on the likelihood function and yields comprehensive results, while OnlineLDAOptimizer uses iterative mini-batch sampling for online variational inference and is generally memory friendly.

LDA takes in a collection of documents as vectors of word counts and the following parameters (set using the builder pattern):

	k: Number of topics (i.e., cluster centers)

	optimizer: Optimizer to use for learning the LDA model, either EMLDAOptimizer or OnlineLDAOptimizer

	docConcentration: Dirichlet parameter for prior over documents’ distributions over topics. Larger values encourage smoother inferred distributions.

	topicConcentration: Dirichlet parameter for prior over topics’ distributions over terms (words). Larger values encourage smoother inferred distributions.

	maxIterations: Limit on the number of iterations.

	checkpointInterval: If using checkpointing (set in the Spark configuration), this parameter specifies the frequency with which checkpoints will be created. If maxIterations is large, using checkpointing can help reduce shuffle file sizes on disk and help with failure recovery.

All of spark.mllib’s LDA models support:

	describeTopics: Returns topics as arrays of most important terms and term weights

	topicsMatrix: Returns a vocabSize by k matrix where each column is a topic

Bisecting k-means

Bisecting K-means can often be much faster than regular K-means, but it will generally produce a different clustering.

Bisecting k-means is a kind of hierarchical clustering. Hierarchical clustering is one of the most commonly used method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two types:

	Agglomerative: This is a “bottom up” approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy.

	Divisive: This is a “top down” approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

Bisecting k-means algorithm is a kind of divisive algorithms. The implementation in MLlib has the following parameters:

	k: the desired number of leaf clusters (default: 4). The actual number could be smaller if there are no divisible leaf clusters.

	maxIterations: the max number of k-means iterations to split clusters (default: 20)

	minDivisibleClusterSize: the minimum number of points (if >= 1.0) or the minimum proportion of points (if < 1.0) of a divisible cluster (default: 1)

	seed: a random seed (default: hash value of the class name)

Gaussian mixture

A Gaussian Mixture Model represents a composite distribution whereby points are drawn from one of k Gaussian sub-distributions, each with its own probability. The spark.mllib implementation uses the expectation-maximization algorithm to induce the maximum-likelihood model given a set of samples. The implementation has the following parameters:

	k is the number of desired clusters.

	convergenceTol is the maximum change in log-likelihood at which we consider convergence achieved.

	maxIterations is the maximum number of iterations to perform without reaching convergence.

	initialModel is an optional starting point from which to start the EM algorithm. If this parameter is omitted, a random starting point will be constructed from the data.

Power iteration clustering (PIC)

Power iteration clustering (PIC) is a scalable and efficient algorithm for clustering vertices of a graph given pairwise similarities as edge properties, described in Lin and Cohen, Power Iteration Clustering. It computes a pseudo-eigenvector of the normalized affinity matrix of the graph via power iteration and uses it to cluster vertices. spark.mllib includes an implementation of PIC using GraphX as its backend. It takes an RDD of (srcId, dstId, similarity) tuples and outputs a model with the clustering assignments. The similarities must be nonnegative. PIC assumes that the similarity measure is symmetric. A pair (srcId, dstId) regardless of the ordering should appear at most once in the input data. If a pair is missing from input, their similarity is treated as zero. spark.mllib’s PIC implementation takes the following (hyper-)parameters:

	k: number of clusters

	maxIterations: maximum number of power iterations

	initializationMode: initialization model. This can be either “random”, which is the default, to use a random vector as vertex properties, or “degree” to use normalized sum similarities.

Streaming k-means

When data arrive in a stream, we may want to estimate clusters dynamically, updating them as new data arrive. spark.mllib provides support for streaming k-means clustering, with parameters to control the decay (or “forgetfulness”) of the estimates. The algorithm uses a generalization of the mini-batch k-means update rule. For each batch of data, we assign all points to their nearest cluster, compute new cluster centers, then update each cluster

Regression

Regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the ‘outcome variable’) and one or more independent variables (often called ‘predictors’, ‘covariates’, or ‘features’). The most common form of regression analysis is linear regression, in which a researcher finds the line (or a more complex linear function) that most closely fits the data according to a specific mathematical criterion.

	https://en.wikipedia.org/wiki/Regression_analysis

Apache Spark

Apache Spark based Regression Processors in Fire Insights

	Title

	Description

	Linear regression

	LinearRegression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables.

	Generalized linear regression

	Contrasted with linear regression where the output is assumed to follow a Gaussian distribution, generalized linear models (GLMs) are specifications of linear models where the response variable Yi follows some distribution from the exponential family of distributions

	Decision tree regression

	Decision trees and their ensembles are popular methods for the machine learning tasks of classification and regression. Decision trees are widely used since they are easy to interpret, handle categorical features, extend to the multiclass classification setting, do not require feature scaling, and are able to capture non-linearities and feature interactions.

	Random forest regression

	Random forests are ensembles of decision trees. Random forests combine many decision trees in order to reduce the risk of overfitting.

	Gradient-boosted tree regression

	Gradient-Boosted Trees (GBTs) are ensembles of decision trees. GBTs iteratively train decision trees in order to minimize a loss function.

	Survival regression

	Survival Analysis is a set of statistical tools, which addresses questions such as ‘how long would it be, before a particular event occurs’; in other words we can also call it as a ‘time to event’ analysis.

	Isotonic regression

	Isotonic regression is the technique of fitting a free-form line to a sequence of observations under the following constraints: the fitted free-form line has to be non-decreasing everywhere, and it has to lie as close to the observations as possible.

Regression Algorithms in Apache Spark

https://spark.apache.org/docs/latest/ml-classification-regression.html#regression

	Linear regression

	Decision tree regression

	Random Forest regression

	Gradient-boosted tree regression

	Survival regression

	Isotonic regression

Scikit Learn

Scikit Learn based Regression Processors in Fire Insights

	Title

	Description

	Ridge regression

	Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the coefficients. The ridge coefficients minimize a penalized residual sum of squares

	Lasso regression

	The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency to prefer solutions with fewer non-zero coefficients, effectively reducing the number of features upon which the given solution is dependent.

	Gradient Boosting regression

	GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function

	Random forest regression

	A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True (default).

Regression Algorithms in Scikit Learn

https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression-and-classification

	Ridge regression

	Lasso regression

	Gradient Boosting regression

	Random Forest regression

Linear Regression

The interface for working with linear regression models and model summaries is similar to the logistic regression case.

When fitting LinearRegressionModel without intercept on dataset with constant nonzero column by “l-bfgs” solver, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIBSVM.

Generalized linear regression

Contrasted with linear regression where the output is assumed to follow a Gaussian distribution, generalized linear models (GLMs) are specifications of linear models where the response variable Yi follows some distribution from the exponential family of distributions.

Spark’s GeneralizedLinearRegression interface allows for flexible specification of GLMs which can be used for various types of prediction problems including linear regression, Poisson regression, logistic regression, and others.

Decision tree regression

Decision trees are a popular family of classification and regression methods.

Decision tree builds regression or classification models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The final result is a tree with decision nodes and leaf nodes. A decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy), each representing values for the attribute tested. Leaf node (e.g., Hours Played) represents a decision on the numerical target. The topmost decision node in a tree which corresponds to the best predictor called root node. Decision trees can handle both categorical and numerical data.

Random Forest Regression

Random forests are a popular family of classification and regression methods.

Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Random decision forests correct for decision trees’ habit of overfitting to their training set.

Gradient - boosted Tree Regression

Gradient-boosted trees (GBTs) are a popular regression method using ensembles of decision trees.

Gradient boosting is a machine learning technique for regression and classification problems, which produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees. It builds the model in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary differentiable loss function.

Survival Regression

In spark.ml, we implement the Accelerated failure time (AFT) model which is a parametric survival regression model for censored data. It describes a model for the log of survival time, so it’s often called a log-linear model for survival analysis. Different from a Proportional hazards model designed for the same purpose, the AFT model is easier to parallelize because each instance contributes to the objective function independently.

Isotonic Regression

Isotonic regression or monotonic regression is the technique of fitting a free-form line to a sequence of observations under the following constraints: the fitted free-form line has to be non-decreasing (or non-increasing) everywhere, and it has to lie as close to the observations as possible.

Isotonic regression has applications in statistical inference. For example, one might use it to fit an isotonic curve to the means of some set of experimental results when an increase in those means according to some particular ordering is expected. A benefit of isotonic regression is that it is not constrained by any functional form, such as the linearity imposed by linear regression, as long as the function is monotonic increasing.

Another application is nonmetric multidimensional scaling, where a low-dimensional embedding for data points is sought such that order of distances between points in the embedding matches order of dissimilarity between points. Isotonic regression is used iteratively to fit ideal distances to preserve relative dissimilarity order.

Software for computing isotone (monotonic) regression has been developed for the R statistical package, the Stata statistical package and the Python programming language

Classification

In machine learning and statistics, classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs.

	https://en.wikipedia.org/w/index.php?search=Clssification+in+machine+learning&title=Special%3ASearch&go=Go&ns0=1

Apache Spark MLlib

Apache Spark based Classification Processors in Fire Insights

	Title

	Description

	Logistic Regression

	Logistic regression is a popular method to predict a categorical response. It is a special case of Generalized Linear models that predicts the probability of the outcomes.

	Decision tree classifier

	Decision trees and their ensembles are popular methods for the machine learning tasks of classification and regression. Decision trees are widely used since they are easy to interpret, handle categorical features, extend to the multiclass classification setting, do not require feature scaling, and are able to capture non-linearities and feature interactions.

	Random forest classifier

	Random forests are ensembles of decision trees. Random forests combine many decision trees in order to reduce the risk of overfitting.

	Gradient-boosted tree classifier

	Gradient-Boosted Trees (GBTs) are ensembles of decision trees. GBTs iteratively train decision trees in order to minimize a loss function.

	Multilayer perceptron classifier

	Multilayer perceptron classifier (MLPC) is a classifier based on the feedforward artificial neural network.

	Naive Bayes

	Naive Bayes classifiers are a family of simple probabilistic, multiclass classifiers based on applying Bayes’ theorem with strong (naive) independence assumptions between every pair of features.

Classification Algorithms in Spark MLlib

https://spark.apache.org/docs/latest/ml-classification-regression.html#classification

	Logistic Regression

	Decision tree classifier

	Random forest classifier

	Gradient-boosted tree classifier

	Multilayer perceptron classifier

	Linear Support Vector Machine

	One-vs-Rest classifier

	Naive Bayes

Scikit Learn

Scikit Learn based Classification Processors in Fire Insights

	Title

	Description

	Logistic Regression Classifier

	In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the ‘multi_class’ option is set to ‘ovr’, and uses the cross-entropy loss if the ‘multi_class’ option is set to ‘multinomial’.

	Gradient Boosting classifier

	GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage n_classes _ regression trees are fit on the negative gradient of the binomial or multinomial deviance loss function.

	Random forest classifier

	A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True (default).

Classification Algorithms in Scikit Learn

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

	Logistic Regression

	Gradient-boosting classifier

	Random Forest classifier

Fire Insights provides processors for the above Algorithms.

Logistic Regression

Logistic regression is a popular method to predict a categorical response. It is a special case of Generalized Linear models that predicts the probability of the outcomes. In spark.ml logistic regression can be used to predict a binary outcome by using binomial logistic regression, or it can be used to predict a multiclass outcome by using multinomial logistic regression. Use the family parameter to select between these two algorithms, or leave it unset and Spark will infer the correct variant.

Multinomial logistic regression can be used for binary classification by setting the family param to “multinomial”. It will produce two sets of coefficients and two intercepts.

When fitting LogisticRegressionModel without intercept on dataset with constant nonzero column, Spark MLlib outputs zero coefficients for constant nonzero columns. This behavior is the same as R glmnet but different from LIBSVM.

Decision tree classifier

Decision tree learning is one of the predictive modeling approaches used in statistics, data mining and machine learning. It uses a decision tree to go from observations about an item to conclusions about the item’s target value.

Tree models where the target variable can take a discrete set of values are called classification trees; in these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees.

In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. In data mining, a decision tree describes data (but the resulting classification tree can be an input for decision making).

Random forest classifier

Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes or mean prediction of the individual trees.

Gradient-boosted tree classifier

Gradient boosting is a machine learning technique for regression and classification problems, which produces a prediction model in the form of an ensemble of weak prediction models, typically decision trees.It builds the model in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of an arbitrary differentiable loss function.

The idea of gradient boosting originated in the observation that boosting can be interpreted as an optimization algorithm on a suitable cost function. Explicit regression gradient boosting algorithms were subsequently developed simultaneously with the more general functional gradient boosting perspective. It later introduced the view of boosting algorithms as iterative functional gradient descent algorithms. That is, algorithms that optimize a cost function over function space by iteratively choosing a function (weak hypothesis) that points in the negative gradient direction. This functional gradient view of boosting has led to the development of boosting algorithms in many areas of machine learning and statistics beyond regression and classification.

Multilayer perceptron classifier

A multilayer perceptron (MLP) is a class of feedforward artificial neural network (ANN). The term MLP is used ambiguously, sometimes loosely to refer to any feedforward ANN, sometimes strictly to refer to networks composed of multiple layers of perceptrons (with threshold activation). Multilayer perceptrons are sometimes colloquially referred to as “vanilla” neural networks, especially when they have a single hidden layer.

An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation function. MLP utilizes a supervised learning technique called backpropagation for training. Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish data that is not linearly separable.

Naive Bayes

In machine learning, naïve Bayes classifiers are a family of simple “probabilistic classifiers” based on applying Bayes’ theorem with strong (naïve) independence assumptions between the features. They are among the simplest Bayesian network models.

It remains a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is competitive in this domain with more advanced methods including support vector machines. It also finds application in automatic medical diagnosis.

Naïve Bayes classifiers are highly scalable, requiring a number of parameters linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by evaluating a closed-form expression,which takes linear time, rather than by expensive iterative approximation as used for many other types of classifiers.

Prediction

Prediction is to identify data points purely on the description of another related data value. It is not necessarily related to future events but the used variables are unknown. Prediction derives the relationship between a thing you know and a thing you need to predict for future reference.

Prediction refers to the output of an algorithm after it has been trained on a historical dataset and applied to new data when forecasting the likelihood of a particular outcome, such as whether or not a customer will churn in 30 days. The algorithm will generate probable values for an unknown variable for each record in the new data, allowing the model builder to identify what that value will most likely be.

The word “prediction” can be misleading. In some cases, it really does mean that you are predicting a future outcome, such as when you’re using machine learning to determine the next best action in a marketing campaign. Other times, though, the “prediction” has to do with, for example, whether or not a transaction that already occurred was fraudulent. In that case, the transaction already happened, but you’re making an educated guess about whether or not it was legitimate, allowing you to take the appropriate action.

What is Prediction?

	Predicting the identity of one thing based purely on the description of another, related thing

	Not necessarily future events, just unknowns

	Based on the relationship between a thing that you can know and a thing you need to predict

Why are Predictions Important?

Machine learning model predictions allow businesses to make highly accurate guesses as to the likely outcomes of a question based on historical data, which can be about all kinds of things – customer churn likelihood, possible fraudulent activity, and more. These provide the business with insights that result in tangible business value. For example, if a model predicts a customer is likely to churn, the business can target them with specific communications and outreach that will prevent the loss of that customer.

Predictor => Predicted

	When building a predictive model, you have data covering both

	When using one, you have data describing the predictor and you want it to tell you the predicted value

Usual Examples

	Predicting levels of sales that will result from a price change or advert.

	Predicting whether or not it will rain based on current humidity

	Predicting the colour of a pottery glaze based on a mixture of base pigments

	Predicting how far up the charts a single will go

	Predicting how much revenue a book of debt will bring

Techniques

Most prediction techniques are based on mathematical models:

	Simple statistical models such as regression

	Non-linear statistics such as power series

	Neural networks, RBFs, etc

	All based on fitting a curve through the data, that is, finding a relationship from the predictors to the predicted

Model Evaluation

Model evaluation aims to estimate the generalization accuracy of a model on future (unseen/out-of-sample) data.

Evaluation Processors in Fire Insights

Apache Spark based Evaluation Processors in Fire Insights

	Title

	Description

	NodeRegressionEvaluator

	Evaluator for regression, which expects two input columns: prediction and label. Regression analysis is used when predicting a continuous output variable from a number of independent variables.

	NodeBinaryClassificationEvaluator

	Evaluator for binary classification, which expects two input columns: rawPrediction and label. Binary classifiers are used to separate the elements of a given dataset into one of two possible groups (e.g. fraud or not fraud) and is a special case of multiclass classification.

	NodeMulticlassClassificationEvaluator

	Evaluator for multiclass classification, which expects two input columns: score and label. A multiclass classification describes a classification problem where there are M>2 possible labels for each data point (the case where M=2 is the binary classification problem)

	https://heartbeat.fritz.ai/introduction-to-machine-learning-model-evaluation-fa859e1b2d7f

Machine learning continues to be an increasingly integral component of our lives, whether we’re applying the techniques to research or business problems. Machine learning models ought to be able to give accurate predictions in order to create real value for a given organization.

While training a model is a key step, how the model generalizes on unseen data is an equally important aspect that should be considered in every machine learning pipeline. We need to know whether it actually works and, consequently, if we can trust its predictions. Could the model be merely memorizing the data it is fed with, and therefore unable to make good predictions on future samples, or samples that it hasn’t seen before?

In this article, we explain the techniques used in evaluating how well a machine learning model generalizes to new, previously unseen data. We’ll also illustrate how common model evaluation metrics are implemented for classification and regression problems using Python.

Model Evaluation Techniques

The above issues can be handled by evaluating the performance of a machine learning model, which is an integral component of any data science project.

Methods for evaluating a model’s performance are divided into 2 categories: namely, holdout and Cross-validation. Both methods use a test set (i.e data not seen by the model) to evaluate model performance. It’s not recommended to use the data we used to build the model to evaluate it. This is because our model will simply remember the whole training set, and will therefore always predict the correct label for any point in the training set. This is known as overfitting.

Holdout

The purpose of holdout evaluation is to test a model on different data than it was trained on. This provides an unbiased estimate of learning performance.

In this method, the dataset is randomly divided into three subsets:

1)Training set is a subset of the dataset used to build predictive models.

2)Validation set is a subset of the dataset used to assess the performance of the model built in the training phase. It provides a test platform for fine-tuning a model’s parameters and selecting the best performing model. Not all modeling algorithms need a validation set.

3)Test set, or unseen data, is a subset of the dataset used to assess the likely future performance of a model. If a model fits to the training set much better than it fits the test set, overfitting is probably the cause.

The holdout approach is useful because of its speed, simplicity, and flexibility. However, this technique is often associated with high variability since differences in the training and test dataset can result in meaningful differences in the estimate of accuracy.

Cross-Validation

Cross-validation is a technique that involves partitioning the original observation dataset into a training set, used to train the model, and an independent set used to evaluate the analysis.

The most common cross-validation technique is k-fold cross-validation, where the original dataset is partitioned into k equal size subsamples, called folds. The k is a user-specified number, usually with 5 or 10 as its preferred value. This is repeated k times, such that each time, one of the k subsets is used as the test set/validation set and the other k-1 subsets are put together to form a training set. The error estimation is averaged over all k trials to get the total effectiveness of our model.

For instance, when performing five-fold cross-validation, the data is first partitioned into 5 parts of (approximately) equal size. A sequence of models is trained. The first model is trained using the first fold as the test set, and the remaining folds are used as the training set. This is repeated for each of these 5 splits of the data and the estimation of accuracy is averaged over all 5 trials to get the total effectiveness of our model.
As can be seen, every data point gets to be in a test set exactly once and gets to be in a training set k-1 times. This significantly reduces bias, as we’re using most of the data for fitting, and it also significantly reduces variance, as most of the data is also being used in the test set. Interchanging the training and test sets also adds to the effectiveness of this method.

	https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

Model Evaluation in Fire Insights

Model Persistence

Save / Load Model allows you to save your model to files and load them later in order to make predictions.

Fire Insights allows you to save the ML Model created. The ML Models can be loaded in the same or other workflows to be used for scoring. The ML Models can also be downloaded from HDFS Browse Page.

The ML models can be saved into the following locations:

	HDFS : when Fire Insights is connected to a Hadoop Cluster

	S3 : when Fire is configured and connected to AWS.

	Local Machine FileSystem : when Fire is running in local mode

In order to save onto S3, the model path can be provided as s3://models/priceprediction

	Persisting SparkML Models
	Spark ML Models

	Persisting H2O Models
	H2O Models

	Persisting Scikit Learn Models

Persisting SparkML Models

Spark ML Models

Spark ML models are saved into a directory with multiple files in it. Fire Insights has processors for saving and loading the Spark ML models.

Save Model processor

NodeModelSave processor, saves the given Apache Spark ML model at the given location.

[image: Modelsave]

ML Save Workflow

[image: Modelsave]

Load Model processor

[image: Modelsave]

ML Load Workflow

[image: Modelsave]

Persisting H2O Models

H2O Models

H2O Models can be saved in binary format or in MOJO format. Fire Insights has processors for saving and reading them back.

Save H2o Model processor

H2OModelSave Processor saves the H2O model at the specified path in the binary format.

[image: Modelsave]

Load H2o Model processor

H2OModelLoad Processor loads the H2O model in binary format from the specified path.

[image: Modelsave]

More details of saving and loading the H2O Models is available here:

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/save-and-load-model.html

Save and Load H2O Workflow

Below is a workflow, which saves the generated H2O model on the file system.

[image: Modelsave]

Below is a workflow, which load back the saved model and used in batch scoreing.

[image: Modelload]

Persisting Scikit Learn Models

Scikit-Learn models are persisted with pickle. Fire Insights has processors for saving and loading the pickle files.

More details of the pickle format is available here:

https://scikit-learn.org/stable/modules/model_persistence.html

Model Serving

Fire Insights allows you to save your models. These models can be saved to:

	HDFS : when running on a Hadoop Cluster

	S3 : when running on AWS

	ADLS : when running on Azure

	Local file system : when running on your laptop or independent machine

Once these models are saved, they can be served in various ways.

	Scoring with Workflows
	Data Preparation and Scoring Environments

	Workflow Patterns for Scoring Models

	Using 3 Workflows

	Using 2 workflows

	Serving Spark MLlib Models
	Batch Model Scoring:

	Online Scoring with Kafka and Spark Streaming:

	Serving H2O Models
	Serving H2O MOJO models

	Serving H2O POJO models

	Serving AWS SageMaker models

	Serving Scikit Learn Models

	Serving Tensorflow Models

	Integration with MLflow

Scoring with Workflows

Fire Insights enables you to build workflows. Workflows provide for reading data, transforming them and also creating machine learning models.
Fire Insights supports a number of ML frameworks including Scikit Learn, H2O, Spark ML, Keras etc.

Models built with the workflows can be saved onto the File System. The models can then be scored with another workflow.

Data Preparation and Scoring Environments

The workflows built with Fire Insights can run on a variety of environments. These include:

	Standalone machine

	AWS - EMR

	Azure - HDInsights

	Databricks

	Cloudera

In any of these environments, Fire Insights does not need to be installed for model scoring.
When running on Standalone machine, scoring can be performed with running java/python using the supplied jar/wheel files and the workflow json.

When running on clusters, scoring can be performed with spark-submit using the supplied jar/wheel files and the workflow json.

Workflow Patterns for Scoring Models

There are a few patterns by which Fire Insights enables Data Preparation/Feature Engineering and Model Scoring.

	One workflow for Data Preparation/Feature Engineering, another for Model Training and the third for Model Scoring

	One workflow for Data Preparation/Feature Engineering plus Model Training. And another workflow for Data Preparation/Feature Engineering plus Model Scoring.

Using 3 Workflows

In this pattern, one workflow is built to read in the input datasets, perform Data Preparation and also Feature Engineering.
This workflow prepares the input datasets to be used for Training and also Scoring and saves it to the File System.

The second workflow reads in the prepared data, builds the model and then save it to the File System.

The third workflow also reads in the prepared data, reads in the ML model and then scores the input data. The result of scoring can be saved to the File System, Relational Database, Cassandra, MongoDB, HIVE etc.

Using 2 workflows

In this pattern, one workflow is built to read in the input datasets, perform Data Preparation/Feature Engineering and then finally build the ML Model.

For the second workflow, the first workflow is cloned with one click, and the model nodes are removed from the workflow. They are replaced with nodes which read in the model and then score the datasets.

Serving Spark MLlib Models

Fire Insights creates Apache Spark MLlib models. These models get saved as files on the File System.

NoveModelSave saves the Spark ML models as files. It uses the Spark interfaces to save the model.

[image: SaveML Model]

Once the SparkML model is saved, they can be loaded and used in scoring. Fire Insights enables saving both Spark ML models and pipelines.

Batch Model Scoring:

By using NodeModelLoad & selecting the particular type of model to be loaded, the model would be loaded in the workflow and it can be used for scoring the input data.

[image: LoadML Model & Score]

Online Scoring with Kafka and Spark Streaming:

Scalable messaging platform like Kafka to send newly acquired data to a long running Spark Streaming process. The Spark process can then make a new prediction based on the new data.

Serving H2O Models

H2O allows you to persist the models you have built to either a Plain Old Java Object (POJO) or a Model ObJect, Optimized (MOJO).

Fire Insights has the following processors for persisting the H2O Models.

	H2OMojoSave

	H2OModelSave

Once the H2O model is saved, they can be used for serving.

H2O-generated MOJO and POJO models are intended to be easily embeddable in any Java environment. The only compilation and runtime dependency for a generated model is the h2o-genmodel.jar file produced as the build output of these packages.

We can use our H2OModelLoad or H2OMojoLoad to make a batch prediction, real-time prediction using Spark Streaming, Kafka or Storm. Or you can expose your model as a REST API.

https://h2o-release.s3.amazonaws.com/h2o/rel-ueno/2/docs-website/h2o-docs/pojo-quick-start.html

Serving H2O MOJO models

The below page on the H2O website gives details on serving a MOJO model.

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/productionizing.html#step-2-compile-and-run-the-mojo

Serving H2O POJO models

The details for serving a POJO models is described in this page.

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/productionizing.html#building-a-pojo

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	import java.io.*;
import hex.genmodel.easy.RowData;
import hex.genmodel.easy.EasyPredictModelWrapper;
import hex.genmodel.easy.prediction.*;

public class main {
 private static String modelClassName = "gbm_pojo_test";

 public static void main(String[] args) throws Exception {
 hex.genmodel.GenModel rawModel;
 rawModel = (hex.genmodel.GenModel) Class.forName(modelClassName).newInstance();
 EasyPredictModelWrapper model = new EasyPredictModelWrapper(rawModel);

 RowData row = new RowData();
 row.put("Year", "1987");
 row.put("Month", "10");
 row.put("DayofMonth", "14");
 row.put("DayOfWeek", "3");
 row.put("CRSDepTime", "730");
 row.put("UniqueCarrier", "PS");
 row.put("Origin", "SAN");
 row.put("Dest", "SFO");

 BinomialModelPrediction p = model.predictBinomial(row);
 System.out.println("Label (aka prediction) is flight departure delayed: " + p.label);
 System.out.print("Class probabilities: ");
 for (int i = 0; i < p.classProbabilities.length; i++) {
 if (i > 0) {
 System.out.print(",");
 }
 System.out.print(p.classProbabilities[i]);
 }
 System.out.println("");
 }
}

Useful links:

https://medium.com/spikelab/building-a-machine-learning-application-using-h2o-ai-67ce3681df9c

Serving AWS SageMaker models

When the SageMaker models are built in Fire Insights, SageMaker automatically provides a REST endpoint for online scoring of the models.

The details for it are available here:

	https://aws.amazon.com/blogs/machine-learning/creating-a-machine-learning-powered-rest-api-with-amazon-api-gateway-mapping-templates-and-amazon-sagemaker/

	https://aws.amazon.com/blogs/machine-learning/call-an-amazon-sagemaker-model-endpoint-using-amazon-api-gateway-and-aws-lambda/

Serving Scikit Learn Models

Fire Insights provides the following processors for persisting the Scikit Learn models as pickle files:

	SaveAsPickle

Once the Scikit Learn model is saved, they can be used for serving.

The details for Scikit Learn Model Persistence is available here:

	https://scikit-learn.org/stable/modules/model_persistence.html

Serving Tensorflow Models

Fire Insights provides the following processors for persisting the Tensorflow models:

	NodeSaveKerasModel

	NodeLoadKerasModel

Integration with MLflow

Fire Insights integrates deeploy with Apache MLflow.

Fire Insights can be configured to output the models to MLflow.

Time Series Analysis

Time series analysis is a statistical technique that deals with time series data, or trend analysis. Time series data means that data is in a series of particular time periods or intervals.

https://www.statisticssolutions.com/time-series-analysis/

Fire Insights provides a number of features for Time Series Analysis.

	Time Series Feature Engineering
	DateTimeFieldExtract

	MovingWindowingFunctions

	Time Series Visualizations
	Charts : LineChart

	Charts : BarChart

	Charts : Scatter

	Time Series Modeling
	Prophet

	ARIMA

	H2OXGBoost

Time Series Feature Engineering

Fire Insights provides a number of Processors for Feature Engineering of Time Series Data. These include:

Update New features where needed

	Features

	Description

	DateTimeFieldExtract

	Extracts year, month, day of month, hour, minute, second and week of year from timestamp/date columns

	Days to holiday

	Days remaining for next holiday

	Days from holiday

	Days passed after holiday

	Time-segmentation

	Divide data in morning, afternoon, evening, night to get more idea about time based pattern

	MovingWindowingFunctions

	Calculates the moving values using the given function

	WindowingAnalytics

	Implements window functions is mainly through the operators rolling and expanding

	Exponential Moving Average (EMA)

	The Exponential Moving Average (EMA) assigns a greater weight to the most recent price observations. While it assigns lesser weight to past data, it is based on a recursive formula that includes in its calculation all the past data in our price series.

DateTimeFieldExtract

Below is the sample workflows which contains DateTimeFieldExtract processor in Fire Insights.

It reads the JetRail Train dataset & use DateTimeFieldExtract processor which create New DataFrame by extracting Date & Time field and print the result.

[image: ml_userguide]

DateTimeFieldExtract processor Configuration:

[image: ml_userguide]

Output result of DateTimeFieldExtract processor:

[image: ml_userguide]

MovingWindowingFunctions

Below is the sample workflows which contains MovingWindowingFunctions processor in Fire Insights.

It reads the ticker dataset, concatenate the input column, casting specified column to new data type, use MovingWindowingFunctions processor which calculates the moving value of selected function of input column and print the result.

[image: ml_userguide]

MovingWindowingFunctions processor Configuration:

[image: ml_userguide]

Output result of MovingWindowingFunctions processor:

[image: ml_userguide]

Time Series Visualizations

Fire Insights provides a number of Processors for the visualization of the time series data.

Update New features where needed

	Charts

	Description

	Line

	Perfect for series of data points to form a continuous line. Example - Represent Daily sales data.

	Bar

	Bar charts are a fundamental visualization for comparing values between groups of data. Best way to represent Categorical data.

	Scatter

	Scatter plots are used to observe relationships between variables.

	Histogram

	Histograms are a type of graph that shows the distribution of a dataset. They graph the percentage or the number of instances of different categories.

	Pie

	Illustrate the percentage breakdown of a small number of data points, then they can be very effective.

Charts : LineChart

Perfect for series of data points to form a continuous line.
Example - Represent Daily sales data

Below is the sample workflows which contains Time Series data and visualize using line chart in Fire Insights.

[image: ml_userguide]

Configurations for visualization processors in Fire Insight:
* Set number of columns want to represent on y axis with respect to x axis
* Set chart type based on data type

[image: ml_userguide]

Output result of Visualization processor:

[image: ml_userguide]

Charts : BarChart

[image: ml_userguide]

Charts : Scatter

[image: ml_userguide]

Time Series Modeling

Fire Insights provides a number of Processors for Time Series Modeling. These include:

Update New features where needed

	Models

	Description

	Prophet

	Prophet is a procedure for predicting time series data based on an additive or multiplicative model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It is best for time series that have strong seasonal effects and several seasons of historical data. Prophet is robust model to missing data and shifts in the trend, and able to handles outliers. For more: https://facebook.github.io/prophet/

	Arima

	ARIMA is a model which is used for predicting future trends on a time series data. It is model that form of regression analysis. For more: https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

	XGBoost

	XGBoost is gradient boosting algorithm. It is also known as ‘regularized boosting‘ technique - seeks a goot bias-variant trade-off to reduce overfitting allows cross-validation at each iteration of the boosting process and thus it is easy to get the exact optimum number of boosting iterations in a single run. For more: https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html#limitations

	LSTM

	LSTM is special kind of recurrent neural network that is capable of learning long term dependencies in data. This is achieved because the recurring module of the model has a combination of four layers interacting with each other. This is a great benefit in time series forecasting, where classical linear methods can be difficult to adapt to multivariate or multiple input forecasting problems. For more: https://www.tensorflow.org/tutorials/structured_data/time_series

Prophet

Below is the sample workflows which contains Prophet processor in Fire Insights.

Equation - y(t)=g(t)+s(t)+h(t)+ϵt,

where:

	Trend g(t): models non-periodic changes

	Seasonality s(t): represents periodic changes

	Holidays component h(t): contributes information about holidays and events

It reads the AirPassengers dataset & use Prophet processor which forecasting of univariate time series data and print the result.

[image: ml_userguide]

Prophet processor Configuration:

[image: ml_userguide]

Output result of Prophet processor:

[image: ml_userguide]

ARIMA

Below is the sample workflows which contains ARIMA processor in Fire Insights.

	AR (Autoregression): A changing variable that regresses on its own lagged/prior values.

	I (Integrated): Differencing of raw observations to allow for the time series to become stationary

	MA (Moving average): Dependency between an observation and a residual error from a moving average model

In terms of y, the general forecasting equation is:

ŷt = μ + ϕ1 yt-1 +………+ ϕp yt-p — θ1et-1 -………- θqet-q,

where:
* μ → constant

	ϕ1 yt-1 +…+ ϕp yt-p → AR terms (lagged values of y)

	θ1et-1 -………- θqet-q → MA terms (lagged errors)

It reads the AirPassengers dataset & use ARIMA processor which Forecast the airline passengers count, generate a new column with unique index/value for each row in dataset and print the result.

[image: ml_userguide]

ARIMA processor Configuration:

[image: ml_userguide]

Output result of ARIMA processor:

[image: ml_userguide]

H2OXGBoost

Below is the sample workflows which contains H2OXGBoost processor in Fire Insights.

It reads the UCI_Credit_Card dataset & use H2OXGBoost processor supervised learning algorithm that implements a process called boosting to yield accurate models and save the model in s3 location.

[image: ml_userguide]

H2OXGBoost processor Configuration:

[image: ml_userguide]

H2OMojoSave processor Configuration:

[image: ml_userguide]

On successful submission of the job, the model get saved to specified locations, you can just view the model at specified location.

[image: ml_userguide]

[image: ml_userguide]

Tutorials

	Reading - Writing Data
	Creating Dataset for CSV Files

	Creating Dataset for AVRO Files

	Creating Dataset for JSON Files

	Creating Dataset for Parquet Files

	Creating Dataset from MySQL Table

	Reading from RDBMS in Workflow

	Read PDF File

	Reading and Writing from ElasticSearch

	Processing multiple files

	Saving Data to HIVE

	Writing to Parquet Files

	Writing to JSON Files

	Reading and Writing from MongoDB

	Data Exploration
	Telco Churn Data Exploration

	Machine Learning
	Telco Churn Prediction

	Bike Rental Prediction

	Farmers Market Prediction

	Clustering Houses

	TFIDF

	Earthquake Prediction

	Analytics
	Analyze Flights Delays

	Distribution Graphs

	Farmers Markets On Geo Maps

	General Payment Data Analysis

	Jetrail Data Analysis

	NYC Taxidata Analysis

	Transaction Data Analytics

	Data Preparation
	Convert To Timestamps

	Data Validation

	Multi-Validation Workflow

	Decision / JSON Parser / SortBy / Empty Dataset

	Column Filter

	Drop Columns

	Drop Rows With Null

	Dedup Customers

	Handling Null Values

	Remove Duplicate Rows

	Removing Special Characters

	Rename Columns

	REST - CSV Reader & Parse

	REST Read And Parse JSON

	String To Date Timefunctions

	Date-Time Field Extract

	Concat Columns

	Joining Multiple Datasets

	Time Function

	Split Dataset By Expression

	String Functions

	Data Preparation-1

	Data Cleaning

	Titanic Data Cleaning/Wrangling

	Data Wrangling

	Profiling-Correlation

	Change Data Capture

	Data Quality
	Data Quality

	Code
	SQL Examples in Fire

	Scala Examples in Fire

	Jar File Execution Example in Fire

	NLP
	Name Finder

	Streaming
	Streaming Analytics Bike Sharing Dataset

	OCR
	OCR with Tesseract

	REST API
	Python - Infer Spark Cluster Configurations

	Time Series
	Stock Forecasting

	Air Passengers Forecasting

	Time Series Feature Engineering

	Anamoly Detection for IOT Devices

Reading - Writing Data

	Creating Dataset for CSV Files
	Datasets List

	Dataset Creation

	Creating Dataset for AVRO Files
	Datasets

	Dataset Creation

	Creating Dataset for JSON Files
	Datasets

	Dataset Creation

	Creating Dataset for Parquet Files
	Datasets

	Dataset Creation

	Creating Dataset from MySQL Table
	Datasets

	Dataset Creation

	Reading from RDBMS in Workflow
	Workflow for reading from MySQL

	JDBC Processor Configuration

	Results of reading from MySQL table

	Specifying a sub-query

	JDBC Drivers

	Example JDBC URL

	Read PDF File
	Workflow

	Reading And Parsing PDF File

	Prints the Results

	Reading and Writing from ElasticSearch
	Loading data into Elastic Search

	Note: Documentation processor is just for documentation purposes.

	Workflow Execution

	Reading data from Elastic Search

	Workflow Execution

	Processing multiple files
	Workflow

	Reading CSV files

	Filter its data

	Print the results

	Saving Data to HIVE
	Cluster vs Standalone Mode

	Writing to Parquet Files
	Workflow for writing to Parquet file

	DatasetStructured Processor

	SaveParquet Processor

	Writing to JSON Files
	Workflow for writing to JSON file

	Reading From Dataset

	SaveJSON Processor Configuration

	Reading and Writing from MongoDB
	Workflow for Loading data into MongoDB

	Workflow Execution

	Workflow for Reading data from MongoDB

	Workflow Execution

Creating Dataset for CSV Files

When working with data in Fire Insights, the first step is to create a dataset that you plan to process subsequently. Dataset is a wrapper around your data which makes it easy to handle it in Sparkflows workbench.

When datasets are created, Fire Insights automatically infers the schema using Spark-CSV library from Databricks.

Datasets List

When you open any application, all existing Datasets specific to the application are displayed in the Datasets tab.

[image: Dataset]

Dataset Creation

Choose type of Dataset to Create

Navigate to the “Datasets” tab in your application. Click on the “Create” button and choose “Dataset”.
In the pop-up choose “CSV” and then click “OK”.

[image: Dataset]

Dataset Details

Clicking “OK” will take you to Dataset Details page where you can enter information about your dataset. In the screenshot below, we create a dataset from a housing.csv file. It is a comma separated file with a header row specifying the names of the various columns.

[image: Dataset]

For the housing.csv file, we will fill in the required fields as below.

[image: Dataset]

We specified a name for the dataset we are creating. ‘Header’ is set to true indicating that the file has a header row, field delimiter is comma and we also specified the path to the file.

Update Sample data/schema

Once we have specified the above, we hit the ‘Update Sample data/schema’ button. This brings up the sample data, infers the schema and displays it. We can change the column names and also the data types. Format column is used for specifying the format for date/time fields.

[image: Dataset]

[image: Dataset]

Save the Dataset

Clicking the ‘Save’ button creates the new dataset. The dataset is now ready for use in any workflow within the specific application.

[image: Dataset]

Creating Dataset for AVRO Files

When working with data in Fire Insights, the first step is to create a dataset that you plan to process subsequently. Dataset is a wrapper around your data which makes it easy to handle it in Sparkflows workbench.

When datasets are created, Fire Insights automatically infers the schema using Spark-Avro library.

Datasets

[image: Dataset]

Dataset Creation

Navigate to the “Datasets” tab in your application where you want to create a new dataset. Click on the “Create” button and choose “Dataset”. In the pop-up choose “AVRO” and then click “OK”.

[image: Dataset]

Clicking “OK” will take you to Dataset Details page where you can enter information about your dataset. In the screenshot below, we create a dataset from a sample.avro file.

[image: Dataset]

We specified a name, category, description & path of avro file for the dataset we are creating.

Once we have specified the above, we hit the ‘Update Sample data/schema’ button. This brings up the sample data, infers the schema and displays it. We can change the column names and also the data types. Format column is used for specifying the format for date/time fields.

[image: Dataset]

[image: Dataset]

Clicking the ‘Save’ button saves the new avro dataset. The avro dataset is now ready for use in any workflow within the specific application.

[image: Dataset]

Creating Dataset for JSON Files

When working with data in Fire Insights, the first step is to create a dataset that you plan to process subsequently. Dataset is a wrapper around your data which makes it easy to handle it in Sparkflows workbench.

When datasets are created, Fire Insights automatically infers the schema using Spark-Json library.

Datasets

[image: Dataset]

Dataset Creation

Navigate to the “Datasets” tab in your application where you want to create a new dataset. Click on the “Create” button and choose “Dataset”. In the pop-up choose “JSON” and then click “OK”.

[image: Dataset]

Clicking “OK” will take you to Dataset Details page where you can enter information about your dataset. In the screenshot below, we create a dataset from a customer.json file.

[image: Dataset]

We specified a name, category, description & path of json file for the dataset we are creating.

Once we have specified the above, we hit the ‘Update Sample data/schema’ button. This brings up the sample data, infers the schema and displays it. We can change the column names and also the data types. Format column is used for specifying the format for date/time fields.

[image: Dataset]

[image: Dataset]

Clicking the ‘Save’ button saves the new json dataset. The json dataset is now ready for use in any workflow within the specific application.

[image: Dataset]

Creating Dataset for Parquet Files

Fire insights supports reading from several file formats including Parquet files. Parquet files have schema embedded in them. Fire Insights is able to extract schema of Parquet files automatically.

Datasets

The existing datasets are displayed in the DataSets page of specific application.

[image: Dataset]

Dataset Creation

Navigate to the “Datasets” tab in your application where you want to create a new dataset. Click on the “Create” button and choose “Dataset”. We now create a dataset for people.parquet. It is a parquet file.

[image: Dataset]

In the ‘Create DataSet’ page fill in the required fields as below.

[image: Dataset]

Specify the name of the dataset you are creating.

After specifying name and path, click the ‘Update Sample data schema’ button. This brings up the sample data, extracts the schema and displays it. Below we see that there are 2 fields : age and name. Age is of type integer and name is of type string.

[image: Dataset]

Clicking the ‘Save’ button creates the new DataSet for us.

[image: Dataset]

Now you are ready to use the dataset in your workflows.

Creating Dataset from MySQL Table

When working with data in Fire Insights, the first step is to create a dataset that you plan to process subsequently. Dataset is a wrapper around your data which makes it easy to handle it in Sparkflows workbench.

When datasets are created, Fire Insights automatically infers the schema of the dataset.

Datasets

When you open any application, all existing datasets specific to the application are displayed in the Datasets tab.

[image: Dataset]

Dataset Creation

Navigate to the “Datasets” tab in your application where you want to create a new dataset. Click on the “Create” button and choose “Dataset”. In the pop-up choose “JDBC” and then click “OK”.

[image: Dataset]

Specify the name of the dataset you are creating and other required parameters such as JDBC DRIVER, JDBC URL, USER, PASSWORD, DB, & TABLE etc.

Once you have filled in required information, hit ‘Update Sample data/schema’ button. This brings up sample data, infers the schema and displays it. You can change column names and data types as needed. Format column is used for specifying the format of date/time fields.

[image: Dataset]

[image: Dataset]

Clicking the ‘Save’ button creates the new dataset that can be used in any workflow or Interactive dashboard within the specific application.

[image: Dataset]

Reading from RDBMS in Workflow

Fire has JDBC Processors for reading from JDBC sources or writing to JDBC sinks.

In order to connect to a JDBC source like MySQL/Oracle/DB2 etc. the JDBC driver needs to be installed in Fire Insights.

Use the steps here for installing the corresponding JDBC driver for your RDBMS:

	http://docs.sparkflows.io/en/latest/operating/installing-jdbc-drivers.html

Workflow for reading from MySQL

Below is a workflow which reads data from MySQL and saves to a CSV file. It reads in the data from the dm_product table in MySQL and saves it to a CSV file.

[image: JDBC Workflowt]

JDBC Processor Configuration

Below are the configuration details of the JDBC Processor. It uses the provided user for reading from the MySQL database. On clicking on Refresh Schema, Fire gets the schema of the table in MySQL and populates the entries.

[image: JDBC Processor Dialog]

Results of reading from MySQL table

The below screenshot displays some of the records read from the MySQL table by Fire.

[image: JDBC Read Results]

Specifying a sub-query

In the configuration of the JDBC node, for db_table anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table we could also use a subquery in parentheses.

More details are available on the Spark Guide : https://spark.apache.org/docs/1.6.0/sql-programming-guide.html#jdbc-to-other-databases

[image: JDBC Sub-Query]

Above we have specified a subquery which selects only the ‘first_name’ from the employees table.

[image: JDBC Sub-Query Output]

JDBC Drivers

Below are the JDBC URL’s for some databases:

	MySQL : com.mysql.jdbc.Driver

	PostgreSQL : org.postgresql.Driver

	Oracle : oracle.jdbc.driver.OracleDriver

Example JDBC URL

Below are some examples of JDBC URL for reading from Relational sources:

	MySQL : jdbc:mysql://localhost:3306/mydb

	PostgreSQL : jdbc:postgresql://localhost:5432/mydb

Read PDF File

This workflow reads in PDF file from the given location. It then parses its content and creates DataFrame then prints the results.

Workflow

Below is the workflow that shows:

	How to read in PDF file from the given location and create the DataFrame from it

	Prints the result

[image: ReadandParse]

Reading And Parsing PDF File

DatasetPDF processor uses the passed location to download PDF file, parse its content into string and create the DataFrame.

Processor Configuration

[image: ReadandParse]

Processor Output

[image: ReadandParse]

Prints the Results

It prints the result onto the screen.

Reading and Writing from ElasticSearch

Elastic Search is often used for indexing, searching and analyzing datasets. Fire Insights makes it easy to read data from Elastic Search, clean it and transform it as needed.

Elasticsearch-hadoop provides native integration between Elasticsearch and Apache Spark. In the example below we will first load data from HDFS into Elastic Search and then read it back into Apache Spark from Elastic Search.

If your data is already in Elastic Search, skip to “Workflow for Reading data from Elastic Search”.

Loading data into Elastic Search

Create a new empty workflow. Drag and drop the source dataset from which you want to load data into Elastic Search. If you don’t have a dataset for the source data, create one.

Once the source processor is on the workflow canvas, drag and drop “SaveElasticSearch” processor in the workflow. Configure your Elastic Search processor in the dialog box shown below.

[image: Dataset]

After configuring “SaveElasticSearch” processor, connect your data source processor to Elastic Search processor.

The example workflow below reads a Housing dataset which is in CSV format from HDFS. The ‘SaveElasticSearch’ takes in the incoming data and loads it into the Elastic Search Index ‘sparkflows/housing’.

[image: Dataset]

Note: Documentation processor is just for documentation purposes.

Workflow Execution

When the example workflow above is executed, it reads in the dataset from HDFS and saves it into Elastic Search.

[image: Dataset]

Reading data from Elastic Search

Reading data from Elastic Search is easy. Drag and drop ‘ReadElasticSearch’ process into your workflow and configure it.
The screenshot below shows the dialog box for the Elastic Search Read processor.

[image: Dataset]

In the dialog above, ‘Refresh Schema’ button infers the schema of the index. Thus it is able to pass down the output schema to the next processor making it easy to build workflows.

The SQL field specifies the SQL to be used for reading from Elastic Search. It allows you to limit the columns of interest, and apply where clauses etc.

The Elastic Search processor understands the SQL and translates it into the appropriate QueryDSL. The connector pushes down the operations directly to the source, where the data is efficiently filtered out so that only the required data is streamed back to Spark. This significantly increases the query performance and minimizes the CPU, memory and I/O operations on both Spark and Elastic Search clusters.

The example workflow below reads the data from the sparkflows/housing index in Elastic Search and prints out the first few lines.

[image: Dataset]

Workflow Execution

When the example workflow above is executed, it reads in the index from Elastic Search and displays the first few lines.

[image: Dataset]

Processing multiple files

This workflow reads in multiple files available in specific directory. It then filters and calculates number of bedrooms with specific prices and then prints the results.

Workflow

Below is the workflow. It does the following:

	Reads multiple csv files available in specific directory.

	Filters it to calculate number of bedrooms with specific prices.

	Prints the results.

[image: Housing Analysis]

Reading CSV files

It reads multiple CSV files available in specific directory using ReadCSV processor.

Processor Configuration

[image: Housing Analysis]

Processor Output

[image: Housing Analysis]

Filter its data

It then filters to calculate number of bedrooms with specific prices using SQL processor.

Processor Configuration

[image: Housing Analysis]

Processor Output

[image: Housing Analysis]

Print the results

It will print the results with the output required after filter aggregation.

Processor Configuration

[image: Housing Analysis]

Processor Output

[image: Housing Analysis]

Saving Data to HIVE

As par of your data pipeline or workflow, you might want to save data to HIVE after it has been read from a data source, cleaned and transformed. After data is saved in HIVE it can be read from another workflow or accessed through BI tools such as Tableau.

Cluster vs Standalone Mode

In your workflow, drag and drop a “SaveAsHIVETable” processor. Configure the processor to save your data into HIVE as a table which can be read later.

Note: Fire Insights can run in cluster mode or in the standalone mode. These settings are in Administration/Configuration.When connecting to HIVE, Sparkflows must be running in cluster mode on an edge node of a Hadoop cluster. HIVE settings have to be correctly set under Administration/Configuration-> app.runOnCluster.

The example workflow below, contains “SaveAsHIVETable” processor. It reads Housing dataset and saves it into the HIVE ‘housing_table’.

[image: Dataset]

When the example workflow is executed, data is written into HIVE table ‘housing_table’.

[image: Dataset]

The ‘housing_table’ gets created with the schema of the Housing Dataset.

[image: Dataset]

Writing to Parquet Files

Fire Insights enables you to write your Dataframe to Parquet Files.

Workflow for writing to Parquet file

Below is a workflow example which reads in transaction data. It then writes it out to Parquet files.

[image: ParquetWorkflow]

DatasetStructured Processor

Node DatasetStructured creates a Dataframe of your dataset named Transaction Dataset by reading data from HDFS, HIVE etc. which had been defined earlier in Fire by using the Dataset feature.

As a user you have to select the Dataset of your interest as shown below.

[image: NodeDatasetStructured]

SaveParquet Processor

SaveParquet processor saves the incoming DataFrame into the specified path in Parquet Format. When running on Hadoop, Parquet files gets saved into HDFS.

The DataFrame might be written as multiple part files in the specified folder, depending on the size and partition of the DataFrame.

[image: SaveParquet]

Writing to JSON Files

Fire Insights enables you to write your DataFrame to JSON Files.

Workflow for writing to JSON file

[image: JSONWorkflow]

Reading From Dataset

Node TransactionDataset creates DataFrame of your dataset named ‘Transaction Dataset’ by reading data from HDFS, HIVE etc. which had been defined earlier in Fire by using the Dataset feature. As a user you just have to select the Dataset of your interest and configure the details as shown below.

[image: NodeDatasetStructured]

SaveJSON Processor Configuration

Node SaveJSON saves DataFrame into the specified path in JSON Format. When running on Hadoop, JSON files gets saved into HDFS.

[image: JSONWorkflow]

Reading and Writing from MongoDB

MongoDB is a document database with the scalability and flexibility that you want with the querying and indexing that you need. Here we are loading data from HDFS and Saving it into MongoDB.

Workflow for Loading data into MongoDB

The below workflow reads in the Sample Dataset which is in CSV format from HDFS.

It then saves the data into MongoDB.

[image: SaveMongoDB]

The below diagram shows the dialog box for the SaveMongoDB Processor.

[image: SaveMongoDB]

Workflow Execution

When we execute the Workflow, it reads in the dataset from HDFS and loads it into MongoDB.

[image: SaveMongoDB]

Workflow for Reading data from MongoDB

The below workflow reads Data in MongoDB.It then prints the data.

[image: ReadMongoDB]

The below diagram shows the dialog box for the ReadMongoDB Processor.

[image: ReadMongoDB]

In the above dialog, the ‘Refresh Schema’ button infers the schema of the collections. Thus it is able to pass down the output schema to the next Processor making it easy for us to build the workflow.

Workflow Execution

When we execute the Workflow, it reads in the Sample collection from MongoDB and displays the first few lines.

We see that the Sample data records we wrote to MongoDB in the first workflow is read back now.

[image: ReadMongoDB]

Data Exploration

	Telco Churn Data Exploration
	Input Telco Churn Data

	Workflow Execution Result

	Summary Statistics

	Counts by Churned Column

	Graph of counts of various attributes for Churned and Not Churned customers

	Correlation Matrix

Telco Churn Data Exploration

Data Profiling is extremely helpful in understanding the data. Fire Insights provides a number of processors for users to profile their data.

Workflow for Data Profiling

Below is a workflow which profiles the Telco Churn Dataset.

[image: Concat Columns]

Input Telco Churn Data

The input dataset looks like below:

[image: Concat Columns]

Workflow Execution Result

When the above workflow is executed, it produces the below results. The good thing about Fire Insights is that the Data Profiling runs in a distributed fashion. So, whatever the number of records in the input dataset, it scales seamlessly.

Summary Statistics

[image: Concat Columns]

Counts by Churned Column

[image: Concat Columns]

Graph of counts of various attributes for Churned and Not Churned customers

[image: Concat Columns]

Correlation Matrix

[image: Concat Columns]

Machine Learning

	Telco Churn Prediction

	Bike Rental Prediction
	Workflow

	Reading from Dataset

	Extract hour from time using datatype timestamp

	Calculate Count to datatype double

	Assemble features for modelling

	Calculate vectorindexer

	Split it

	GBTRegression

	Prediction

	RegressionEvaluator

	Correlation with columns

	Summary analysis

	Calculate count for rental per hour

	Analyse using Graph

	Farmers Market Prediction
	First Dataset

	Column Filter

	SQL

	Second Dataset

	SQL

	AllJoin - Join the two datasets

	CastColumnType

	ImputingWithConstant

	VectorAssembler

	Split

	LinearRegression

	Predict

	Print N Rows

	Clustering Houses
	Workflow

	Reading from Dataset

	Prints the results

	Assemble the features for predictions

	Split it

	Perform KMeans Clustering

	ML Model save

	ML Model Load

	Prediction

	Print the prediction results

	TFIDF
	Workflow

	Reading from Dataset

	Tokenizes message column

	Perform TF

	Perform IDF

	Prints the results

	Earthquake Prediction
	Objective

	Dataset

	Random Forest Regression Workflow for Earthquake Prediction

	Prepare data for modeling

	Data modeling

	Model evaluation

Telco Churn Prediction

Fire Insights enable us to create a Random Forest Model to predict churn and evaluate the results.

The dataset is artificial Churn Data based on claims, similar to real world. It is taken from the following location.

	https://www.sgi.com/tech/mlc/db/

	https://www.sgi.com/tech/mlc/db/churn.all

	https://www.sgi.com/tech/mlc/db/churn.name

[image: Machine Learning]

Below is the workflow you can use for creating the model for Churn Prediction.

[image: Machine Learning]

The workflow performs the following steps:

	Reads in the dataset from a tab separated file

	Applies StringIndexer on the field “intl_plan”

	Applies VectorAssembler on the fields we want to model on

	Splits the dataset into (.8, .2)

	Performs Random Forest Classification

	Performs prediction using the model generated on the remaining 20% dataset

	Finally evaluates the prediction results

[image: Machine Learning]

In the VectorAssembler, select the fields you want to include in the model. Only the numeric fields are displayed as VectorAssembler supports only the numeric fields.

[image: Machine Learning]

You can split the dataset into training and test datasets. We split it into (.8, .2)

[image: Machine Learning]

You can use a RandomForestClassifier for predicting churn. We use 20 trees.

[image: Machine Learning]

You can predict using the model on the test dataset.

[image: Machine Learning]

You can evaluate the quality of our results.

[image: Machine Learning]

Next, You can execute the workflow.

From the evaluator You get the following results:

[image: Machine Learning]

Bike Rental Prediction

This workflow reads in a dataset.It then Predicts the number of bikes to be rented in any given hour.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset.

	Extracts hour from time using datatype timestamp.

	Calculates Count to datatype double.

	Assembles features for modelling.

	Calculates vectorindexer.

	Splits it.

	GBTRegression.

	Prediction.

	RegressionEvaluator.

	Correlation with columns.

	Summary analysis.

	Calculate count for rental per hour.

	Analyse using Graph.

[image: Bike Rental Prediction]

Reading from Dataset

It reads sample Dataset file.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Extract hour from time using datatype timestamp

It Extracts hour from time using datatype timestamp using DateTimeFieldExtract Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Calculate Count to datatype double

It Calculates cast the Count field to datatype double using CastColumnType Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Assemble features for modelling

It Assembles features columns into a feature vector using VectorAssembler Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Calculate vectorindexer

It identifies categorical features and index them using vectorindexer Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Split it

It will split our dataset into seperate training and test sets using split Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

GBTRegression

It validates held out test sets in order to know about high confidence using GBTRegression Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Prediction

It will make prediction on future data using Prediction Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

RegressionEvaluator

It validates held out test sets in order to know about high confidence using RegressionEvaluator Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Correlation with columns

It will analyse correlation between various columns using Correlation Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Summary analysis

It visualizes our data to get sense of whether the features are meaningful using Summary Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Calculate count for rental per hour

It calculates count for rental per hour using query with SQL Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Analyse using Graph

It will analyse graph with bike rental counts and hours of the day using GraphValue Node.

Processor Configuration

[image: Bike Rental Prediction]

Processor Output

[image: Bike Rental Prediction]

Farmers Market Prediction

It demonstrate to predict “the number of farmer’s markets in a given zip code” based on the income and taxes paid in a given area using the past data.It seems plausible that areas with higher income have more farmer’s markets simply because there is more of a market for those goods. Of course there are many potential holes in this idea, but that’s part of the desire to test it.

DataBricks has published a clean approach to build this use case. It feature a Python notebook that demonstrates how to create ML Pipeline to preprocess a dataset, train a Machine Learning model, and make predictions.

Using Fire Insights visual designer, you can try to execute this approach visually and declaratively. This note speaks to that.

As the DataBricks link highlights:

	The first of the two datasets that you can work is the Farmers Markets Directory and Geographic Data. This dataset contains information on the longitude and latitude, state, address, name, and zip code of Farmers Markets in the United States. The raw data is published by the Department of Agriculture. The version on the data that is found in Databricks (and is used in this tutorial) was updated by the Department of Agriculture on Dec 01, 2015.

	The second you can work is the SOI Tax Stats - Individual Income Tax Statistics - ZIP Code Data (SOI). This study provides detailed tabulations of individual income tax return data at the state and ZIP code level and is provided by the IRS. This repository only has a sample of the data: 2013 and includes “AGI”. The ZIP Code data show selected income and tax items classified by State, ZIP Code, and size of adjusted gross income. Data are based on individual income tax returns filed with the IRS and are available for Tax Years 1998, 2001, 2004 through 2013. The data include items, such as:

	Number of returns, which approximates the number of households

	Number of personal exemptions, which approximates the population

	Adjusted gross income

	Wages and salaries

	Dividends before exclusion

	Interest received

Below is an overview of the workflow. You can create using the Fire Insights Visual Designer.

This workflow was simply created via the drag and drop capabilities of the Fire Insightss Designer UI. This ability to construct this data processing pipeline (or any DAG - Distributed Acyclic Graph, for that matter) in a WYSIWYG Plug-and-Play manner is a key innovation to continue our community’s collective march to on-demand-instant-analytics. Benefits include:

	It opens up the power of ETL and ML (such pre-packaged functionality is available as a catalog of “Nodes”) to a wider audience of analysts and semi-technical resources.

	The actual execution can either be local (testing) or can be submitted to a Apache Spark cluster.

	You can see during the adoption that a single workbench improves collaborative iteration across data engineers, data scientists and analysts, which in turn accelerates time-to-market.

	As one might observe, the visual approach doubles up as workflow documentation and hence contributes to solving the data-lineage problem.

[image: Fire Market Prediction]

This workflow consists of the following steps:

	Using the DatasetStructured Nodes: Read in the data from 2 different datasets - Farmers_Markets and Income Tax Return Data per Zip Code (both comma separated files:

	Instead of a CSV, one can easily read it from a data-lake or a Persistence Store (HDFS/RDBMS/NoSQL).

	Using the ColumnFilter node: Filter out the following columns from the Income Tax Return dataset and pass it to a SQL query node, so we can do further computation.

	State

	Zipcode

	MARS1 - Single Returns

	MARS2 - Joint Returns

	NUMDEP - Number of Dependents

	A02650 - Tota Income Amount

	A00300 - Taxable Interest Amount

	A00900

	A01000

	Using the SQL Node: Execute the following SQL to get the various aggregates from the filtered data from the Income Tax Return dataset

	select zipcode, sum(MARS1) as single_returns, sum(MARS2) as joint_returns, sum(NUMDEP) as numdep, sum(A02650) as total_income_amount, sum(A00300) as taxable_interest_amount from fire_temp_table group by zipcode

	Using another SQL Node: Extract certain columns from the Farmers_Market dataset using the below SQL query:

	select cast(zip as int) as zip, count(*) as count from fire_temp_table group by zip

	Using the AllJoin node - Join the two filtered datasets using the following query:

	select a.zipcode , a.single_returns, a.joint_returns, a.numdep, a.total_income_amount, a.taxable_interest_amount, b.count, b.zip from fire_temp_table1 a LEFT OUTER JOIN fire_temp_table2 b ON(a.zipcode=b.zip)

	Using the CastColumnType Node - change the column type of the count column from Long to Double

	Using the ImputingWithConstant node, fill the blanks across all columns with constants.

	Using the VectorAssembler node, concatenate columns single_returns, joint_returns, numdep, total_income_amount, taxable_interest_amount into a feature vector feature_vector

	Using Split node: Split the dataset into (.7, .3)

	70% rows are used for training and 30% are used for prediction

	The model is evaluated based on how it predicts on the remaining 30%.

	Using the LinearRegression Node - Perform LinearRegression:

	This is a Spark MLLib provided algorithm that Sparkflows exposes to you as a plug-and-play “node”. LinearRegression from SparkML.

	Using Predict Node: Perform prediction using the model generated on the remaining 30% dataset

	Finally evaluate the result using the PrintNRows node.

[image: Fire Market Prediction]

First Dataset

[image: Fire Market Prediction]

Column Filter

[image: Fire Market Prediction]

SQL

[image: Fire Market Prediction]

Second Dataset

[image: Fire Market Prediction]

SQL

[image: Fire Market Prediction]

AllJoin - Join the two datasets

[image: Fire Market Prediction]

CastColumnType

[image: Fire Market Prediction]

ImputingWithConstant

[image: Fire Market Prediction]

VectorAssembler

[image: Fire Market Prediction]

Split

[image: Fire Market Prediction]

LinearRegression

[image: Fire Market Prediction]

Predict

[image: Fire Market Prediction]

Print N Rows

[image: Fire Market Prediction]

Next you can execute the workflow and it come up with predictions for number of farmers markets in a zip code.

[image: Fire Market Prediction]

Clustering Houses

This workflow reads in a dataset. It then performs KMeans Clustering on the Housing Dataset.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset.

	Prints the results.

	Assembles the features for predictions.

	Splits it.

	Perform KMeans Clustering.

	ML Model save.

	ML Model Load.

	Prediction.

	Print the prediction results.

[image: Clustering Houses]

Reading from Dataset

It reads sample Dataset file.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

Prints the results

It prints the sample dataset file results.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

Assemble the features for predictions

It assembles the features for predictions using VectorAssembler Node.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

Split it

It splits features of prediction using Split Node.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

Perform KMeans Clustering

It performs KMeans Clustering on the Housing Dataset using KMeans Node.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

ML Model save

It will save ML Model with given path using ModelSave Node.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

ML Model Load

It will Load ML Model with given path using ModelSave Node.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

Prediction

It predicts features updated using Predict Node.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

Print the prediction results

It Print the prediction results.

Processor Configuration

[image: Clustering Houses]

Processor Output

[image: Clustering Houses]

TFIDF

This workflow reads in a dataset. It then Tokenizes and then performs TF/IDF on text content.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset.

	Tokenizes message column.

	Performs TF.

	Performs IDF.

	Prints the results.

[image: TFIDF]

Reading from Dataset

It reads sample Dataset file.

Processor Configuration

[image: TFIDF]

Processor Output

[image: TFIDF]

Tokenizes message column

It Tokenizes message column generated by sample dataset file using Tokenizer Node.

Processor Configuration

[image: TFIDF]

Processor Output

[image: TFIDF]

Perform TF

It performs TF on text column using HashingTF Node.

Processor Configuration

[image: TFIDF]

Processor Output

[image: TFIDF]

Perform IDF

It performs IDF on text column using IDF Node.

Processor Configuration

[image: TFIDF]

Processor Output

[image: TFIDF]

Prints the results

It will print the result after performing TF/IDF on text content.

[image: TFIDF]

Processor Output

[image: TFIDF]

Earthquake Prediction

Objective

As the motivation behind earthquake prediction is to empower crisis measures to decrease demise and devastation, inability to give notice of a significant earthquake that happens, or possibly a satisfactory assessment of the hazard, can bring about legitimate risk, or even political cleansing.

Dataset

Dataset contains 2 columns as below:

	Acoustic_data - Acoustic wave reading

	Time_to_failure - Time remaining before the next earthquake

[image: Stock Forecasting]

Random Forest Regression Workflow for Earthquake Prediction

Random Forest Regression model belongs to family of bagging regression. It is a supervised learning model that uses ensemble learning method for regression. Ensemble learning method is a technique that combines predictions from multiple models to make prediction more accurately than a single model.

Features of Random Forest -

	Aggregates many decision trees

	Prevents overfitting

[image: Stock Forecasting]

Prepare data for modeling

Follow workflow arrow

	ZipWithIndex- Creates new feature column from dataframe index as ID

	Group data- Creates new feature column as key obtained by ID divided by length of data

[image: Stock Forecasting]

	Feature Engineering- Groups by data on key to create all statistical measures (min, max, mean, quartiles etc) as new feature

[image: Stock Forecasting]

	Feature Vector - Merge multiple columns to form vector

[image: Stock Forecasting]

Data modeling

	Before we create Random Forest Regression model, split data (80:20) into train and test for performance evaluation.

Random Forest Regression

	Sets feature vector corresponding to label(time_to_failure_label).

	Sets number of features for each split node of tree.

	For regression the measure of impurity is variant.

	In random forest, the impurity decrease from each feature can be averaged across trees to determine the final importance of the variable.

	The maxBins signifies the maximum number of bins used for splitting the features, where the suggested value is 100 to get better results.

	The maxDepth is the maximum depth of the tree (for example, depth 0 means one leaf node, depth 1 means one internal node plus two leaf nodes).

	Information gain is calculated by comparing the entropy of the dataset before and after a transformation.

[image: Stock Forecasting]

[image: Stock Forecasting]

Model evaluation

	Multiple ways to evaluate regression model such as R square, Root mean square error(rmse), mean square error(mse)

[image: Stock Forecasting]

Analytics

	Analyze Flights Delays
	Workflow

	Reading from Dataset

	Print the sample datasets results

	Column to be cast for new datatype double

	Column to be cast for new datatype string

	Updates the column name of datatype string

	Prints the Results

	Executes the SQL queries

	Prints the Results

	Distribution Graphs
	Workflow

	Reading CSV file

	Distribution of data by Week

	Distribution of data by Month

	Distribution of data by Year

	Farmers Markets On Geo Maps
	Workflow

	Reading from Dataset

	Execute SQL Query

	Prints the Results

	Analyze using Graph

	Execute SQL Query

	Analyze using Graph

	General Payment Data Analysis
	Workflow

	Reading from Dataset

	Calculate count transactions by speciality

	Summary of transactions

	Number of transaction per state

	Prints the results

	Jetrail Data Analysis
	Workflow

	Reading from Dataset

	Extract date time field

	Calculate count per month

	Execute query for months

	Prints the Results

	Graphical analysis

	NYC Taxidata Analysis
	Workflow

	Reading from Dataset

	Extract hour from pickup time

	Calculate the speed per hour

	Calculate the average speed per hour

	Prints the results

	Analyze using Chart Graph

	Transaction Data Analytics
	Workflow

	Reading from Dataset

	Prints the sample Dataset Results

	Analysing using Graph

Analyze Flights Delays

This workflow reads in a dataset. It then analyzes flights delay with sample datasets and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset.

	Prints the sample datasets results.

	Column to be cast for new datatype double.

	Column to be cast for new datatype string.

	Updates the column name of datatype string.

	Prints the result of data updating after stringindexer Node.

	Executes the SQL queries with the given conditions.

	Prints the results.

[image: Analyze Flights Delays]

Reading from Dataset

It reads Dataset files.

Processor Configuration

[image: Analyze Flights Delays]

Processor Output

[image: Analyze Flights Delays]

Print the sample datasets results

It prints the sample datasets results.

Processor Configuration

[image: Analyze Flights Delays]

Processor Output

[image: Analyze Flights Delays]

Column to be cast for new datatype double

It casts for new datatype double using castcolumn type Node.

Processor Configuration

[image: Analyze Flights Delays]

Processor Output

[image: Analyze Flights Delays]

Column to be cast for new datatype string

It casts for new datatype string using castcolumn type Node.

Processor Configuration

[image: Analyze Flights Delays]

Processor Output

[image: Analyze Flights Delays]

Updates the column name of datatype string

It updates the column name of datatype string using stringindexer type Node.

Processor Configuration

[image: Analyze Flights Delays]

Processor Output

[image: Analyze Flights Delays]

Prints the Results

It prints the result of data updating after stringindexer Node.

Processor Configuration

[image: Analyze Flights Delays]

Processor Output

[image: Analyze Flights Delays]

Executes the SQL queries

It executes the SQL queries with the given conditions.

Processor Configuration

[image: Analyze Flights Delays]

Processor Output

[image: Analyze Flights Delays]

Prints the Results

It prints the results after satisfied condition by sql queries.

Processor Configuration

[image: Analyze Flights Delays]

Processor Output

[image: Analyze Flights Delays]

Distribution Graphs

This workflow reads a CSV file. It then plots graphs of distribution of data by Week, Month & Year.

Workflow

Below is the workflow. It does the following:

	Reads a CSV file.

	Distribution of data by Week.

	Distribution of data by Month.

	Distribution of data by Year.

[image: Distribution Graphs]

Reading CSV file

It reads CSV files.

Processor Configuration

[image: Distribution Graphs]

Processor Output

[image: Distribution Graphs]

Distribution of data by Week

It plots graphs of distribution of data by Week using GraphWeekDistribution Node.

Processor Configuration

[image: Distribution Graphs]

Processor Output

[image: Distribution Graphs]

Distribution of data by Month

It plots graphs of distribution of data by month using GraphMonthDistribution Node.

Processor Configuration

[image: Distribution Graphs]

Processor Output

[image: Distribution Graphs]

Distribution of data by Year

It plots graphs of distribution of data by year using GraphYearDistribution Node.

Processor Configuration

[image: Distribution Graphs]

Processor Output

[image: Distribution Graphs]

Farmers Markets On Geo Maps

This workflow reads in a dataset. It then plots number of Farmers Market by City and by State on a Graph.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset.

	Executes SQL Query for state count.

	Prints the result after executing query for state counts.

	Plots Graph for farmers with state counts.

	Executes SQL Query for city counts.

	Plots Graph for farmers with city counts.

[image: Farmers Markets On Geo Maps]

Reading from Dataset

It reads sample Dataset files.

Processor Configuration

[image: Farmers Markets On Geo Maps]

Processor Output

[image: Farmers Markets On Geo Maps]

Execute SQL Query

It Executes SQL Query for state count from the SQL node.

Processor Configuration

[image: Farmers Markets On Geo Maps]

Processor Output

[image: Farmers Markets On Geo Maps]

Prints the Results

It prints the results after executing query for state counts by SQL Node.

Processor Configuration

[image: Farmers Markets On Geo Maps]

Processor Output

[image: Farmers Markets On Geo Maps]

Analyze using Graph

It plots Graph for farmers with state counts using RegionGeoGraph Processor.

Processor Configuration

[image: Farmers Markets On Geo Maps]

Processor Output

[image: Farmers Markets On Geo Maps]

Execute SQL Query

It executes SQL Query for City count from the SQL node.

Processor Configuration

[image: Farmers Markets On Geo Maps]

Processor Output

[image: Farmers Markets On Geo Maps]

Analyze using Graph

It plots Graph for farmers with City counts using RegionGeoGRaph Node.

Processor Configuration

[image: Farmers Markets On Geo Maps]

Processor Output

[image: Farmers Markets On Geo Maps]

General Payment Data Analysis

This workflow reads in a dataset. It then performs detailed analytics on general payment dataset.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset.

	Calculates count transactions by speciality.

	Summary of transactions.

	Number of transactions per state.

	Prints the results.

[image: General Payment Data Analysis]

Reading from Dataset

It reads from sample Dataset file.

Processor Configuration

[image: General Payment Data Analysis]

Processor Output

[image: General Payment Data Analysis]

Calculate count transactions by speciality

It will calculate count transactions by speciality using BarChartCal Node.

Processor Configuration

[image: General Payment Data Analysis]

Processor Output

[image: General Payment Data Analysis]

Summary of transactions

It finds stats on amount of each transaction using Summary Node.

Processor Configuration

[image: General Payment Data Analysis]

Processor Output

[image: General Payment Data Analysis]

Number of transaction per state

It finds number of transactions per state using SQL Node.

Processor Configuration

[image: General Payment Data Analysis]

Processor Output

[image: General Payment Data Analysis]

Prints the results

It will print the result of output getting from SQL Node.

Processor Configuration

[image: General Payment Data Analysis]

Processor Output

[image: General Payment Data Analysis]

Jetrail Data Analysis

This workflow reads in a dataset. It then calculates the monthly trend in JetRail Dataset and annalyses using graph.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset.

	Extracts date time field.

	Calculates count per month.

	Executes query for months.

	Print the results.

	Graphical analysis.

[image: Jetrail Data Annalysis]

Reading from Dataset

It reads from sample Dataset file.

Processor Configuration

[image: Jetrail Data Annalysis]

Processor Output

[image: Jetrail Data Annalysis]

Extract date time field

It extracts year and month field from date time field of timestamp using date time field extract Node.

Processor Configuration

[image: Jetrail Data Annalysis]

Processor Output

[image: Jetrail Data Annalysis]

Calculate count per month

It calculates count per month using query by SQL Node.

Processor Configuration

[image: Jetrail Data Annalysis]

Processor Output

[image: Jetrail Data Annalysis]

Execute query for months

It executes query for grouping and selecting required fields, calculates sum of counts by SQL Node.

Processor Configuration

[image: Jetrail Data Annalysis]

Processor Output

[image: Jetrail Data Annalysis]

Prints the Results

	It prints the results after executing SQL Query

	
	align

	center

	width

	60%

Graphical analysis

It will graphically represent month with count using GraphValue Node.

Processor Configuration

[image: Jetrail Data Annalysis]

Processor Output

[image: Jetrail Data Annalysis]

NYC Taxidata Analysis

This workflow reads in a sample dataset. It then analyses average speed of taxis at each hour with sample data and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads data from a dataset.

	Extracts hour from pickup time.

	Calculates the speed per hour.

	Calculates the average speed per hour.

	Prints the results.

	Displays average speed per hour on chart.

[image: NYC Taxidata Annalysis]

Reading from Dataset

It reads sample Dataset files.

Processor Configuration

[image: NYC Taxidata Annalysis]

Processor Output

[image: NYC Taxidata Annalysis]

Extract hour from pickup time

It extracts hour from pickup time using datetimefieldextract Node.

Processor Configuration

[image: NYC Taxidata Annalysis]

Processor Output

[image: NYC Taxidata Annalysis]

Calculate the speed per hour

It calculates the speed per hour using SQL Node.

Processor Configuration

[image: NYC Taxidata Annalysis]

Processor Output

[image: NYC Taxidata Annalysis]

Calculate the average speed per hour

It calculates the average speed per hour using GroupBy Node.

Processor Configuration

[image: NYC Taxidata Annalysis]

Processor Output

[image: NYC Taxidata Annalysis]

Prints the results

It will print the result with the output of GroupBy Node.

Processor Configuration

[image: NYC Taxidata Annalysis]

Processor Output

[image: NYC Taxidata Annalysis]

Analyze using Chart Graph

It displays average speed per hour on chart using Graphvalue Node.

Processor Configuration

[image: NYC Taxidata Annalysis]

Processor Output

[image: NYC Taxidata Annalysis]

Transaction Data Analytics

This workflow reads in a dataset. It then prints the results from the sample dataset and analyses using graphs.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset.

	It then prints the results from the sample dataset.

	Analysing using graphs.

[image: Transaction Data Analytics]

Reading from Dataset

It reads Dataset File.

Processor Configuration

[image: Transaction Data Analytics]

Processor Output

[image: Transaction Data Analytics]

Prints the sample Dataset Results

It prints sample Dataset Results.

Processor Configuration

[image: Transaction Data Analytics]

Processor Output

[image: Transaction Data Analytics]

Analysing using Graph

It helps to analyse using graph with Graph grouped by column brand and count.

Processor Configuration

[image: Transaction Data Analytics]

Processor Output

[image: Transaction Data Analytics]

Data Preparation

	Convert To Timestamps
	Workflow

	Reading from Dataset

	Prints the sample Dataset Results

	Convert To Timestamps

	Prints the Results

	Data Validation
	Workflow

	Reading from CSV File

	Performing Validation

	Multi-Validation Workflow
	Validations

	Workflow

	Reading from CSV File

	String Functions

	Performing Validation

	Prints the Valid Records

	Prints the Invalid Records

	Decision / JSON Parser / SortBy / Empty Dataset

	Column Filter
	Workflow

	Reading from Dataset

	Column Filter

	Prints the Results

	Drop Columns
	Workflow

	Reading from Dataset

	Drop Columns

	Prints the Results

	Drop Rows With Null
	Workflow

	Reading from CSV File

	Dropping rows with null

	Dedup Customers
	Workflow

	Input Datasets

	Join input DataFrames

	Data Deduplication

	Prints the Results

	Handling Null Values
	Workflow

	Reading from CSV File

	Replacing null values

	Converting to 0/1 using StringIndexer

	Converting to 0/1 using CaseWhen

	Converting to 0/1 using FindAndReplaceUsingRegex

	Remove Duplicate Rows
	Workflow

	Reading from CSV file

	Remove Duplicate Rows

	Prints the Results

	Removing Special Characters
	Workflow

	Reading from Dataset

	To Remove Any Special character in data

	RowFilter - Remove the rows with empty space

	Prints the Results

	Rename Columns
	Workflow

	Reading from Dataset

	Rename Columns

	Prints the Results

	REST - CSV Reader & Parse
	Workflow

	Reading from URL

	Prints the Records

	Parsing the DataFrame

	Row Filter by Index

	Prints the Results

	REST Read And Parse JSON
	Workflow

	Reading from URL And Parsing

	Prints the Results

	String To Date Timefunctions
	Workflow

	Reading from CSV file

	String to Date

	Time Functions

	Prints the Results

	Date-Time Field Extract
	Workflow

	Reading from Dataset

	Date-Time Field Extract

	Prints the Results

	Concat Columns
	Workflow

	Reading from HDFS File

	Concating columns

	Joining Multiple Datasets
	Overview

	Datasets

	Workflow

	Data Parsing and Cleaning

	Group By and Aggregates

	Joins with various Dimension Data

	Time Function
	Dataset

	Workflow for applying TimeFunctions

	Workflow Execution

	Split Dataset By Expression
	Workflow

	Output

	String Functions
	Workflow

	Read data from HDFS

	Apply string functions

	Data Preparation-1
	Workflow

	Reading from Dataset

	Convert String to Date

	Settings values for required Column

	Creating DataFrame with required rows

	Prints the Results

	Data Cleaning
	Workflow

	Reading from Dataset

	Handling Null Values

	Convert Strings to Integer Indexes

	Convert Gender to Integer Values

	Replace Gender and Family with 0/1

	Prints the Results

	Titanic Data Cleaning/Wrangling
	Workflow

	Reading Titanic dataset

	Dropping the rows with null values

	Filter by string length

	Convert Age to Integer

	Get Rows of Interest

	Prints the results

	Data Wrangling
	Workflow

	Reading from Dataset

	Data Wrangling

	Prints the Results

	Profiling-Correlation
	Workflow

	Performing Correlation analysis

	Summary Statistics

	Change Data Capture
	Overview

	Design

Convert To Timestamps

This example converts to timestamp from the input sample dataset using string to date Node.

Workflow

Below is the workflow. It does the following:

	Reads data from a sample dataset file.

	Prints sample dataset result.

	Converts sample string to timestamp.

	Prints the expected result.

[image: Convert To Timestamps]

Reading from Dataset

It reads sample Dataset File.

Processor Configuration

[image: Convert To Timestamps]

Processor Output

[image: Convert To Timestamps]

Prints the sample Dataset Results

It prints the results of the sample dataset available.

Processor Configuration

[image: Convert To Timestamps]

Processor Output

[image: Convert To Timestamps]

Convert To Timestamps

It converts To Timestamps using stringtodate Node.

Processor Configuration

[image: Convert To Timestamps]

Processor Output

[image: Convert To Timestamps]

Prints the Results

It prints the results after converting to Timestamps.

Processor Configuration

[image: Convert To Timestamps]

Processor Output

[image: Convert To Timestamps]

Data Validation

This example performs different kinds of data validation on input dataset like valid/invalid email,valid/invalid date,null/not null check etc.

Workflow

Below is the workflow. It does the following:

	Reads data from a CSV file.

	Performs specific validation on specific columns.

[image: Data Validation]

Reading from CSV File

It reads data from a CSV file.

Processor Configuration

[image: Data Validation]

[image: Data Validation]

Processor Output

[image: Data Validation]

Performing Validation

It performs different validation on different columns.

Processor Configuration

[image: Data Validation]

[image: Data Validation]

Processor Output

[image: Data Validation]

Multi-Validation Workflow

This workflow performs multiple validations on each incoming record

	Records which pass validation are output into the first edge

	Records which fail validation are output into the seconds edge

Validations

	Ensures that field is greater than or equal to specified string value

	Ensures that field is less than or equal to specified string value

	Ensures that field matches given datePattern

	Ensures that the email is valid

	Ensures field length is greater than or equal to specified length

Workflow

Below is the workflow. It does the following:

	Reads data from a CSV file.

	Performs specific validation on specific columns.

[image: Data Validation Multiple]

Reading from CSV File

DatasetCSV processor reads data from a CSV file.

Processor Configuration

[image: Data Validation Multiple]

Processor Output

[image: Data Validation Multiple]

String Functions

StringFunctions processor performs specified operation on the selected column (i.e. trim function for column ‘name’ in this case)

Processor Configuration

[image: Data Validation Multiple]

Processor Output

[image: Data Validation Multiple]

Performing Validation

ValidationMultiple processor performs different validation on different columns.

Processor Configuration

[image: Data Validation Multiple]

Processor Output

[image: Data Validation Multiple]

Prints the Valid Records

Processor Output

[image: Data Validation Multiple]

Prints the Invalid Records

Processor Output

[image: Data Validation Multiple]

Decision / JSON Parser / SortBy / Empty Dataset

Fire provides the following processors:

	JSON Parser Processor

	Decision Processor

	SortBy Processor

	Empty Dataset Processor

https://www.sparkflows.io/single-post/2018/09/05/New-Processors—Decision-JSON-Parser-SortBy [https://www.sparkflows.io/single-post/2018/09/05/New-Processors---Decision-JSON-Parser-SortBy]-

Column Filter

This workflow reads in a dataset. It then filters specified columns from the original dataset and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads data from a dataset.

	It then filters specified columns from the original dataset.

	Prints the results.

[image: Column Filter]

Reading from Dataset

It reads in the input Dataset File.

Processor Configuration

[image: Column Filter]

Processor Output

[image: Column Filter]

Column Filter

It filters the selected columns.

Processor Configuration

[image: Column Filter]

Processor Output

[image: Column Filter]

Prints the Results

It prints the first few records onto the screen.

Drop Columns

This workflow reads in a dataset. It then drops some columns from the original dataset and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads data from a dataset.

	It then drops some columns from the original dataset.

	Prints the results.

[image: Drop Columns]

Reading from Dataset

It reads Dataset File.

Processor Configuration

[image: Drop Columns]

Processor Output

[image: Drop Columns]

Drop Columns

It drops the columns whichever we want.

Processor Configuration

[image: Drop Columns]

Processor Output

[image: Drop Columns]

Prints the Results

It prints the results after dropping the columns.

Processor Configuration

[image: Drop Columns]

Processor Output

[image: Drop Columns]

Drop Rows With Null

This example drops/filters the rows containing any null values from the input dataset.

Workflow

Below is the workflow. It does the following:

	Reads data from a CSV file.

	Drops rows having any null values in any of the columns.

[image: Drop Rows With Null]

Reading from CSV File

It reads data from a CSV file.

Processor Configuration

[image: Drop Rows With Null]

[image: Drop Rows With Null]

Processor Output

[image: Drop Rows With Null]

Dropping rows with null

It drops the rows which contain any null value.

Processor Configuration

[image: Drop Rows With Null]

Processor Output

[image: Drop Rows With Null]

Dedup Customers

Data deduplication refers to a technique for eliminating redundant data in a data set.
In the process of deduplication, extra copies of the same data are deleted, leaving only one copy to be stored.

Workflow

Below is the workflow. This workflow does the following:

	Finds matching records between 2 given datasets. It first joins them with the column “State”.

	Then it applies distance algorithms on a few fields to find the distance between the records.

[image: DedupCustomers]

Input Datasets

There are 2 input datasets in this case “Dedup Master Dataset” & “Dedup Error Dataset” as shown below,

Dataset 1:

[image: DedupCustomers]

Dataset 2:

[image: DedupCustomers]

Join input DataFrames

JoinUsingColumn processor joins the incoming DataFrames on a join column “State”. ColumnFilter processor filters the columns to get the required DataFrame as shown below:

[image: DedupCustomers]

Data Deduplication

Dedup is used for the problems like entity resolution or data matching.
Entity resolution or data matching is the problem of finding and linking different mentions of the same entity in a single data source or across multiple data sources. Here Levenshtein Algorithm is used for data Deduplication. There are more options for Algorithms that can be used:

	Full matching: Full matching makes use of all individuals in the data by forming a series of matched sets in which each set has either 1 treated individual and multiple comparison individuals or 1 comparison individual and multiple treated individuals

	Levenshtein: It counts the number of edits (insertions, deletions, or substitutions) needed to convert one string to the other.

	Jaro-Winkler: The Jaro–Winkler distance is a string metric measuring an edit distance between two sequences. Jaro-Winkler are suited for comparing smaller strings like words and names.

	Jaccard (3 gram) : This takes consecutive words and group them as a single object. A 3-gram is a consecutive set of 3 words. Used for emails or small documents.

	Longest Common Subsequence : If a set of sequences are given, the longest common subsequence problem is to find a common subsequence of all the sequences that is of maximal length used in revision control systems, such as SVN and Git, for reconciling multiple changes made to a revision-controlled collection of files.

	Date Difference: Calculates the number of days between two dates.

	Notional Distance

Dedup Processor Configuration

[image: DedupCustomers]

Dedup Processor Output

[image: DedupCustomers]

Prints the Results

It prints the first few records onto the screen.

Handling Null Values

This example removes null values from the input dataset.

Workflow

Below is the workflow. It does the following:

	Reads data from a CSV file.

	Replaces null values in certain columns with constant values.

	Converts certain columns to 0/1 based on their value. It does it in 3 different ways.

	Using StringIndexer Processor

	Using CaseWhen Processor

	Using FindAndReplaceUsingRegex Processor

[image: Handling Null Values]

Reading from CSV File

It reads in the CSV file data-with-nulls.csv.

Processor Configuration

[image: Handling Null Values]

Processor Output

[image: Handling Null Values]

Replacing null values

It replaces null values in certain columns with user defined constant values.

Processor Configuration

[image: Handling Null Values]

Processor Output

[image: Handling Null Values]

Converting to 0/1 using StringIndexer

It converts strings like Y/N to 0/1 for the specified columns using the StringIndexer Processor.

Processor Configuration

[image: Handling Null Values]

Processor Output

[image: Handling Null Values]

Converting to 0/1 using CaseWhen

It converts strings like Y/N to 0/1 for the specified columns using the CaseWhen Processor.

Processor Configuration

[image: Handling Null Values]

Processor Output

[image: Handling Null Values]

Converting to 0/1 using FindAndReplaceUsingRegex

It converts strings like Y/N to 0/1 for the specified columns using the FindAndReplaceUsingRegex Processor.

Processor Configuration

[image: Handling Null Values]

Processor Output

[image: Handling Null Values]

Remove Duplicate Rows

This workflow reads CSV file. It then removes duplicate rows from the original CSV file and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads data from a CSV file.

	It then removes duplicate rows from the original CSV file.

	Prints the results.

[image: Remove Duplicate Rows]

Reading from CSV file

It reads CSV file.

Processor Configuration

[image: Remove Duplicate Rows]

Processor Output

[image: Remove Duplicate Rows]

Remove Duplicate Rows

It removes Duplicate Rows available.

Processor Configuration

[image: Remove Duplicate Rows]

Processor Output

[image: Remove Duplicate Rows]

Prints the Results

It prints the results after Removing Duplicate Rows.

Processor Configuration

[image: remove-duplicate-rows]

Processor Output

[image: remove-duplicate-rows]

Removing Special Characters

This workflow reads in a dataset. It then removes the special characters from columns of the original dataset and prints the results.

Workflow

Below is the workflow. It does the following:

	It reads the CSV and creates a DataFrame.

	It find and replaces the special characters with empty space in the columns

	Create new DataFrame containing the rows that satisfy the given condition (i.e. removes the rows with empty space)

	Print the specified number of records in the DataFrame after execution of workflow

[image: Remove special Characters]

Reading from Dataset

DatasetCSV processor reads in the input Dataset file and creates DataFrame.

Processor Configuration

[image: Remove special Characters]

Processor Output

[image: Remove special Characters]

To Remove Any Special character in data

FindAndReplaceUsingRegex processor find and replaces the special characters with empty space in the columns

Processor Configuration

[image: Remove special Characters]

Processor Output

[image: Remove special Characters]

RowFilter - Remove the rows with empty space

RowFilter processor creates new DataFrame containing the rows that satisfy the condition provided (For example : Removes the rows with empty spaces as shown below)

Processor Configuration

[image: Remove special Characters]

Processor Output

[image: Remove special Characters]

Prints the Results

It prints the first few records onto the screen.

Rename Columns

This workflow reads in a dataset. It then renames columns from the original dataset and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads data from a dataset.

	It then renames columns from the original dataset.

	Prints the results.

[image: Rename Columns]

Reading from Dataset

It reads Dataset file.

Processor Configuration

[image: Rename Columns]

Processor Output

[image: Rename Columns]

Rename Columns

It renames columns we want.

Processor Configuration

[image: Rename Columns]

Processor Output

[image: Rename Columns]

Prints the Results

It prints the results after Renaming Columns.

Processor Configuration

[image: Rename Columns]

Processor Output

[image: Rename Columns]

REST - CSV Reader & Parse

This workflow reads in a dataset from URL. It then parses the dataset and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads data from the URL and creates a DataFrame

	Prints few records

	Splits the string of the input column using the delimiter

	Creates a new DataFrame containing rows satisfying the provided condition

	Prints the result

[image: ReadandParse]

Reading from URL

DatasetURLTextFileReader processor uses the passed URL to download the data and create the DataFrame.

Processor Configuration

[image: ReadandParse]

Processor Output

[image: ReadandParse]

Prints the Records

It prints the first few records onto the screen.

Parsing the DataFrame

FieldSplitter processor parses and creates new DataFrame by splitting the string of the input column using the delimiter as shown below:

Processor Configuration

[image: ReadandParse]

Processor Output

[image: ReadandParse]

Row Filter by Index

RowFilterByIndex processor creates a new DataFrame containing required rows as shown below:

Processor Configuration

[image: ReadandParse]

Processor Output

[image: ReadandParse]

Prints the Results

It prints the result onto the screen.

REST Read And Parse JSON

This workflow reads in single record JSON from the given URL. It then parses the dataset and prints the results.

Workflow

Below is the workflow that shows:

	How to read in single record JSON from the given URL and create the DataFrame from it

	Prints the result

[image: ReadandParse]

Reading from URL And Parsing

DatasetURLSingleRecordJSONReader processor uses the passed URL to download single record JSON, parse the dataset and create the DataFrame.

Processor Configuration

[image: ReadandParse]

Processor Output

[image: ReadandParse]

Prints the Results

It prints the result onto the screen.

String To Date Timefunctions

This workflow reads a CSV file. It then converts it into stringtodate and then to timefunctions and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads a CSV file.

	It then converts it into stringtodate using stringtodate Node.

	Convert it into timefunctions using timefunctions Node.

	Prints the results.

[image: String To Date Timefunctions]

Reading from CSV file

It reads Data from CSV file.

Processor Configuration

[image: String To Date Timefunctions]

Processor Output

[image: String To Date Timefunctions]

String to Date

It converts it into stringtodate using stringtodate Node.

Processor Configuration

[image: String To Date Timefunctions]

Processor Output

[image: String To Date Timefunctions]

Time Functions

It converts it into timefunctions using timefunctions Node.

Processor Configuration

[image: String To Date Timefunctions]

Processor Output

[image: String To Date Timefunctions]

Prints the Results

It prints the results after using string to date timefunctions.

Processor Configuration

[image: String To Date Timefunctions]

Processor Output

[image: String To Date Timefunctions]

Date-Time Field Extract

Workflow

Below is the workflow. It does the following:

	Reads data from a dataset.

	It creates a new DataFrame by extracting Year, Month, Day of month, Hour, Minute, Second fields from “TimeStamp”

	Prints the results.

[image: DateTimeFieldExtract]

Reading from Dataset

It reads in the input Dataset File.

Processor Configuration

[image: DateTimeFieldExtract]

Processor Output

[image: DateTimeFieldExtract]

Date-Time Field Extract

It creates a new DataFrame by extracting the year, month, day of month, hour, minute, second, week of the year from the timestamp column.

Processor Configuration

[image: DateTimeFieldExtract]

Processor Output

[image: DateTimeFieldExtract]

Prints the Results

It prints the first few records onto the screen.

Concat Columns

This example concats columns in the input dataset with the specified separator.

Workflow

Below is the workflow. It does the following:

	Reads data from file present on HDFS.

	Concats the specified columns with specified separator.

[image: Concat Columns]

Reading from HDFS File

It reads data from a file present on HDFS.

Processor Configuration

[image: Concat Columns]

Processor Output

[image: Concat Columns]

Concating columns

It concats the specified columns in cofiguration with the specified separator.

Processor Configuration

We need to provide all the desired columns to be concatenated without any separator or space, like NameSexAge etc.
Columns would get concatenated in same order defined in configuration like Name then Sex then Age.

[image: Concat Columns]

[image: Concat Columns]

Processor Output

[image: Concat Columns]

Joining Multiple Datasets

Fire Insights allows you to quickly do complex data preparation and ETL on Big Data.

Fire Insights has a number of features for enabling it including:

	Reading data from multiple sources

	Cleaning data

	oins, GroupBy, Cube, SQL etc. to transform data

	Writing results to various sinks

Fire Insights also gives you detailed control over your Spark jobs with Repartition, Coalesce, Cache etc.

Overview

In this example, we start with 5 datasets, read them in & understand their schema in the process, perform data cleaning and then apply appropriate aggregations and joins.

The cleansed and tranformed datasets are written to HDFS as CSV files. These dataset can as well we written as Parquet, Avro, JSON, XML files or to HIVE/Relational tables as needed.

Datasets

	facts.dat : Contains fixed length records of products sold to customers

	geo.csv : Contains mapping of geo ids to geo names

	product.csv : Contains mapping of product ids to product names

	customer.csv : Contains mapping of customer ids to customer names

	time.csv : Contains mapping of various time interval ids to corresponding names

Workflow

The workflow achieves the following tasks:

	Parses the facts data and performs various cleanup operations on it.

	Performs groupby with aggregations operations and saves it to a file.

	Joins the fact data with various dimensions to create a large table and saves it to a CSV file.

The workflow is shown below:

[image: Dataset]

Data Parsing and Cleaning

While the various dimension data is available as CSV files, the fact data is in fixed field size format.

Each record has a fixed number of characters. In each record each field consists of fixed number of characters. The steps for data parsing and cleaning are as follows:

	Read in the fixed length record

	Filter out invalid records

	Cast some columns to numeric values

Group By and Aggregates

The data is then aggregated and counted and averages are calculated. It is then saved as CSV file.

Joins with various Dimension Data

The fact data is then joined with various dimension data. These include:

	Geo

	Product

	Customer

	Time

The final dataset is saved as CSV file.

Time Function

There are many instances when you want to do time-series analysis. Fire Insights provides Date-Time features with TimeFunctions operator.

Creating additional features from the timestamp column helps you to know more about the data and run modeling algorithms on them. Fire Insights has NodeTimeFunctions for creating these time series features.

Dataset

Let us take a Transaction Dataset which is in CSV format on HDFS. The dataset has a “DATE” column.

[image: Dataset]

Workflow for applying TimeFunctions

In the example workflow below, additional date time features are being created from the date column.

[image: Dataset]

In the above workflow:

	The ‘CSV’ processor reads in the CSV data from HDFS.

	The ‘StringToDate’ processor converts the column Date, which is in string format to ‘timestamp’.

	The ‘TimeFunctions’ processor takes in the timestamp column and then applies various timefunctions to it to generate additional output columns.

The diagram below shows the dialog box for the TimeFunctions processor. Timestamp column was selected as input, and various time functions were applied to it.

[image: Dataset]

Workflow Execution

When the example workflow is executed, additional columns are produced for the various time functions that were selected.

[image: Dataset]

Split Dataset By Expression

Fire Insights allows you to split incoming dataframes. Based on your needs, use the processors described below:

	‘SplitByExpression’: This processor splits the incoming dataset based on an expression. Rows satisfying the expression go into one dataframe and the rest go into another dataframe.

	‘SplitByMultipleExpressions’: This processor splits the incoming dataset into multiple dataframes based on up to five conditional expressions.The output of each expression is routed to a separate output path.

	‘Split’: This processor splits the incoming dataframe into two based on the percentage specified for the split. Split processor is especially useful in machine learning workflows.

Workflow

[image: Dataset]

In the example workflow above, ‘Split By Multiple Expressions’ processor splits the incoming dataframe into three output dataframes. The three conditions are on column c1 - “c1<3” , “c1>=3 and c1<5”, and “c1>=5”. As mentioned earlier, ‘SplitByMultipleExpressions’ can split incoming dataframe into up to five dataframes.

[image: Dataset]

Output

For the example workflow, the three output dataframes are shown below:

[image: Dataset]

[image: Dataset]

[image: Dataset]

String Functions

String functions are useful to tranform strings in your dataframe. The “StringFunction” processors allows you to apply common string operations such as ‘trim’, ‘upper’, ‘lower’, ‘lefttrim’, ‘righttrim’ etc. to strings.

In the example below, different string functions are applied to input dataset.

Workflow

The example workflow below, read data from HDFS/Hive and applies different string functions on different columns of the dataset.

[image: String Functions Multiple]

Read data from HDFS

The “Housing” processor above, reads an existing dataset on HDFS.

Processor Configuration

[image: String Functions Multiple]

Processor Output

[image: String Functions Multiple]

Apply string functions

The ‘StringFunctionMultiple’ processor below, converts contents of ‘driveway’ column to upper case and trims contents of ‘gashw’ column.

Processor Configuration

[image: String Functions Multiple]

Processor Output

[image: String Functions Multiple]

Data Preparation-1

Data preparation is the process of cleaning and transforming raw data prior to processing and analysis.
It is an important step prior to processing and often involves reformatting data, making corrections to data and the combining of data sets to enrich data.

Workflow

Below is the workflow. It does the following:

	Reads data from the dataset

	converts a string column to date using the given date/time format

	Sets values for the column “State” based on conditions

	Creates a new DataFrame containing only rows satisfying given condition

	Prints the results of few records

[image: DataPreparation]

Reading from Dataset

It reads in the input Dataset File.

Processor Configuration

[image: DataPreparation]

Processor Output

[image: DataPreparation]

Convert String to Date

MultiStringToDate converts a string column to date using the given date/time format.

Processor Configuration

[image: DataPreparation]

Processor Output

[image: DataPreparation]

Settings values for required Column

CaseWhen sets values for the required column based on conditions as shown in example below:

Processor Configuration

[image: DataPreparation]

Processor Output

[image: DataPreparation]

Creating DataFrame with required rows

RowFilter creates a new DataFrame containing only rows required.

Processor Configuration

[image: DataPreparation]

Processor Output

[image: DataPreparation]

Prints the Results

It prints the first few records onto the screen.

Data Cleaning

This workflow cleans the input data. It does the following:

	Handles null values

	Replaces N/Y values etc. with 0/1

Workflow

Below is the workflow. It does the following:

	Reads data from a dataset

	Handles the null values by imputing the missing values with the constant value provided in the specified columns

	Convert Strings to Integer Indexes

	Convert Gender to Integer Values

	Replace Gender and Family with 0/1

[image: DataCleaning]

Reading from Dataset

DatasetCSV reads in the input Dataset file and creates DataFrame from it.

Processor Output

[image: DataCleaning]

Handling Null Values

ReplaceMissingValueWithConstant processor handles the null values by imputing the missing values with the constant value provided in the specified columns.

Processor Configuration

[image: DataCleaning]

Processor Output

[image: ../../_images/Capture4.PNG]

Convert Strings to Integer Indexes

StringIndexer processor encodes a string type column to a column of label indices.

Processor Configuration

[image: DataCleaning]

Processor Output

[image: ../../_images/Capture6.PNG]

[image: ../../_images/Capture7.PNG]

[image: ../../_images/Capture8.PNG]

Convert Gender to Integer Values

CaseWhen processor sets values for the variables based on conditions, as shown below:

Processor Configuration

[image: DataCleaning]

Processor Output

[image: ../../_images/Capture10.PNG]

Replace Gender and Family with 0/1

FindAndReplaceUsingRegexMultiple processor sets values for the variables based on conditions, as shown below:

Processor Configuration

[image: DataCleaning]

Processor Output

[image: DataCleaning]

Prints the Results

It prints the first few records onto the screen.

Titanic Data Cleaning/Wrangling

This workflow shows how to wrangle the Titanic Dataset with Sparkflows.

Workflow

This workflow performs the following steps:

	Reads the Titanic dataset

	Drops Rows containing Null values

	Filters the Rows for whom Age has not been specified

	Changes the data type of the Age column to integer

	Filters rows for persons of age > 30 and who are female

[image: titanic-data-cleaning]

Reading Titanic dataset

DatasetStructured processor creates a Dataframe of your dataset named Titanic Data by reading data from HDFS, HIVE etc. which had been defined earlier in Fire by using the Dataset feature.

Processor Output

[image: titanic-data-cleaning]

Dropping the rows with null values

DropRowsWithNull processor drops the rows with null values.

Processor Configuration

[image: titanic-data-cleaning]

Processor Output

[image: titanic-data-cleaning]

Filter by string length

FilterByStringLength processor filters the rows within the provided string length

Processor Configuration

[image: titanic-data-cleaning]

Processor Output

[image: titanic-data-cleaning]

Convert Age to Integer

CastColumnType processor performs conversion of Age to integer type.

Processor Configuration

[image: titanic-data-cleaning]

Processor Output

[image: titanic-data-cleaning]

Get Rows of Interest

RowFilter processor filters the data based on provided conditions as shown below:

Processor Configuration

[image: titanic-data-cleaning]

Processor Output

[image: titanic-data-cleaning]

Prints the results

It prints the first few records onto the screen.

Data Wrangling

Data wrangling is the process of gathering, selecting, and transforming data to answer an analytical question. Also known as data cleaning or “munging”.
This workflow reads in a dataset. It then wrangles the dataset based on provided conditions and prints the results.

Workflow

Below is the workflow. It does the following:

	Reads data from a dataset

	It then create new DataFrame based on the rules provided

	Prints the results

[image: data-wrangling]

Reading from Dataset

DatasetStructured processor creates a Dataframe of your dataset by reading data from HDFS, HIVE etc. which had been defined earlier in Fire by using the Dataset feature.

Processor Output

[image: data-wrangling]

Data Wrangling

DataWrangling processor creates new DataFrame after applying the provided rules

Processor Configuration

[image: data-wrangling]

Processor Output

[image: data-wrangling]

Prints the Results

It prints the first few records onto the screen.

Profiling-Correlation

This workflow reads in a dataset. It then creates the correlation analysis and summary statistics.

Workflow

Below is the workflow. It does the following:

	Reads data from a dataset.

	Perform correlation analysis of the required columns

	Provide summary statistics of the dataset

[image: ProfilingCorrelation]

Performing Correlation analysis

Correlation processor performs correlation analysis on the selected columns as shown below:

Processor Configuration

[image: ProfilingCorrelation]

Processor Output - Correlation matrix

[image: ProfilingCorrelation]

Processor Output - Correlation Matrix Heat Map

[image: ProfilingCorrelation]

Processor Output - Sample Rows of Input Dataset

[image: ProfilingCorrelation]

Summary Statistics

Summary processor provides summary statistics of the input dataset.

Summary statistics provides useful information about sample data. eg: measures of spread.

It provides a table with number of non-null entries (count), mean, standard deviation, and minimum and maximum value for each numerical column.

Processor Configuration

[image: ProfilingCorrelation]

Processor Output: Summary Statistics

[image: ProfilingCorrelation]

Processor Output: Sample Rows of Input Dataset

[image: ProfilingCorrelation]

Change Data Capture

There are many times when we need to Change Data Capture.

Below is one way to do CDC with Fire.

Overview

We have streaming events coming in. The events can be updates to the existing records. In the final table, we need to publish only the latest record.

Design

We keep a staging table. This table would have all the records coming in. We do dedup at the end of the day and publish it to the final table.

Let us say that we are getting real time events of orders. As we get these events we append it to the staging table. If there are updates to an order, say an order got cancelled, we will have multiple records for that order in the staging table.

There is a final published order table where there are no duplicates. It gets updated once a day.

We join the final order table with the staging table. In doing so we get multiple order entries. We take the one with the latest timestamp and drop the others. Then for a given order we have only one record in the final table. We rewrite the final orders table with the newly calculated records.

Data Quality

	Data Quality
	Workflow

	SampleData

	Summary

	Correlation

	Data Quality Page

	Summary Results

Data Quality

Data quality is an important aspect whenever we ingest data.
Incomplete or wrong data can lead to more false predictions by a machine learning algorithm, we may also lose opportunities to monetize our data because of the data issues and business can lose their confidence on the data.

In sparkflows, user can create the workflow using Summary, Correlation etc nodes to get more details about the dataset.

Sample Dataset: http://eforexcel.com/wp/downloads-16-sample-csv-files-data-sets-for-testing/

Example:

Workflow

Below is the workflow to do Data Profile.

	Reads data from a sample dataset.

	Summary of the numeric fields.

	Correlation of the fields in dataset

	Verfiy the quality of data in sparkflows Data Quality tab.

[image: End]

SampleData

[image: End]

Summary

[image: End]

Correlation

[image: End]

Data Quality Page

[image: End]

Summary Results

[image: End]

	Correlation Results

	

[image: End]

Code

	SQL Examples in Fire
	Example 1

	Example 2

	Scala Examples in Fire
	Calculate count of houses by bathrooms

	For each bedroom type, find the house with the lowest price

	Jar File Execution Example in Fire
	Step 1: Copy jar file from s3 path to /tmp directory.

	Step 2: Execute jar file from /tmp directory.

SQL Examples in Fire

Fire provides a SQL processer in which SQL can be written.

Example 1

select bedrooms, avg(lotsize) as avg_lotsize from fire_temp_table group by bedrooms

Example 2

select fire_temp_table.* , case when fire_temp_table.DEP_DELAY_NEW > 40 then 1.0 else 0.0 END as label from fire_temp_table

Scala Examples in Fire

Fire provides a Scala processer in which Scala code can be written.

Below are a few code examples in Scala.

Calculate count of houses by bathrooms

val outDF = inDF.groupBy("bathrms").count()
outDF.registerTempTable("outDF")

For each bedroom type, find the house with the lowest price

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
val window = Window.partitionBy("bedrooms").orderBy("price")
val rankDF = inDF.withColumn("rank", rank() over window)
val lowestPriceDF = rankDF.filter(col("rank") === 1)
val outDF = lowestPriceDF.drop(col("rank"))
outDF.registerTempTable("outDF")

Jar File Execution Example in Fire

Let’s take a scenario where through CI/CD pipeline, the application jar file is built successfully and pushed into the S3 bucket.

Below are steps to execute the jar file:

Step 1: Copy jar file from s3 path to /tmp directory.

aws s3 cp s3://bucket-name/example-application.jar /tmp

Step 2: Execute jar file from /tmp directory.

java -cp /tmp/example-application.jar MainClass

In the fire, both steps can be run with UnixShellCommands Node.

[image: UnixShellCommands Node]

NLP

	Name Finder
	Workflow

	Textfiles

	OpenNLPNameFinder

	PrintNRows

Name Finder

Fire provides NameFinder Processor to easily detect named entities and numbers in text. It takes in a column name in the input DataFrame containing text. It then detects the entities and stores them into a new column.

To be able to detect entities the Name Finder needs a model. The model is dependent on the language and entity type it was trained for.

https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition.cmdline

The OpenNLP project offers a number of pre-trained name finder models which are trained on various freely available corpora. They can be downloaded at the OpenNLP download page.

http://opennlp.sourceforge.net/models-1.5/

Steps for installing the OpenNLP models in Fire are covered here : http://docs.sparkflows.io/en/latest/operating/installing-opennlp.html

Workflow

Below is a workflow which uses the NameFinder Processor.

[image: Workflow]

It consists of 3 Processors:

	TextFiles - It reads in the input text file and creates a row from each line of text.

	OpenNLPNameFinder - It extracts the entities from each line of text.

	PrintNRows - It prints the first 10 rows of the result.

Textfiles

It reads in the input files from the directory data/ner-person. It places each line in the column ‘line’.

Processor Configuration

[image: Workflow]

Processor Output

[image: Workflow]

OpenNLPNameFinder

It extracts entities from the text in the input column ‘line’ and stores them in the output column ‘ner’. When running on the Hadoop Cluster, the model file has to be on HDFS and users have to have access to it.

[image: Workflow]

PrintNRows

It prints the first 10 rows from the result.

[image: Workflow]

Streaming

	Streaming Analytics Bike Sharing Dataset
	DataSet

	Start Kafka and create Topic ‘bike-sharing’

	Send the data file ‘bike_sharing_noheader.csv’ to the Kafka Topic

	Workflow

	Streaming Kafka

	FieldSplitter

	StringToDate

	DateTimeFieldExtract

	GraphGroupByColumn

	Executing the workflow

	Streaming Dashboard

Streaming Analytics Bike Sharing Dataset

Streaming Analytics with Apache Kafka and Apache Spark Streaming.

At Fire we are obsessed with powering our users to build amazing data analytics applications in < 30 mins.

Below we build a Streaming Analytics workflow and dashboard. It-

	Reads bike sharing data from Kafka

	Parses the incoming data

	Finds the number of rentals on an hourly basis

	Displays the results visually in a graph.

DataSet

The dataset contains bike rental info from 2011 and 2012 in the Capital bikeshare system, plus additional relevant information.

This dataset is from Fanaee-T and Gama (2013) and is hosted by the UCI Machine Learning Repository. It consists of 10877 rows (can be found in /data directory of the Fire installation). Each record is count of rentals grouped by a given hour in the past and environmental factors at that time (season, holiday, temperature, wind-speed etc.)

Start Kafka and create Topic ‘bike-sharing’

	The quick start guide of Kafka is at : https://kafka.apache.org/quickstart

	The steps for Kafka are:

	Download Kafka

	Start zookeeper and Kafka server. You can also use an existing instance of Zookeeper/Kafka

	bin/zookeeper-server-start.sh config/zookeeper.properties

	bin/kafka-server-start.sh config/server.properties

	Create the topic ‘bike-sharing’

	bin/kafka-topics.sh –create –zookeeper localhost:2181 –replication-factor 1 –partitions 1 –topic bike-sharing

Send the data file ‘bike_sharing_noheader.csv’ to the Kafka Topic

	bike_sharing_noheader.csv is in the data directory of the Fire Install

	cat bike_sharing_noheader.csv | bin/kafka-console-producer.sh –broker-list localhost:9092 –topic bike-sharing

Workflow

Below is a workflow for Streaming Analytics of the Bike Sharing dataset.

[image: Dataset]

It consists of 6 Nodes:

	StreamingKafka - It reads in streaming data from the Kafka topic bike-sharing.

	FieldSplitter - It splits each line in fields.

	StringToDate - Converts the datetime column into Timestamp type.

	DateTimeFieldExtract : Extracts year, month, day, hour from the datetime column.

	GraphGroupByColumn - Groups the data on the hour column, sums it up and display it in a Graph.

	PrintNRows : Prints the first 10 records in a table.

Streaming Kafka

It reads in streaming data from Kafka and creates a dataframe with one column containing the lines.

[image: Dataset]

FieldSplitter

It splits each line on the separator - comma - and outputs a new DataFrame with the columns defined.

[image: Dataset]

StringToDate

It converts the datetime column into new column of type ‘Timestamp’.

[image: Dataset]

DateTimeFieldExtract

It extracts the year, month, day of month and hour from the datetime_dt column.

[image: Dataset]

GraphGroupByColumn

Aggregates the data on the hour column, and displays it in a Graph.

[image: Dataset]

Executing the workflow

When the workflow is executed, Fire submits a spark streaming job to the Spark cluster. The spark streaming job keeps running and processing the incoming from Kafka. Below are some of the output produced by the job.

[image: Dataset]

[image: Dataset]

Streaming Dashboard

Since we are still very much under 30 minutes, we also go ahead and create a Dashboard for the workflow. Since we have set the mini-batch duration to be 30 seconds, the Dashboard would update itself every 30 seconds.

Below is the Dashboard editor. Select the nodes whose output you want displayed and drag and drop them onto the canvas.

[image: Dataset]

[image: Dataset]

OCR

	OCR with Tesseract

OCR with Tesseract

https://www.sparkflows.io/single-post/OCR-with-Tesseract-in-Sparkflows

REST API

	Python - Infer Spark Cluster Configurations

Python - Infer Spark Cluster Configurations

Below is an example Python program for inferring the Apache Spark cluster configurations using the REST API.

It would infer the cluster configurations with latest changes and save the new results.

#!/usr/bin/python

import requests

import json

token_url = "http://localhost:8080/oauth/token"

infer_configuration_api_url = "http://localhost:8080/api/v1/configurations/infer"

save_configuration_api_url = "http://localhost:8080/api/v1/configurations"

#Step A - resource owner supplies credential #Resource owner (enduser) credentials

#input your own username

RO_user = 'admin'

#input your own password

RO_password = 'admin'

#client (application) credentials

client_id = 'sparkflows'
client_secret = 'secret'

#step B, C - single call with resource owner credentials in the body and client credentials as the basic auth header will return#access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_password}

access_token_response = requests.post(token_url, data=data, verify=False, allow_redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

Step- now use the access_token to call infer configuration api and its save api.

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

#infer the hadoop configuration

infer_configuration_api_response = requests.get(infer_configuration_api_url, headers=api_call_headers, verify=False)
print(" infer configuration response : "+ infer_configuration_api_response.text)

#save the hadoop configuration

save_configuration_api_response = requests.post(save_configuration_api_url,infer_configuration_api_response, headers=api_call_headers, verify=False)

print(" configuration after save : "+save_configuration_api_response.text)

Time Series

	Stock Forecasting
	Objective

	Dataset

	Prophet Time Series Modelling Workflow on Multivariate Data

	Output Visualization

	Air Passengers Forecasting
	Objective

	Dataset

	Time Series Modelling Workflow on Univariate Data

	Final Result

	Time Series Feature Engineering
	Objective

	Dataset

	Feature Engineering Workflow

	Moving average

	Extract Date Time Features

	Lags Feature

	New feature data

	Anamoly Detection for IOT Devices
	Objective

	Dataset

	Anamoly Detection using Prophet Time Series Model Workflow

	Data Preprocessing

	Data Modeling

	Model prediction

Stock Forecasting

Objective

Stock forecasting helps production units to get an idea about raw material, pricing of goods, improvement in supply, chain management and proper control of sales.

Dataset

Dataset contains 4 columns as follows:-

	Date - Date when product was sold

	Store - Store id from where product got sold

	Item - Item id

	Sales - Quantity of product sold

Predict future sales of items at particular store

Prophet Time Series Modelling Workflow on Multivariate Data

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends fit with yearly, weekly, daily, seasonality and holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.

[image: Stock Forecasting]

Node 1 - ReadCSV

	Reads the given CSV file : store_item_stock_train.csv

[image: Stock Forecasting]

	Below are the first 10 rows of data

	Columns contain data as datetype, store and item which are categorical variables and sales which is a continuous variable.

[image: Stock Forecasting]

Node 2 - RowFilter

	Filters data by row with respect to store and item

[image: Stock Forecasting]

Node 3 - Prophet

Used Facebook Prophet to create the ML model.

General Section of Prophet Model

	Set Date column in DS column field

	Y is the target variable. Set it to the Sales column

	Set Growth as linear or logistic

	We are using prophet model so it is sufficient to select seasonality in auto mode

	Set mode of seasonality as additive or multiplicative

	Set confidence Interval (0 to 1) which gives a range of plausible values for the parameter of interest.

[image: Stock Forecasting]

Future Data section of Prophet model

	FUTURE PERIOD block gives the number of steps we want to predict

	FREQUENCY can be Monthly or Daily

	Set INCLUDE HISTORY to true for testing the model and False for production

[image: Stock Forecasting]

Node 4 - SQL

General Section of SQL node

	Renames columns forecasted by Prophet

[image: Stock Forecasting]

Schema Section of SQL node

	Refreshes Schema and sets data type with respect to columns

[image: Stock Forecasting]

Node 5 - JoinUsingSQL

General Section of JoinUsingSQL node

	Joins Prediction (from SQL node) and Historical Data(from RowFilter node)

[image: Stock Forecasting]

Schema Section of JoinUsingSQL node

	Follow the same steps as in Schema Section of SQL node

[image: Stock Forecasting]

Node 6 - SaveCSV

	Sets path where you want to save the final output

[image: Stock Forecasting]

Output Visualization

Graphical representation is the best way to understand insights from data. It refers to the use of charts and graphs to visually display, analyze, clarify, and interpret numerical data, functions and other qualitative structures.

Below is the workflow for Visualizing it:

[image: Stock Forecasting]

Node 1 - ReadCSV

	Reads output CSV which we have saved from Stock Forecasting.

[image: Stock Forecasting]

Node 2 - RowFilter

	Filters dataframe with categorical variables like store and item

[image: Stock Forecasting]

Node 3 - SortBy

	Gives options to sort our Dataset based on columns in ascending and descending order

Node 4 - GraphValue

	Defines labels for X-axis and Y-axis

	Sets columns for X-axis and Y-axis

[image: Stock Forecasting]

Graph obtained

	Sales_pred_mean - Blue line

	Sales_pred_lower - Red line

	Sales_pred_upper - Magenta line

	Sales - Yellow line

	Now have a look into graph

[image: Stock Forecasting]

Air Passengers Forecasting

Objective

The objective is to develop a time series model to predict future demand of air passengers which helps Airline company to take decision on aircraft fleet management.

Dataset

Dataset contains 2 columns as follows:-

Month - Month of the year

Passengers - Total number of passengers travelled in that particular month

Air Passengers Occupancy Prediction

Time Series Modelling Workflow on Univariate Data

The auto_arima work to fit the best ARIMA(Autoregressive Integrated Moving Average) model to a univariate time arrangement is indicated by either AIC, AICc, BIC or HQIC. The capacity plays out an inquiry (either stepwise or parallelized) over conceivable model requests inside the requirements given.

The auto_arima capacity can be overwhelming. There are a ton of boundaries to tune, and the result is vigorously subject to various themes. In this segment, we spread out a few contemplations you’ll need to make when you fit your ARIMA models.

[image: Stock Forecasting]

Node 1 - ReadCSV

	Reads the given CSV file : AirPassengers.csv

[image: Stock Forecasting]

Node 2 - ARIMA

	p - The number of lag observations included in the model, also called the lag order.

	d - The number of times that the raw observations are different, also called the degree of differencing.

	q - The size of the moving average window, also called the order of moving average.

Not to worry about p,d,q in this case because we have an interesting model called - AUTO-ARIMA (Able to select automatically optimal value)

	Y - Target Variable (Passengers Per Month)

	SEASONAL - Automatically True but you can change as false if you want as non-seasonal

	SCORING - How do you want to evaluate your model performance like - MSE, MAE

	FORECAST - Number of steps you want to forecast

[image: Stock Forecasting]

Summary

	The model summary reveals a lot of information

[image: Stock Forecasting]

Node 3 - ZipWithIndex

	Creates new column from index of Dataset

Node 4 - PrintNRows

	Number of rows you want to print to see the final result

[image: Stock Forecasting]

Final Result

Lets check a few rows of forecasted data by ARIMA Model

[image: Stock Forecasting]

Time Series Feature Engineering

Objective

It is a process of extracting new features from raw data via data mining techniques. These features can be used to improve the performance of models.

Dataset

Dataset contains 4 columns as below:

	Date - Date when product was sold

	Store - Store id from where product got sold

	Item - Item id

	Sales - Quantity of product sold

Create new feature from existing table to improve performance of models

Feature Engineering Workflow

Each column is a feature. But all features may not produce the best results from models, so feature engineering plays an important role in choosing the right features. A model will not entirely improve its prescient force, yet will offer the adaptability to utilize less unpredictable models that are quicker to run and more handily.

[image: Stock Forecasting]

Moving average

One step moving average

	Moving average is commonly used to streamline short-period fluctuations in time series data and feature long-term patterns.

	For one step, window size will be from -1 to 1 for sales data

[image: Stock Forecasting]

Seven step moving average

	For seven step, window size will be from -7 to 7 for sales data

	Moving average output

[image: Stock Forecasting]

Extract Date Time Features

	Break date and get the year, month, week of year, day of the month, hour, minute, second, etc.

[image: Stock Forecasting]

	Output of Date Time Features

[image: Stock Forecasting]

Lags Feature

	Lag is used to make non-stationary data into stationary data

	Outliers are easily discernible on a lag plot

	acf and pacf plot is used to calcluate best lags

Lag one

	The most commonly used lag is 1, called a first-order lag

	Window shift is one

[image: Stock Forecasting]

Lag seven

	Window shift is seven

[image: Stock Forecasting]

New feature data

[image: Stock Forecasting]

Anamoly Detection for IOT Devices

Objective

Anomaly detection issue for time arrangement can be planned as discovering exception information guides relative toward some norm or common sign. Our center will be from a machine persopective, for example, surprising spikes, level move highlighting disintegrating soundness of a machine.

Dataset

Dataset contains 4 columns as follows:-

	Datetime - 10 mins time interval of accelerometer data

	4-Bearings - Contains reading of devices

Anamoly Detection using Prophet Time Series Model Workflow

Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends fit with yearly, weekly, daily, seasonality and holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Time-series anomaly detection is a feature used to identify unusual patterns that do not conform to expected behavior, called outliers.

[image: Stock Forecasting]

Data Preprocessing

	Column Filter convert multivariate data into univariate for prophet model

[image: Stock Forecasting]

	Output Univariate data

[image: Stock Forecasting]

Data Modeling

	Prophet Model for anomaly detication using mean as threshold value

General Section of Prophet Model

	Set Datetime column in DS column field

	Y is the target variable. Set it to the reading of bearings

	Set Growth as linear or logistic

	We are using prophet model so that it is self-sufficient to select seasonality in auto mode

	Set mode of seasonality as additive or multiplicative

	Set confidence Interval (0 to 1) which gives a range of plausible values for the parameter of interest.

[image: Stock Forecasting]

Future Data section of Prophet model

	FUTURE PERIOD block gives the number of steps we want to predict

[image: Stock Forecasting]

	SQL set mean column to set threshold

[image: Stock Forecasting]

Model prediction

	Threshold to compare anomaly

[image: Stock Forecasting]

Troubleshooting

	Installation
	Installation Pre-requisites

	With which user should Fire be installed

	I do not see anything in my browser after I start Fire

	Fire UI does not get displayed when I go to :8080. Some other UI is displayed

	LDAP
	Testing LDAP connection with ldapsearch

	Testing Getting User Details from LDAP

	What if I get locked out

	Upgrade
	Missing column: application_id in FIREDB.PUBLIC.ANALYSIS_FLOW_EXECUTION

	Dataset
	I am getting an error when clicking ‘Update’ button on the Create/Update Dataset page

	Running Workflows
	Getting Exception : ‘User: ec2-user is not allowed to impersonate ec2-user

	When running the workflows on my Spark Cluster, results are not showing up in the Browser

	Getting Exception: org.apache.hadoop.security.AccessControlException: Permission:denied : user=admin

	When running the example workflows on the Spark Cluster it is not able to find the input files

	Getting Exception : Server returned HTTP response code: 405 for URL: http://10.125.221.72:8080/ messageFromSparkJob

	Getting Exception : java.lang.ClassNotFoundException: fire.execute.WorkflowExecuteFromFile

	Getting Exception on HDInsight : No FileSystem for scheme: wasbs

	Fire Server & Workflow Execution Logs
	Where do I find the logs of the Fire Server

	Where do I find the logs of the workflows when running on my Cluster

	Dashboards
	When viewing the Dashboard the cells are showing up empty

	Kerberos
	My cluster is Kerberised. How do I setup Sparkflows for it

	Python Installation
	showing warning message with missing package while restarting pyspark server

	Possible Solution

Installation

Installation Pre-requisites

Below are the Pre-requisites before installing Fire:

JDK 1.8+ installed on the machine

java and jar have to be in the PATH

If running on an Apache Spark cluster, Apache Spark 1.6+ is needed on the cluster.

3GB+ of RAM available on the machine.

With which user should Fire be installed

If Fire needs to be connected with an Apache Spark cluster the below is needed:

	Fire needs to be installed as a user which can impersonate other users. Impersonation for this user has to be set up in HDFS configs.

	If you disable impersonation in Fire, then the user with which Fire is installed needs to be able to submit jobs to the cluster.

More Details are available here : https://www.sparkflows.io/connecting-sparkflows-with-spark-cl

I do not see anything in my browser after I start Fire

Do check in the logs for exceptions and the root cause. On Linux and Mac, the log files are in nohup.out.

Possible causes are:

	The H2 database was not created and it is failing to the find the table.

	The server did not start properly because some other Application is running on the configured port. The default configured port for Fire is :8080

The http and https ports for Fire can be updated in conf/application.properties.

Fire UI does not get displayed when I go to :8080. Some other UI is displayed

Fire by default runs on port 8080. It is possible that you have some other application running on port 8080, and you are seeing its output. In this case, the solution is to run the Fire server on some other port which is not being used by any other application. Details for running Fire on another port is here : https://www.sparkflows.io/run-fire-on-different-port

LDAP

Fire can be configured to authenticate the user with LDAP. Below are some ways to troubleshoot the LDAP configurations.

Testing LDAP connection with ldapsearch

It is a good idea to test the ldap environment setup using ldapsearch. This ensures that the machine is setup correctly for LDAP - it can connect to the LDAP server, the LDAP username and passwords are correct, the SSL certificates are good if using LDAPS.

Testing Getting User Details from LDAP

	cd to your installation directory

	Create a properties file called ldaptestconfig.properties

Below is an example:

ldap_attributeUserName=myLdapUsername
ldap_Order="DB_LDAP";
ldap_URL="ldap://localhost:10389";
ldap_base="dc=example,dc=com";
ldap_userDn="uid=john,ou=bindusers,dc=example,dc=com";
ldap_password="johnspassword";
ldap_userSearchBase="ou=sparkflow";
ldap_userSearchFilter="(uid={0})";
ldap_groupSearchBase="ou=groups";
ldap_groupSearchFilter="member={0}";

Fetch the user details for the user xyz with the following command:

java -cp app/fire-ui-3.1.0.jar -Dloader.main=fireui.ldap.LDAPTest org.springframework.boot.loader.PropertiesLauncher xyz

What if I get locked out

ldap.Order determines the order in which Fire tries to log in the user.
In case you are locked out of Fire and are not able to log in, you can do the following:

	Add the below line to conf/configuration.properties

ldap.Order=DB

	Then restart the fire server. Now you should be able to log in with your admin account.

Once things are back to normal, you can remove the line you added to configuration.properties and restart the fire server.

Upgrade

Missing column: application_id in FIREDB.PUBLIC.ANALYSIS_FLOW_EXECUTION

After I upgrade to the latest Fire Release I get the error : Missing column: application_id in FIREDB.PUBLIC.ANALYSIS_FLOW_EXECUTION or something similar.

After upgrading the Fire Server, it is important to upgrade the Database Schema.

	Upgrade it by running create-h2-db.sh or create-mysql-db.sh from the Fire install directory.

	This would upgrade your DB schema to the latest.

Otherwise you can run into an error like below, when you start the Fire Server:

Exception in thread "main" org.springframework.beans.factory.BeanCreationException:
Error creating bean with name 'entityManagerFactory' defined in class path resource [org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.class]:
Invocation of init method failed; nested exception is org.hibernate.HibernateException:

Missing column: application_id in FIREDB.PUBLIC.ANALYSIS_FLOW_EXECUTION

Dataset

I am getting an error when clicking ‘Update’ button on the Create/Update Dataset page

You may see the error below:

Unable to retrieve schema for this path :: Bad header for field, should start with a character or _ and can contain only alphanumerics and _ 0:" id 1 "

	This is because one of the column names of the header is not in the right format. In this case the column name id 1 contains a space.

	Only alphanumerics and _ are permitted in the header and column names.

	If your data does not have a header column, set the Header field to false when defining the Dataset.

Running Workflows

Getting Exception : ‘User: ec2-user is not allowed to impersonate ec2-user

Sparkflows impersonates the logged in user when submitting the jobs onto the Cluster.

So, the user with which Sparkflows is running has to be configured on HDFS as a proxy user.

Details for allowing the sparkflows user to impersonate other users is available at:

	../installation-upgrading/connecting-spark-cluster

When running the workflows on my Spark Cluster, results are not showing up in the Browser

This is probably because there is some configuration error. Sparkflows uses spark-submit to submit the jobs to the cluster. The driver of the spark job posts back results to the Fire server.

	Check out the log for spark-submit for the workflow in /tmp/fire/workflowlogs to find the root cause. Maybe the spark job is just failing.

	It is also useful to ensure Spark jobs can be submitted to the Cluster from the machine on which Sparkflows is running with spark-submit. Submit the SparkPi job from spark-examples.jar to test it.

	SparkPi can be run with a command like : spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode client spark-examples.jar 10

	spark-examples.jar is in your Apache Spark install direction on the machine.

	If the Spark job is running successfully (according to the logs), but the results are still not showing up in the Browser, it could be because the fire spark job is unable to post results back to the Fire web server. You should see these failures in the logs.

	Under Administration/Configuration, there is the config app.postMessageURL. It determines the Fire URL to which the results from the spark driver are posted back to the fire server. Ensure that it is set up correctly.

Getting Exception: org.apache.hadoop.security.AccessControlException: Permission:denied : user=admin

When running on the Cluster, you are running into the exception below:

org.apache.hadoop.security.AccessControlException: Permission denied: user=admin, access=WRITE, inode="/user":hdfs:supergroup:drwxr-xr-x

	If the above exception is coming up when running the workflow, then it means that the logged in user does not exist on HDFS.

	In the above case, the user is logged into Fire as admin. So the jobs submitted by Fire on the cluster is as the user admin. But the user ‘admin’ does not exist on HDFS.

	Please make sure to log into Fire as a user which exists on HDFS.

When running the example workflows on the Spark Cluster it is not able to find the input files

The example workflows read in input files.

	They have to be on HDFS in the home directory of the logged in user.

	The data directory which comes with Sparkflows has to be uploaded onto HDFS.

	For example, if the logged in user is john, then the data directory would be on HDFS in the directory /user/john

Getting Exception : Server returned HTTP response code: 405 for URL: http://10.125.221.72:8080/ messageFromSparkJob

When submitting jobs to the cluster from Fire, you are running into the exception below:

Sending 'POST' request to URL : http://10.125.221.72:8080/messageFromSparkJob

Response Code : 405

java.io.IOException: Server returned HTTP response code: 405 for URL: http://10.125.221.72:8080/messageFromSparkJob

at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)

at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)

at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)

at java.lang.reflect.Constructor.newInstance(Constructor.java:423)

at sun.net.www.protocol.http.HttpURLConnection$10.run(HttpURLConnection.java:1944)

at sun.net.www.protocol.http.HttpURLConnection$10.run(HttpURLConnection.java:1939)

Fire submits Spark jobs to the cluster. The spark driver, posts certain results back to the Fire server to be displayed to the user.

The cause of this error is that the postback-url has not been set correctly - http://10.125.221.72:8080/messageFromSparkJob

There could be following issues with the URL:

The machine name/IP is wrong. It has to be the machine on which Fire is running.

The port number is wrong. Fire server is running on another port on the machine.

Getting Exception : java.lang.ClassNotFoundException: fire.execute.WorkflowExecuteFromFile

When running the jobs on the cluster, you are running into the exception below.

	The reason for it is that the app.sparkSubmitJar is not set up correctly. Fire comes with a jar file which gets submitted to the cluster with spark-submit. app.sparkSubmitJar has to correctly point to this jar file.

	You can go under Administration/Configuration to set it up correctly.

Exception:

Warning: Local jar /home/ec2-user/fire-2.1.0/fire-lib/fire-spark_1_6-core-2.1.0-jar-with-dependencies.jar does not exist, skipping.
java.lang.ClassNotFoundException: fire.execute.WorkflowExecuteFromFile at java.net.URLClassLoader.findClass(URLClassLoader.java:381) at
java.lang.ClassLoader.loadClass(ClassLoader.java:424) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) at
java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:348) at
org.apache.spark.util.Utils$.classForName(Utils.scala:177) at
org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:688) at
org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:163) at
org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:161) at java.security.AccessController.doPrivileged(Native Method) at
javax.security.auth.Subject.doAs(Subject.java:422) at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1917) at
org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:161) at
org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121) at
org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

Getting Exception on HDInsight : No FileSystem for scheme: wasbs

When running the jobs on the cluster, you are running into the exception below.

	The reason for it is that it is not understanding the scheme wasb. In order to fix it, run ./run-fire-spark-submit.sh start instead of ./run-fire.sh start.

	This enables getting the distribution libraries into the executable.

Exception:

Error : java.io.IOException: No FileSystem for scheme: wasbs at
org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2586) at
org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2593) at
org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:91) at
org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2632)

Fire Server & Workflow Execution Logs

Where do I find the logs of the Fire Server

When running on linux or mac the logs of the Fire Process are in the file fire.log. Logs of the Fire Web Server are in the file fireserver.log under the directory where Fire has been installed. It would be something like/fire-2.1.0

Where do I find the logs of the workflows when running on my Cluster

The logs are in the directory /tmp/fire/workflowlogs on the machine on which the Fire server is running:

Each workflow execution has its own log file.

The json representation of the workflow is in /tmp/fire/workflows when running in YARN client mode. They are in .fireStaging directory under the users home directory on HDFS when running in YARN cluster mode.

Dashboards

When viewing the Dashboard the cells are showing up empty

Dashboards show output of Workflows.

If the corresponding workflow has not executed, the content in the Dashboard would show up as empty.

Kerberos

My cluster is Kerberised. How do I setup Sparkflows for it

The steps to setup Sparkflows on a Kerberised cluster are at:

	../installation-upgrading/configuration/configuring-kerberos

Python Installation

Python installations from source with version 3.6.5

showing warning message with missing package while restarting pyspark server

showing warning message with missing package while restarting pyspark server:

UserWarning: Could not import the lzma module. Your installed Python is incomplete

Possible Solution

For centos: Install development tool:

sudo yum install -y xz-devel

Recompile python from source code:

cd Python-3.6.5
sudo ./configure --enable-optimizations
sudo make altinstall

FAQ

	Scheduling Workflows
	How can I schedule the workflows I create ?

	Custom Nodes
	Does Fire Insights allow me to create my own custom nodes?

	Distributions Supported
	What distributions or platforms are supported with Sparkflows?

	Can I run Sparkflows on my Amazon AWS cluster or Microsoft Azure or Google Cloud?

	Workflow Export - Import
	How does one export/import workflows between instances?

	Submit Apache Spark Jobs
	When running on a Apache Spark cluster how does Sparkflows submit the spark jobs?

	Multi User Support
	How does the Sparkflows platform handle multi-user support (i.e. Can user 1 see or edit user 2’s data sources, pipelines, etc)

	Data Sources
	How does one define a new data source and establish a connection?

	Hadoop Installation Pre-Requisites
	Linux

	JDK

	Disable IPV6

	Selinux

	Steps Involved in Installing Hadoop

	After Installation of Cloudera Manager

	Add proxy user in HDFS

	Create HDFS directory

	Install Spark2

	Login Again into Cloudera Manager

	In YARN increase Container memory to 8GB

	AFTER INSTALLATION GET CDH TO USE JAVA 8

	Install Sparkflows

	Upload the Fire Insights example data directory onto HDFS

	Log into Fire Insights

Scheduling Workflows

How can I schedule the workflows I create ?

Fire Insights saves workflow definitions as JSON files. These workflows are executed through spark-submit.

Fire Insights has a scheduler which allows Workflows to be scheduled at regular intervals.

Since the workflows are submitted with spark-submit, they can also be easily scheduled with Oozie, crontab etc.

Custom Nodes

Does Fire Insights allow me to create my own custom nodes?

Yes, new Nodes can be easily to added to Fire Insights. Develop nodes in Java or in Scala and dop the definition JSON for the node on the server. The newly added nodes will become visible in the Fire Insights User Interface.

Distributions Supported

What distributions or platforms are supported with Sparkflows?

Sparkflows Fire has been tested with CDH, Hortonworks, MapR, AWS EMR, Apache Spark distributions.

Note: Any cluster with Apache Spark 1.6+ will work fine with Sparkflows.

Can I run Sparkflows on my Amazon AWS cluster or Microsoft Azure or Google Cloud?

Yes, all Sparkflows needs for successful deployment is a Apache Spark cluster. Sparkflows is deployed on the edge node of the cluster.

Workflow Export - Import

How does one export/import workflows between instances?

Sparkflows allows workflows to be exported and imported. Workflows are represented as JSON files and hence can also be checked into github etc. for versioning.

Sparkflows also maintains the version history of the workflows.

Submit Apache Spark Jobs

When running on a Apache Spark cluster how does Sparkflows submit the spark jobs?

Fire Insights uses spark-submit to submit the Apache Spark jobs to the cluster. Hence it is important that spark-submit work from the machine on which Fire Insights is installed.

Multi User Support

How does the Sparkflows platform handle multi-user support (i.e. Can user 1 see or edit user 2’s data sources, pipelines, etc)

Sparkflows supports various user types and enables users to easily share datasets and workflows with each other to foster collaboration.

Data Sources

How does one define a new data source and establish a connection?

Sparkflows platform has various OOTB connectors to HIVE, Flume, Kafka, HBase, Solr.
For all other structured or unstructured datasets on HDFS or CloudBricks, Sparkflows platform can identify the schema on the fly when a new dataset is created in Sparkflows pointing to a data source. The schema can be updated right there as well.
Sparkflows workflow execution writes a summary of its output to MySQL/Oracle/H2 which is accessible by the users of the system.

Hadoop Installation Pre-Requisites

Below are the pre-requisites for installing Hadoop:

	Linux

	JDK 1.8 installed

	IPV6 disabled

	Selinux disabled

Linux

Minimum machine configuration:

	vCPU : 8 vcores

	RAM: 32 GB

JDK

JDK 8 is needed on the Linux Machine. Below are the steps for installing oracle java:

	Install java 8 as the root user

	http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

	wget –no-cookies –no-check-certificate –header “Cookie: gpw_e24=http%3A%2F%2Fwww.oracle.com%2F; oraclelicense=accept-securebackup-cookie” “https://download.oracle.com/otn-pub/java/jdk/8u201-b09/42970487e3af4f5aa5bca3f542482c60/jdk-8u201-linux-x64.rpm”

	yum localinstall jdk-8u201-linux-x64.rpm

Ensure that java 8 is installed properly:

	java -version

[image: Sparkflows]

Set the below in .bash_profile

	export JAVA_HOME=/usr/java/jdk1.8.0_201-amd64/

Disable IPV6

	Edit file /etc/sysctl.conf
- vi /etc/sysctl.conf

Add the following lines:

	net.ipv6.conf.all.disable_ipv6 = 1

	net.ipv6.conf.default.disable_ipv6 = 1

Execute the following command to reflect the changes.

	sysctl -p

Selinux

Just ensure that selinux should be disabled so that it cant impact Hadoop performance.

	sudo setenforce 0

To disable it permanently

	edit /etc/selinux/config

SELINUX=disabled

	reboot

Steps Involved in Installing Hadoop

	Install bind-utils : Otherwise Cloudera Manager gives host not found

	yum install bind-utils

	Install Cloudera Manager

	cd

	wget https://archive.cloudera.com/cm5/installer/latest/cloudera-manager-installer.bin

	chmod u+x cloudera-manager-installer.bin

	./cloudera-manager-installer.bin

	Accept Licenses

	Open ports on Linux Machine

	Open the ports 7180 and 8080

After Installation of Cloudera Manager

	go to http://host-ip:7180/

	Log in with admin/admin

	Select Cloudera Express Installation

	For host, give the hostname IP (private IP)

	Install using Parcels

	Include the Kafka parcels

	User : sparkflows (As per as updated on machine while creating Linux Machine)

	Supply the private key

[image: Sparkflows]

	Install Core with Spark

	Update default Configurations in it.

Add proxy user in HDFS

	Add sparkflows as proxy user in HDFS

	https://www.sparkflows.io/connecting-sparkflows-with-spark-cl

	Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml

	hadoop.proxyuser.sparkflows.hosts

	hadoop.proxyuser.sparkflows.groups

	Restart Cluster services

Create HDFS directory

Create HDFS directory for sparkflows user (we can create as per as requirements)

	sudo su

	su hdfs

	hadoop fs -mkdir /user/sparkflows

	hadoop fs -chown sparkflows:sparkflows /user/sparkflows

Install Spark2

spark2 is installed using CSD or Parcels

	https://www.cloudera.com/documentation/spark2/latest/topics/spark2_installing.html

	cd /opt/cloudera/csd

	sudo su

	wget http://archive.cloudera.com/spark2/csd/SPARK2_ON_YARN-2.1.0.cloudera2.jar

	chown cloudera-scm:cloudera-scm SPARK2_ON_YARN-2.1.0.cloudera2.jar

	chmod 644 SPARK2_ON_YARN-2.1.0.cloudera2.jar

	service cloudera-scm-server restart

Login Again into Cloudera Manager

	In Cloudera Manager:

	Go to Hosts/Parcels

	Download Spark2

	Distribute Spark2

	Activate Spark2

	Add Spark2 service in Cloudera Manager

	Go to Cluster/Add Service

	Add Spark2 Service

	For dependency select one with HIVE etc.

	Select the host

In YARN increase Container memory to 8GB

	yarn.scheduler.maximum-allocation-mb

	yarn.nodemanager.resource.memory-mb

AFTER INSTALLATION GET CDH TO USE JAVA 8

	In Spark configuration in Cloudera Manager set the below for spark-defaults.conf

	spark.executorEnv.JAVA_HOME=/usr/java/jdk1.8.0_201-amd64/

	then redeploy the client configurations

	Restart the cluster service

Install Sparkflows

	ssh to the machine

	wget https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

	tar xvf fire-x.y.z.tgz

	cd fire-x.y.z

	./create-h2-db.sh

	./run-fire.sh start

	./run-fire-server.sh start

Upload the Fire Insights example data directory onto HDFS

	As sparkflows user

	cd fire-x.y.z

	hadoop fs -put data

Log into Fire Insights

	http://host-ip:8080/#/dashboard

	Log in with admin/admin

	Create user sparkflows in Sparkflows. Give it admin rights. Add to group default, save it.

	Again Login with sparkflows user.

	Go to Configurations under administration and click on infer hadoop cluster config and save it.

	open spark and update spark2-submit under “spark.spark-submit” and save it.

	Create a workflow and execute it.

Administration Guide

	User Administration
	Users

	Groups

	Roles

	Permissions

User Administration

Fire allows you to create and manage

	Users

	Groups

	Roles

These are accessible under the Administration Menu.

Users

	Fire allows you to create and edit users

	Users belong to groups and have roles

	A user can be a designated as a superuser

	The user should exist on HDFS (when running against a Hadoop Cluster). Fire can run independent of a Hadoop Cluster.

Groups

	Fire allows you to create and edit groups

	Groups allow users to share Datasets, Workflows and Dashboards with other groups

Roles

	Fire allows you to create and edit roles.

	A role has various permissions associated with it.

Permissions

Fire has the following permissions defined.

[image: User Permissions]

Databricks Guide

	Databricks Prerequisites

	Databricks Integration Steps
	Install Fire Insights

	Upload Fire Core Jar to Databricks

	Configure the Uploaded Library in Fire Insights

	Configure app.postMessageURL in Fire Insights

	Install Databricks JDBC Driver

	Create your REST API token in Databricks

	Create Databricks Connection in Fire Insights

	Databricks Python Integration Steps
	Install Fire Insights

	Upload Fire wheel file to Databricks

	Install Python dependencies

	Install dependency for AWS

	Upload Fire workflowexecutedatabricks.py file to DBFS

	Configure the Uploaded Library in Fire Insights

	Job Submission using Pyspark Engine

	Databricks User Guide
	Browsing Databricks Tables

	Running DDL Commands

	Viewing Databricks Clusters

	Browse DBFS

	Reading Databricks Tables

	Writing to Databricks Tables

	Reading S3 files

	Writing to S3 files

	Troubleshooting Fire/Databricks Integration
	When the workflow is executed, nothing shows up in Fire

	When the workflow is executed, nothing shows up in Fire

	When accessing most Databricks pages in Fire, it gives Simba JDBC error

	In the workflow editor, it shows ‘Cannot connect to Fire’

	Checking the cluster logs in Databricks

	Databricks Cluster Versions Support

Databricks Prerequisites

Below are the Prerequisites for installing Fire Insights on a Databricks Cluster:

Below are the Needed Package

	Package

	Description

	Value

	Python version

	python version on Databricks Cluster

	3.6.0 or above

	pip version

	pip version on Databricks Cluster

	20.0 or above

	Spark version

	Spark Version on Databricks Cluster

	2.4

	Fire Running Port

	Port on Which Fire is Running

	Accessible from databricks Cluster

Databricks Integration Steps

Fire Insights integrates with Databricks. It submits jobs to the Databricks clusters using the REST API of Databricks and have the results displayed back in Fire Insights.

Fire also fetches the list of Databases and Tables from Databricks, making it easier for the user to build their workflows and execute them. In addition fire displays the list of Databricks clusters running for the user.

Databricks can be running on Azure or on AWS.

	Running Databricks on Azure : https://docs.microsoft.com/en-us/azure/azure-databricks/quickstart-create-databricks-workspace-portal

	Running Databricks on AWS : https://databricks.com/aws

Below are the steps for Integrating Fire Insights with your Databricks Clusters.

Install Fire Insights

Install Fire Insights on any machine. The machine has to be reachable from the Databricks cluster.

Upload Fire Core Jar to Databricks

Fire Insights jar has to be uploaded to Databricks. Fire Insights jobs running on Databricks make use of this jar file.

Upload fire-x.y.z/fire-core-lib/fire-spark_2_3-core-3.1.0-jar-with-dependencies.jar to Databricks. Upload it under Workspace as a Library on to Databricks.

	Login to Databricks Cluster

	Click on workspace in the left side pane

[image: Databricks]

	Create a new Library

[image: Databricks]

	Upload fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar from your machine by Clicking on Drop JAR here

[image: Databricks]

	Once fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar is uploaded, click on Create

[image: Databricks]

	Check the box with Install automatically on all clusters, in order to avoid installing it manually to every cluster.

[image: Databricks]

Configure the Uploaded Library in Fire Insights

Configure the path of the uploaded fire core jar library in Databricks in Fire Insights.

This has to be done under Administration/Configuration.

[image: Databricks]

Configure app.postMessageURL in Fire Insights

Configure app.postMessageURL to be the IP of the machine on which Fire Insights is installed. Jobs running on Databricks would post back results to Fire Insights using this URL.

[image: Postback URL]

Install Databricks JDBC Driver

Fire needs the Databricks JDBC Driver to be installed. Install it in the fire-user-lib and fire-server-lib folder of the Fire installation.

You can download the Databricks JDBC Driver from the Databricks site :

	https://docs.databricks.com/bi/jdbc-odbc-bi.html

	https://databricks.com/spark/odbc-driver-download

The driver is available as a zip file. eg: SimbaSparkJDBC-2.6.3.1003.zip

	Unzip the downloaded file. It will create a directory like SimbaSparkJDBC-2.6.3.1003

	Copy the jdbc jar file named SparkJDBC4.jar into fire-x.y.z/fire-user-lib and fire-x.y.z/fire-server-lib

Create your REST API token in Databricks

Create your token in Databricks. It would be used in making REST API calls to Databricks from Fire Insights.

	Login to your Databricks Account

	Click on Account icon in right corner top

[image: Databricks]

	Click on User Settings

[image: Databricks]

	Click on Generate New Token

[image: Databricks]

	Add comment & Lifetime(days) for token expiry & Click on Generate

[image: Databricks]

	Copy the token generated. Click on DONE

[image: Databricks]

Create Databricks Connection in Fire Insights

Create a connection in Fire Insights to Databricks.

It can be created by the Administrator under Administration/Global Connections. These connections are available for everyone to use.

It can also be created by any user with their Application. In this case, it is only available to the Application and its users.

	Specify your Databricks Token.

	Specify the Databricks JDBC URL of your cluster in Databricks.

[image: Databricks Connection]

Now we are ready to start using the Databricks Connection in Fire Insights to:

	Browse DBFS

	View your Databricks Clusters

	Browse your Databricks Databases & Tables

	Create Workflows which Read from and Write to Databricks

Databricks Python Integration Steps

Fire Insights integrates with Databricks and can submit Python jobs. It submits jobs to the Databricks clusters using the REST API of Databricks and have the results displayed back in Fire Insights.

Below are the steps for Integrating Fire Insights with your Databricks Clusters for running Python jobs.

Note

The Machine on which Fire Insights is installed should have Python 3.7.0 or above.

Python Installation Steps:

	https://docs.sparkflows.io/en/latest/installation/python-install-linux.html

Install Fire Insights

Install Fire Insights on your machines. The machine has to be reachable from the Databricks cluster.

Upload Fire wheel file to Databricks

Fire Insights wheel file has to be uploaded to Databricks. Fire Insights jobs running on Databricks make use of this wheel file.

Upload fire-x.y.z/dist/fire-3.1.0-py3-none-any.whl to Databricks. Upload it under Workspace as a Library on to Databricks under DBFS or even in S3 Bucket which is accessible from the Databricks Cluster.

[image: Wheel File]

	Login to Databricks Cluster

	Click on workspace in the left side pane

[image: Databricks]

	Create a new Library

You can select Library Source as DBFS, Library Type as Python Whl, provide any Library Name field, & add File Path of fire-3.1.0-py3-none-any.whl located in DBFS.

[image: Databricks]

On Clicking on Create button it will ask to install on specific databricks Cluster, select cluster on which you want to install.

[image: Databricks]

[image: Databricks]

On Successfull installation of wheel file on Databricks Cluster, it would be displayed under Libraries.

[image: Databricks]

Another option is to upload fire-3.1.0-py3-none-any.whl file to s3 Bucket which is accessible from Databricks Cluster.

Once you upload fire-3.1.0-py3-none-any.whl file to s3 Bucket, login to Databricks Cluster & inside Libraries tab.

Install New Library & select DBFS/S3 in Library Source, Python Whl in Library Type and copy paste the location of python wheel file available in s3 in File Path & Click on Install.

[image: Databricks]

Once it is installed successfully, you can see the python wheel inside Library is up.

[image: Databricks]

Install Python dependencies

You need to install the python dependencies required by Fire Insights on the machine by running below Command from fire-x.y.z/dist/fire/ directory:

pip install -r requirements.txt

[image: Databricks]

Note: Make sure that pip etc. is already installed on that machine

Install dependency for AWS

Copy the jars hadoop-aws and aws-java-sdk to pyspark jar path.

[image: Databricks]

Install any specific package of python, if Need to use in Custom Processors on databricks Cluster aswellas Fire Insights Machine.

Use the command below to install it on the Fire Insights machine:

pip install scorecardpy

[image: Databricks]

Install it on your Databricks cluster with the below:

* Open a Notebook and attach to Databricks Cluster.
* %sh pip install scorecardpy

[image: Databricks]

Upload Fire workflowexecutedatabricks.py file to DBFS

For Python Job submission to Databricks Cluster.

Upload fire-x.y.z/dist/workflowexecutedatabricks.py, file to DBFS or even S3 Bucket too.

[image: Databricks]

You can UPLOAD it, using DBFS Browser too.

[image: Databricks]

Configure the Uploaded Library in Fire Insights

Configure the path of the uploaded fire python wheel package file & workflowexecutedatabricks.py under databricks.pythonFile & databricks.pythonPackages respectively in Fire Insights.

It can be two source either DBFS or S3 path.

If you have Uploaded in DBFS path.

[image: Databricks]

If you have Uploaded in S3 path.

[image: Databricks]

Job Submission using Pyspark Engine

Now You can submit pyspark jobs to Databricks Cluster from Fire Insights.

[image: Submit Job]

Databricks User Guide

	Browsing Databricks Tables
	Go to Data/Databricks DB

	Select the Tables

	Running DDL Commands
	Below are example of running DDL

	Viewing Databricks Clusters
	Go to Data Browsers/Databricks Clusters

	Browse DBFS
	Go to DATA BROWSERS/DBFS

	UPLOAD FILE in DBFS

	Delete file and directory in DBFS

	Reading Databricks Tables
	Read Databricks table in Workflow

	Writing to Databricks Tables
	Workflow

	Processor Configurations for SaveDatabricksTable

	Databricks Workflow execution

	File Formats

	Reading S3 files
	Accessing S3 buckets from Databricks

	Read the data from S3 in Workflow

	Writing to S3 files

Browsing Databricks Tables

Fire Insights allows you to Browse your Databricks Databases & Tables.

Go to Data/Databricks DB

It will display the Databricks DB page.

[image: Databricks]

Select the Tables

Once you select the Tables, right click on it to get the query to view the first few records from the table.

[image: Databricks]

Execute the sql query to view records from the table selected.

[image: Databricks]

Running DDL Commands

Fire Insights allows you to run DDL commands on Databricks.

With this one can:

	Create New Databases

	Create New Tables

	View the schema of the tables

	And many more

Go to DATABROWSERS/Databricks DB. Then click on DDL.

Databricks has a good page on Creating New Tables:

https://docs.databricks.com/spark/latest/spark-sql/language-manual/create-table.html

Below are example of running DDL

Creating Table

	DDL Statement:

CREATE TABLE `employee` (`id` INT, `name` STRING) USING com.databricks.spark.csv OPTIONS (`multiLine` 'false', `escape` '"', `header` 'true', `delimiter` ',', path 'dbfs:/FileStore/tables/employee.csv');

Location of the data could be changed to S3 location.

[image: Databricks]

Running SQL

	Select SQL Statement:

select count(*) as count from employee;

[image: Databricks]

Sample Data:

	Select SQL Statement:

select * from employee;

By default first 100 rows of data is displayed.

[image: Databricks]

Drop Table

	Drop Statement:

drop table employee;

[image: Databricks]

Viewing Databricks Clusters

Fire Insights enables you to view your Databricks Clusters. You can also Start and Stop the Databricks clusters from Fire Insights.

Go to Data Browsers/Databricks Clusters

It will display the various Databricks Clusters available.

[image: Databricks]

If you want to see Cluster Details, Click on CLUSTER NAME, it will display all informations.

[image: Databricks]

[image: Databricks]

You can also Start and Stop the Databricks clusters from Fire Insights, using ACTIONS button.

[image: Databricks]

Browse DBFS

Fire Insights enables you to browse your DBFS & UPLOAD FILE & Delete file and directory in DBFS.

Go to DATA BROWSERS/DBFS

It will display the Databricks File System list page.

[image: Databricks]

UPLOAD FILE in DBFS

You can upload file in DBFS from local pc.

[image: Databricks]

On clicking on UPLOAD FILE button, it will ask you to select file from local pc and UPLOAD.

[image: Databricks]

On successful UPLOAD, it will show successful informations and file can be viewed inside the folder in DBFS.

[image: Databricks]

[image: Databricks]

Delete file and directory in DBFS

You can delete file and directory in DBFS using delete ACTION button.

[image: Databricks]

On successful deletion, it will show successful informations and file can be viewed inside the folder in DBFS.

[image: Databricks]

Reading Databricks Tables

Fire Insights enables you to read from and write to Databricks tables.

Below is a workflow which reads data from the Databricks table xyz. It then processes the data and finally writes out the result to the Databricks table abc.

Read Databricks table in Workflow

In the workflow use the processor ‘ReadDatabricksTable’. It will allow you to read tables from Databricks.

Then use the other processors in Fire for processing the data read from the Databricks Table.

Workflow

[image: Databricks]

Processor Configurations for ReadDatabricksTable

[image: Databricks]

Refresh schema for processor ReadDatabricksTable

[image: Databricks]

Processor executions for ReadDatabricksTable

[image: Databricks]

Databricks Workflow execution

Below is the output of executing the above workflow which reads data from a Databricks table.

[image: Databricks]

Writing to Databricks Tables

Fire Insights enables you to write to Databricks tables.

In the workflow use the processor ‘SaveDatabricksTable’. It will allow you to save data to tables to Databricks.

Below is a workflow which writes data to the Databricks table test_save.

Workflow

[image: Databricks]

Processor Configurations for SaveDatabricksTable

[image: Databricks]

Databricks Workflow execution

Below is the output of executing the above workflow which saves the data to Databricks table.

[image: Databricks]

	Verify the Table

[image: Databricks]

File Formats

The tables can be saved into CSV, JSON, Parquet and ORC file formats.

If the file format is not specified, the data in tables is stored in Parquet format.

Reading S3 files

https://docs.databricks.com/_static/notebooks/data-import/s3.html

There are two ways in Databricks to read from S3. You can either read data using an IAM Role or read data using Access Keys.

Databricks recommends leveraging IAM Roles in Databricks.

Fire Insights allows you to browse your Data in S3 and create workflows using them. When the job is submitted to Databricks, the job reads data from the S3 location and processes them.

You can also create external tables in Databricks over data in S3. Fire Insights can process data from Databricks tables.

Accessing S3 buckets from Databricks

This document from Databricks has very good information on the setup for accessing S3 buckets from Databricks.

https://docs.databricks.com/security/credential-passthrough/iam-passthrough.html

Read the data from S3 in Workflow

In Sparkflows, user can read the data from S3 location using processors like ReadCSV, ReadParquet, ReadJson etc.

Workflow

[image: Databricks]

Browse S3 Path and Refresh schema for processor ReadCSV

[image: Databricks]

Workflow executions Results

[image: Databricks]

Writing to S3 files

https://docs.databricks.com/_static/notebooks/data-import/s3.html

Fire Insighs workflows can write data to S3 locations.

Below is an example workflow which writes data to S3. When the workflow is executed, the Dataframe is saved to the S3 location.

In the dailog box of the save CSV processor the path is specified as s3a://sparkflow-sample-data/write/

[image: S3 Workflow]

Browse S3 specified Path & other parameter for processor SaveCSV

[image: S3 Workflow]

Execution Result

[image: S3 Workflow]

Once the above workflow successfully completed, the save data can be viewed using DATABROWSERS/AWS S3 Location with specified path

[image: S3 Workflow]

Troubleshooting Fire/Databricks Integration

When the workflow is executed, nothing shows up in Fire

One problem might be that the postbackURL is not configured right in Fire Insights under Administration/Configuration.

The other problem can be that the machine running Fire Insights is not accessible from the Databricks Cluster. Test connectivity to the Fire Insights machine from Databricks.

Connectiving from Databricks to Fire postbackURL can be done in Databricks via Notebooks using the telnet command.

[image: Databricks]

When the workflow is executed, nothing shows up in Fire

Another reason might be that you are using the Databricks High Concurrency cluster. Ensure that you are connecting Fire to Databricks Standard cluster.

When accessing most Databricks pages in Fire, it gives Simba JDBC error

The reason for it is that the Databricks Simba JDBC jar file is not deployed in Fire.

https://docs.sparkflows.io/en/latest/databricks/databricks-installation.html#install-databricks-jdbc-driver

In the workflow editor, it shows ‘Cannot connect to Fire’

Ensure that under Administration/Configuration, app.runOnCluster is set to false.

Checking the cluster logs in Databricks

There are times when it is helpful to look at the Cluster logs in Databricks when running Fire with Databricks.

The following logs under Driver Logs are useful:

	log4j-active.log

Search for WorkflowExecuteDatabricks in the logs to view if the Fire Insights Job is running in Databricks.

	java.lang.Exception: An error occurred while initializing the REPL. Please check whether there are conflicting Scala libraries or JARs attached to the cluster, such as Scala 2.11 libraries attached to Scala 2.10 cluster (or vice-versa).

	at com.databricks.backend.daemon.driver.DatabricksILoop$class.initSpark(DatabricksILoop.scala:98)

This error can happen when running spark 2.3 version of Fire with spark 2.4 cluster on Databricks.
Either upgrade Fire to spark 2.4 version, or create another Databricks cluster which supports spark 2.3.

Databricks Cluster Versions Support

Databricks Runtime Version Spark Version Scala Version

6.2 2.4.4 2.11

6.3 2.4.4 2.11

6.4 2.4.5 2.11

6.5 2.4.5 2.11

AWS Guide

	Introduction
	Pre-requisites and Requirements

	Architecture

	Planning Guide
	Security

	Costs

	Sizing

	Deployment Guide
	Steps

	Loading Example Workflows

	Install and Running Example Workflows

	Adding a new user

	Extra configuration for running PySpark

	S3 Integration
	Installing aws cli

	Configuring AWS access key and password

	Access S3 in fire-ui

	Protecting Data Using Server Side Encryption

	REFERENCE : Creating Access Key & Secret Key

	Testing Fire Insights on AWS
	Log into the System

	View the Sample Applications

	Execute a workflow on EMR

	Operational Guide
	Onboarding New Users

	Health Check

	Backup and Recovery

	Routing Maintenance

	Support

	Copying files to S3 with aws-cli
	Installing aws-cli on mac

	Configure AWS Credentials

	View S3 Buckets

	View S3 Directory

	Copy files to S3

	Delete All Files in Directory

	Setting Roles and Policies for EMR

	REFERENCE : Creating Access Key & Secret Key

	Reading/Writing from S3
	Dataset Processors

	Reading from S3

	Writing to S3

	Saving ML Model to S3
	Saving Spark ML Model

	Saving H20 ML Model

	Fire Integration with HIVE
	Overview

	Details

	Writing to HIVE

	Fire Integration with Redshift
	Redshift Processors

	Fire Integration with SageMaker
	Spark Sagemaker Examples

	Fire SageMaker Processors

	AWS Provided Policies

	Launching EMR

	Create New Role

	Use ARN of the new Role in the Workflow

	AWS Instance Types

	Dataset Column Names for Training with Sagemaker

	Flow with Sparkflows and AWS

	XGBoost Sagemaker Workflow

	XGBoost Configuration

	Executing the Workflow

	Fire Integration with Kinesis
	Install AWS CLI

	Create an access key and secret key

	Configure AWS CLI

	Create AWS Kinesis Stream

	Send message to AWS Kinesis from AWS CLI

	Update EMR_EC2_Default_Role

	Or Create an IAM policy for accessing Amazon Kinesis

	Create EMR Cluster with the above Role

	Pushing data to Kinesis

	Kinesis Workflow in Fire

	REFERENCE : Creating Access Key & Secret Key

	File Watcher with AWS & Sparkflows
	Overview

	Design

	Create an SQS Queue

	Configure AWS S3 bucket to generate events

	Create the AWS Lambda function

	CloudFormation Template with Embedded H2 DB
	Overview

	Relevant Files

	Ports

	Download Files and Upload to your S3 Bucket

	Update Cloudformation template based on your environment

	Steps to Create EMR Cluster and Deploy Fire

	Connect Fire to the New Cluster

	Load Examples

	Create hadoop user

	Start running the Examples

	Summary

	CloudFormation Template with MySQL
	Overview

	Relevant Files

	Ports

	Download Files and Upload to your S3 Bucket

	Update Cloudformation template based on your environment

	Steps to Create EMR Cluster and Deploy Fire

	Connect Fire to the New Cluster

	Load Examples

	Create hadoop user

	Start running the Examples

	Summary

Introduction

Fire Insights is the flagship product from Sparkflows. It is seamlessly integrated with AWS. With Fire Insights you can perform self-serve data processing, analytics and machine learning on AWS.

Fire Insights integrates with EMR, S3, Redshift, SageMaker, HIVE and Kinesis.

Fire Insights comes with a number of components including:

	Workflow Editor : To create workflows for data processing, analytics and machine learning.

	260+ Processors : These include reading data from various stores, data processing, machine learning and visualizations.

	Execution Engine : For executing the workflow on EMR

	Scheduler : For scheduling running the workflows at certain time intervals

Sparkflows Fire Insights can be deployed to an existing Amazon EMR cluster, or you can use one of our CloudFormation templates to set up a new Amazon EMR Cluster. If you use our provided CloudFormation templates we’ll create an EMR cluster for you or even an EMR cluster and MySQL instance running in RDS, depending on which template you choose.

Pre-requisites and Requirements

Fire Insights needs EMR for running the workflows. So, you need a running EMR cluster for using Fire Insights.

You also need ssh access to one of the machines of the EMR cluster for installing Fire Insights. This machine is typically an edge node or a master node of the EMR cluster.

	Getting started with EMR - https://aws.amazon.com/emr/getting-started/

	Opening SSH access to the EMR master node - https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-connect-master-node-ssh.html

Architecture

Fire Insights runs on the edge node or one of the master nodes of the EMR cluster. It submits the processing jobs onto the cluster. By default it runs on port 8080. This port needs to be changed to some port which is available on the machine as it is in use by default. Lets assume we will use port 8085.

When the jobs are fired onto the EMR cluster, it can read/write data from S3/HDFS/Redshift/Kinesis. It can also fire Machine Learning modeling jobs to SageMaker.

[image: Architecture]

Planning Guide

This document describes details to help you plan on deploying and using Fire Insights on AWS.

Security

Fire Insights is installed onto the edge node or master node of the EMR cluster. The jobs fired by the users would be able to access and process data on S3, HDFS, Redshift, Kinesis.

Costs

The main costs involved when using Fire Insights are around the EMR cluster. EMR cluster has master nodes and workflow nodes.

Pricing for EMR can be found here : https://aws.amazon.com/emr/pricing/

The more processing capacity needed, the larger should be the size of the EMR cluster.

Fire Insights can also run Machine Learning Modeling jobs onto SageMaker. If this is used, there would be cost associated with using AWS SageMaker. Amazon SageMaker Pricing details are here : https://aws.amazon.com/sagemaker/pricing/

Sizing

EMR cluster normally starts with a mimumum of 1 master node and 2 worker nodes.

We recommend using at least 16GB machines for the master and worker nodes.

As your data volume and the number of concurrent users increases, we recommend increasing the size of the EMR cluster. Memory for the worker nodes can be increased to 32GB to 64GB to 512GB. Since Apache Spark has the ability to use as much memory you provide, its a good idea to give it more memory.

Same goes for the number of disks and vcores.

Deployment Guide

Fire can be easily installed on an AWS EMR Cluster. Fire can be installed on the master node of an EMR cluster. It would then submit the jobs to the EMR cluster.

Below are the overall steps for installing Fire Insights on EMR.

	ssh into the Master node

	Download Fire Insights from https://www.sparkflows.io/download

	Unzip it

	Create H2 Database

	Start Fire

Steps

	Start your EMR cluster on AWS:

Start your EMR cluster on AWS if you do not already have it running.

	Update the inbound rules for the Master Node:

- We would have Fire listening on ports 8085 and 8086
- Fire by default listens on 8080 and 8443. But EMR clusters have other processes listening on these ports.
- So we will later change it to listen on ports 8085 and 8086
- Update the inbound rules for the Master Node to allow ports 8085 and 8086

	ssh into the Master EMR node as the hadoop user:

ssh -i my.pem hadoop@ec2-xx-yyy-zz-aaa.compute-1.amazonaws.com

	Download the fire tgz file by one of the following options:

	
	https://www.sparkflows.io/download

	OR

	
	https://www.sparkflows.io/archives

	OR

	wget https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

	Unpack it:

tar xvf fire-x.y.z.tgz

	Copy hadoop-lzo.jar:

cp /usr/lib/hadoop-lzo/lib/hadoop-lzo.jar /home/hadoop/fire-3.1.0/fire-user-lib

	Configure Fire to listen on ports 8085 and 8086:

- cd <fire install_dir>
- Edit conf/application.properties
- Update the last two lines to below:
 http.port=8085
 https.port=8086

	Create H2 DB:

Fire stores its metadata into the embedded H2 database. You can also connect it to an external MySQL database.

 cd <fire install_dir>
 ./create-h2-db.sh

	Launch Fire Server:

cd <fire install_dir>
./run-fire-server.sh start

	Open your web browser and navigate to:

<machine_name>:8085/index.html

	Login with the following default username and password:

username : admin
password : admin

	Connect Fire with the EMR Cluster:

- Go to Administration/Configuration
- Click on 'Infer Hadoop Configs'
- Save

- If your EMR cluster is not running HIVE, update 'spark.sql-context = SQLContext'

	Create the hadoop user in Fire:

- Under Administration/Users, add the 'hadoop' user

Loading Example Workflows

	From the home page of Fire Insights, click on *Load Example Applications*

	Upload the Fire examples data onto HDFS:

cd <fire install_dir>
hadoop fs -put data /tmp

Install and Running Example Workflows

	Start off with executing the example workflows:

- Fire comes pre-packaged with a number of example workflows
- You can install them by clicking on the 'Install example workflows' link in the landing page when logged in as the `admin` user.

	Logout from the current session and login again with the ‘hadoop’ user

	Execute the workflows

Adding a new user

Create the home directory on HDFS for the new user.

For example, for user ‘test’:

	hadoop fs -mkdir /user/test

	hadoop fs -chown test:test /user/test

Create the user in Fire Insights if not already created.

Extra configuration for running PySpark

EMR needs extra configurations when running PySpark. In the below the python 3.6 virtual environment is installed in the directory /home/hadoop/venv

	export SPARK_HOME=/usr/lib/spark/

	export PYSPARK_PYTHON=/home/hadoop/venv/bin/python

	export YARN_CONF_DIR=/etc/hadoop/conf

S3 Integration

Fire Insights allows you to access your files on S3. This page describes S3 integration of Fire.

We recommend controlling access to S3 using IAM Roles.

	Run Fire Insights on an EC2 machine with the appropriate S3 IAM Role.

	Run the EMR cluster with the appropriate S3 IAM Role.

If you are running Fire Insights on a independent machine, you can also use aws configure to set the AWS Access Key and Secret Access Key on the machine.

AWS CLI S3 Reference : https://docs.aws.amazon.com/cli/latest/reference/s3/ls.html

Installing aws cli

	http://docs.aws.amazon.com/cli/latest/userguide/installing.html

	pip install awscli –upgrade –user

Configuring AWS access key and password

Run aws configure to configure your credentials on the machine on which Fire Insights is running.

Access S3 in fire-ui

In Fire Insights, you can browse S3 under the menu Browser/AWS S3.

[image: s3]

	Click on AWS S3 to view the files on S3.

[image: s3]

Protecting Data Using Server Side Encryption

Data encryption settings on S3 buckets: https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

REFERENCE : Creating Access Key & Secret Key

	You’ll need create a user with programmatic access by following the steps here (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html).

	Next, you’ll create an IAM policy that defines what this user has access to in your AWS account. It’s important to only grant this user minimal access within your account. See this documentation for how to create IAM policies (https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html).

	Finally, you’ll create an access key and secret key for this user (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

Testing Fire Insights on AWS

After you have deployed Fire Insights on AWS, it is a good idea to test the things.

Below are a few good steps for achieving it:

	Ensure you can log into the sytem

	View the Sample Applications

	Execute a workflow on EMR

Log into the System

	Log into the system as the hadoop user which you had created during the Deployment process.
* http://docs.sparkflows.io/en/latest/aws/running-on-emr.html

View the Sample Applications

	Go to the ``Applications/List’ page.

	If you loaded the Sample Applications during the deployment process you would see a number of Sample Applications listed.

	Click on any of them to view their Datasets/Workflows etc.

Execute a workflow on EMR

	From the Applications/Workflows page.

	Click on the Execute icon next to any workflow

	This will open up the Execute page.

	Click on Execute to execute the workflow on the EMR cluster

	The results of execution would get displayed on the page.

Operational Guide

This document describes details for operating Sparkflows when running on AWS.

Onboarding New Users

New users can be created in Sparklows by logging into it. Then go to Administration/Users.

Health Check

The main server process which handles the web requests is fire-ui. This is a long running process and very stable. This process can be checked for responsiveness for any health checks.

Backup and Recovery

Fire Insights stores the metadata into a Relational Database.

It comes with an embedded H2 database. It scales well for pretty heavy loads and upto 50 users. Sparkflows can be easily configured to run with an MySQL database.

When running with H2 database, Sparkflows by default stores the db files in the user home directory which is running Sparkflows. There are 2 files:

	firedb.mv.db

	firedb.trace.db

For backup, just copying these files to a backup location is enough. There is no need to stop Sparkflows. It is a good idea to copy it to another maching.

When running with MySQL running on the same or different machine, the MySQL database named fire needs to be backed up.

Routing Maintenance

Apart from backups of the database, Fire does not need much of routine maintenance.

Fire stores the details of the job executions in the relational database. Over time, you may have too many jobs executed. Deleting old jobs from the Workflow Executions page is a good idea so as not to fill up the database too much. But it has the ability to handle millions of jobs, so you do not have to worry too much about it.

Support

For support, you can contact Sparkflows at support@sparkflows.io. We will guide you through the process.

Sparkflows can also support you though Zendesk tickets. Get in touch with us for guidance and setup.

Copying files to S3 with aws-cli

There would be times when you want to upload multiple files from your laptop to S3. This document describes the process for it.

Installing aws-cli on mac

brew install awscli

Configure AWS Credentials

aws configure:

- Enter your awsAccessKeyId
- Entery your awsSecretAccessKey

View S3 Buckets

	aws s3 ls

View S3 Directory

	aws s3 ls s3://bucket_name/dir1/

Copy files to S3

Copy all files from local_direcory to s3://bucket-name/dir1:

aws s3 cp local_directory s3://bucket-name/dir1 --recursive

Delete All Files in Directory

	aws s3 rm s3://bucket_name/dir1/ –recursive

Setting Roles and Policies for EMR

In order to be able to access S3 files from the EMR cluster, attach the AmazonS3FullAccess Policy to the EMRDefaultRole.

Now the EMR cluster would have access to the S3 buckets.

REFERENCE : Creating Access Key & Secret Key

	You’ll need create a user with programmatic access by following the steps here (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html).

	Next, you’ll create an IAM policy that defines what this user has access to in your AWS account. It’s important to only grant this user minimal access within your account. See this documentation for how to create IAM policies (https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html).

	Finally, you’ll create an access key and secret key for this user (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

Reading/Writing from S3

Fire is fully integrated with AWS S3. The Dataset Processors of Fire, can directly read data from S3 if the policies allow them to.

Dataset Processors

Dataset Processors include:

	Read CSV

	Read Parquet

	Read JSON

	Read XML

The path specified for reading from S3 would be s3://…

Reading from S3

Below is an example Workflow. It reads a CSV file from S3, parses it and prints out the first 10 records.

In the dialog box of the Read CSV processor the path is specified as s3a://sparkflow-sample-data/data/Clickthru.csv

[image: S3 Workflow]

[image: S3 CSV Dialog]

[image: S3 CSV Output]

Writing to S3

Below is an example Workflow. It reads a CSV file and save it to S3 path specified.

In the dailog box of the save CSV processor the path is specified as s3a://sparkflow-sample-data/write/

[image: S3 Workflow]

[image: S3 Workflow]

Execution Result

[image: S3 Workflow]

Once the above workflow successfully completed, the save data can be viewed using DATABROWSERS/AWS S3 Location with specified path

[image: S3 Workflow]

Saving ML Model to S3

Saving Spark ML Model

Below is an example workflow in sparkflows, where data is read from S3 and the final Spark ML model is saved to S3 location.

Workflow:

Configure ReadCSV

[image: Spark ML Workflow]

Configure SaveMlModel

[image: Spark ML Workflow]

Execution Result:

[image: Spark ML Workflow]

Saving H20 ML Model

Below is an example workflow in sparkflows, where final H20 ML model is saved to S3 location.

Workflow:

[image: H20 ML Workflow]

Configure Save H20 ML Model

[image: H20 ML Workflow]

Execution Result:

[image: H20 ML Workflow]

Fire Integration with HIVE

Fire seamlessly integrates with HIVE when running on AWS.

Overview

On AWS, the data normally resides in S3 buckets. HIVE tables are created pointing to data in the S3 buckets.

Details

	Fire would run on the master node of the EMR cluster, or on an Edge node with the cluster contiguration files.

	HIVE can be running on the same EMR cluster on running on another EMR cluster.

	Make sure to have the correct hive-site.xml on the cluster where the Spark jobs are running.

	Fire will automatically pick it up and be able to process it.

Writing to HIVE

Below is a workflow for writing to HIVE.

It reads housing.csv, creates a DataFrame and writes it out to a HIVE table.

Fire Integration with Redshift

Fire is fully integrated with Redshift. Fire has a number of Processors specifically for Redshift.

Redshift Processors

Fire has processors for reading from and writing to Redshift. They include:

	Read Redshift AWS

	Write Redshift AWS

Fire Integration with SageMaker

Fire is fully integrated with AWS SageMaker. Fire provides a number of processors for doing model building with SageMaker.

You can do Data Preparation and Feature Engineering with Sparkflows doing compute with Apache Spark. Sparkflows then seamlessly enables you to do your model training and deployment with SageMaker.

The above forms a very powerful combinations for end to end Machine Learning.

Spark Sagemaker Examples

There are a number of SageMaker-Spark examples by AWS here :

	https://github.com/aws/sagemaker-spark

	https://docs.aws.amazon.com/sagemaker/latest/dg/apache-spark-example1.html

Fire SageMaker Processors

SageMaker Processors include:

	KMeansSageMakerEstimator

	XGBoostSageMakerEstimator

	LDASageMakerEstimator

	LinearLearnerBinaryClassifier

	LinearLearnerRegressor

	PCASageMakerEstimator

	SaveSageMaker

AWS Provided Policies

AWS provides managed policies for SageMaker. Example : AmazonSageMakerFullAccess

Launching EMR

When launching the EMR Cluster make sure that the Role (eg: EMR_EC2_DefaultRole) used has the AmazonSageMakerFullAccess policy.

Now that the Roles and Policies are in place, start up your EMR cluser with the EMR_DefaultRole and EMR_EC2_DefaultRole Roles.

Create New Role

Create a new Role called aws-sagmaker-full-access with the below Policy. It would be used in the Apache Spark job when accessing SageMaker.

	AmazonSageMakerFullAccess

Use ARN of the new Role in the Workflow

We now use the ARN of the new Role when we use the SageMaker KMeans Estimator Node in the Workflow.

arn:aws:iam::account_id:role/aws-sagemaker-full-access

AWS Instance Types

AWS has various instance types:

	p : GPU Instances

	c : Compute Instances

	r : Memory Optimized Instances

	m : General Instances

Amazon SageMaker Instance Types details are here : https://aws.amazon.com/sagemaker/pricing/instance-types/

Dataset Column Names for Training with Sagemaker

Sagemaker needs the following columns to exist in the Dataset.

	label : label column

	features : features column, this column can also be set

Flow with Sparkflows and AWS

	We do the Data Preparation and Feature Generation in EMR with Sparkflows.

	When Sparkflows invokes the SageMakerEstimator, it calls SageMaker for Training and Deployment.

	Once the model is deployed on SageMaker, the endpoint can be used for realtime predictions.

XGBoost Sagemaker Workflow

Below is a workflow which:

	Reads in a libsvm file as input

	Performs XGBoost Modeling

	Reads in another libsvm file

	Performs predictions with the model built in the previous step

	Prints out the result

[image: SageMaker XGBoost]

XGBoost Configuration

Below are the configuration setup details of the XGBoost Processor.

[image: SageMaker XGBoost Configuration]

Executing the Workflow

Below are the results of executing the workflow.

[image: SageMaker XGBoost Execution]

Fire Integration with Kinesis

This document described Fire integration with Kinesis. Fire uses Apache Spark Structured Streaming Connector from Qubole.

https://github.com/qubole/kinesis-sql

Install AWS CLI

Install AWS CLI:

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Create an access key and secret key

Create an access key and secret key for the user (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

Configure AWS CLI

Configure AWS CLI:

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
aws configure region: us-east-1 aws_access_key_id = accesskeyid aws_secret_access_key = awssecretaccesskey

Create AWS Kinesis Stream

Create AWS Kinesis Stream:

aws kinesis create-stream --stream-name sparkflows_kinesis_test --shard-count 1

Send message to AWS Kinesis from AWS CLI

Sending message to Kinesis:

aws kinesis put-record --stream-name sparkflows_kinesis_test --data file://data.json --partition-key uuidgen

Update EMR_EC2_Default_Role

Update EMR_EC2_DefaultRole with AmazonKinesisFullAccess Policy so that our EMR Cluster would have full access to Kinesis.

Or Create an IAM policy for accessing Amazon Kinesis

Create an IAM policy that defines what this user has access to in your AWS account. It’s important to only grant this user minimal access within your account. See this documentation for how to create IAM policies (https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html).

Create EMR Cluster with the above Role

When we create the EMR Cluster with the above Role, it would have full access to Amazon Kinesis.

Pushing data to Kinesis

AWS provides a Kinesis Data Generator. It can be configured for pushing random data in specified format to Kinesis.

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

[image: Kinesis Data Generator]

[image: Kinesis Data Generator]

Kinesis Workflow in Fire

Workflows can be easily built in Fire which read data from Kinesis, process them and save the results where needed.

REFERENCE : Creating Access Key & Secret Key

	You’ll need create a user with programmatic access by following the steps here (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html).

	Next, you’ll create an IAM policy that defines what this user has access to in your AWS account. It’s important to only grant this user minimal access within your account. See this documentation for how to create IAM policies (https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html).

	Finally, you’ll create an access key and secret key for this user (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

File Watcher with AWS & Sparkflows

Overview

There are many use cases where we have to process the incoming files on S3. This document describes one way to achieve it with SQS, Lambda and using the REST API of Fire Insights.

Design

The below diagram captures the high level design:

[image: File Watcher]

Below is the flow of execution:

	New files arrives on S3 in the directory location /sparklows-file-watcher/raw-data/iot/2019-08-2201

	In the above design, all the raw data comes into the directory /sparklows-file-watcher/raw-data

	There are various types of raw data which can come.

	iot is one type of raw data coming in. Each day we receive a number of iot files in the folder /sparklows-file-watcher/raw-data/iot/yyyy-MM-dd.

	Once all the files for that date have been written to the appropriate folder, a _SUCCESS files is written into it.

	It triggers an event which is sent to a configured SQS queue.

	Once the event reaches SQS, it triggers an AWS Lambda.

	The AWS Lambda uses the Fire Insights REST API(http://docs.sparkflows.io/en/latest/rest-api-reference/workflow.html#execute) to execute a workflow to process the new incoming files in the AWS S3 bucket.

	If AWS Lambda fails, it sends the event to DLQ (Dead Letter Queue). It can be further handled from there based on the requirements.

Create an SQS Queue

Create an SQS Queue for receiving the events from S3 and triggering the AWS Lambda function.

Below we see the SQS queue : sf-workflow-file-watcher-ql-dev.

It has the below permissions to receive the messages from S3 bucket and invoke the AWS Lambda function.

[image: SQS Queue]

[image: SQS Queue]

Configure AWS S3 bucket to generate events

Configure the AWS S3 bucket to send events for the new files coming in to AWS SQS queue.

Below, it looks for the new files with prefix of events and suffix of _SUCCESS. It sends these events to sf-workflow-file-watcher-ql-dev SQS Queue.

[image: S3 Events]

Create the AWS Lambda function

Create the AWS Lambda function to take the SQL Event and kick off the workflow in Fire Insights. This workflow would process the new files which came in.

First create an IAM role. An example is shown below.

We add 3 Environment variables as shown below. These get used by the Lambda functions in this example.

	SPARKFLOWS_TOKEN or KMS_ARN

	SPARKFLOWS_URL

	WORKFLOW_ID

Instead of the Sparkflows token, users can encrypt the token using KMS and use the kms arn as the Environment variable and decrypt the token using kms inside the Lamdba.

[image: AWS Lambda]

Upload the jar file for the RequestHandler. It can also be placed into S3 location and the Lambda configured for it.

WorkflowExecuteHandler

package com.sf.handler

import com.amazonaws.services.lambda.runtime.events.SQSEvent
import com.amazonaws.services.lambda.runtime.events.SQSEvent.SQSMessage
import com.amazonaws.services.lambda.runtime.{Context, LambdaLogger, RequestHandler}
import com.amazonaws.services.s3.event.S3EventNotification
import com.amazonaws.services.s3.event.S3EventNotification.S3EventNotificationRecord
import com.sf.WorkflowExecute

import scala.collection.JavaConverters._

class WorkflowExecuteHandler extends RequestHandler[SQSEvent, Unit] {

 private val token = System.getenv("SPARKFLOWS_TOKEN")
 private val sparkflowsURL = System.getenv("SPARKFLOWS_URL")
 private val workflowId = System.getenv("WORKFLOW_ID")

 def handleRequest(sqsEvent: SQSEvent, context: Context): Unit = {

 implicit val logger: LambdaLogger = context.getLogger

 logger.log(s"sparkflowsURL: $sparkflowsURL")
 logger.log(s"workflowId: $workflowId")

 sqsEvent
 .getRecords
 .asScala.map(sqsMessageToS3Event)
 .foreach(_.getRecords.asScala.foreach(processS3Record))
 }

 private[handler] def sqsMessageToS3Event(sqsMessage: SQSMessage): S3EventNotification = {
 S3EventNotification.parseJson(sqsMessage.getBody)
 }

 private[handler] def processS3Record(s3EventRecord: S3EventNotificationRecord)
 (implicit logger: LambdaLogger): Unit = {

 val s3Entity = s3EventRecord.getS3
 val inputBucketName: String = s3Entity.getBucket.getName
 val inputObjectKey: String = s3Entity.getObject.getUrlDecodedKey
 val eventName: String = s3EventRecord.getEventName
 val path = s"s3://$inputBucketName/$inputObjectKey".replace("/_SUCCESS", "")

 logger.log(s"Event record $eventName; path $path")

 val body = s"""
 |{
 | "workflowId": "${workflowId}",
 | "parameters": "--var datapath=${path}"
 |}
 """.stripMargin

 val workflowStatus = WorkflowExecute.executeWorkflow(body, token, sparkflowsURL)

 logger.log(s"Status of workflow $workflowStatus")
 }
}

WorkflowExecute

package com.sf

import com.mashape.unirest.http.Unirest

object WorkflowExecute {

 def executeWorkflow(body: String, token: String, sparkflowsHostName: String) = {

 val workflow = Unirest.post(s"$sparkflowsHostName/api/v1/workflow/execute")
 .header("Content-Type", "application/json")
 .header("Cache-Control", "no-cache")
 .header("Authorization", s"Bearer $token")
 .body(body)
 .asString

 workflow match {
 case s if workflow.getStatus >= 200 && workflow.getStatus <= 300 => workflow.getBody
 case f => throw SubmissionFailedException(s"Job submissions failed, status code is ${f.getStatus}")
 }
 }
 case class SubmissionFailedException(message:String) extends Exception(message)
}

CloudFormation Template with Embedded H2 DB

Overview

Using CloudFormation Templates, Fire can be easily installed on AWS. This CFT works with EMR 5.8 onwards.

The below steps would allow you to start up an EMR Cluster and have Fire setup on it.

The CFT does the following:

	Creates EMR cluster with 1 master node and 2 worker nodes by default.

	Once the cluster is ready it runs the job/script to deploy Fire (takes around 1-1:30 min for deploying app!).

Relevant Files

Below are the Relevant Files

	Title

	Description

	File

	emr-file-h2.json

	CloudFormation Template

	https://s3.amazonaws.com/sparkflows-cft/h2-db/emr-fire-h2.json

	deploy-fire-h2.sh

	Script for deploying Fire

	https://s3.amazonaws.com/sparkflows-cft/h2-db/deploy-fire-h2.sh

	script-runner.jar

	Script Runner

	https://s3.amazonaws.com/sparkflows-cft/h2-db/script-runner.jar

Ports

	With this CFT and deploy-fire-h2.sh, when Fire comes up, it would be listening on ports 8085 and 8086.

Download Files and Upload to your S3 Bucket

	Download CFT emr-fire-h2.json from the above link.

	Download deploy-fire-h2.sh and script-runner.jar from the above links and upload them to your s3 bucket

Update Cloudformation template based on your environment

Update the CFT emr-fire-h2.json according to your requirement and environment in which you are deploying.

	ElasticMapReduce-Master-SecurityGroup under mastersg:

From AWS console -> EC2 -> Security Groups -> search for "ElasticMapReduce-master"

	ElasticMapReduce-Slave-SecurityGroup under slavesg:

From AWS console -> EC2 -> Security Groups -> search for "ElasticMapReduce-slave"

	Applications:

By default the CFT deploys Hadoop, Hive & Spark. Add any other Applications which you need.

	EbsRootVolumeSize:

If required change the root(/) ebs volume size. By default CFT has 50GB disk volume

	SizeInGB for Master and Core Instances:

If required change the SizeInGB under EbsConfiguration. By default CFT has 50GB disk volume (used for hdfs)

	VolumesPerInstance for Master and Core Instances:

If required change the VolumesPerInstance under EbsConfiguration By default cft has 1. It means one additional disk of 50GB added to each instance(for hdfs). e.g. If you change it 2, two 50GB (SizeInGB size) disks will be added to each instances.

	deploy-fire-h2.sh and script-runner.jar:

Change the s3 bucket path for these two files, this s3 bucket must be same bucket as S3Bucket. You'll pass the S3Bucket value while creating the cloudformation stack.

Steps to Create EMR Cluster and Deploy Fire

	AWS web Console -> Management tools -> CloudFormation

	Click on Create Stack.

	Next page is Select Template

	Select the radio-button Upload a template to Amazon S3

	Select the updated emr-fire-h2.json from your system

	Click Next

	Next page is Specify Details

	Enter CloudFormation stack name

Update Parameters where needed

	Name of Parameter

	Description

	AdditionalSecurityGroups

	From the list choose the additional secuirty group(sg), it’s required because default emr sg’s ports are not opened for ssh, fire & etc…

	AmiId

	EMR cluster can be launched using Custom AMI, pass the value if you have a Custom AMI

	ClusterName

	Name for EMR Cluster

	CoreInstanceType

	Provide the required instance type for core nodes, default instance type is m4.xlarge

	CoreNodes

	Choose the required number of core nodes, by default it’s 2

	EmrVersion

	Choose the required EMR version, it’s should be above EMR v.5.8.x

	Environment

	By default dev

	FireVersion

	Enter the required version of Fire

	KeyName

	Enter the valid pem key name to connect to emr nodes

	MasterInstanceType

	Provide the required instance type for master nodes, default instance type is m4.xlarge

	MasterNodes

	By default 1

	Owner

	provide the name of a team or person creating the cluster

	ReleaseVersion

	Enter the required ReleaseVersion, it has to match with fire version

	S3Bucket

	Provide the s3 bucket name, this s3 bucket should be same s3 bucket where deploy-fire-h2.sh and script-runner.jar are uploaded

	Subnet

	Provide the proper subnet name, which has sufficient resources to create emr cluster

	TaskInstanceType

	Optional, required only if you’re choosing TaskNodes. Provide the required instance type for task nodes, default instance type is m4.xlarge

	TaskNodes

	Optional, required only if you want to create the cluster with tasknodes.By default zero, enter the required number of nodes

	Click Next

	Next Page is Options

	If required (not mandatory) enter tag details

	Click Next

	Next Page is Review

	Review all the details provided to create an EMR stack

	Click on Create

	It will start creating the Stack

	Next page is back to Cloudformation Page

	Choose your Stack name

	Click on Events to check the process

	Click on Resources to get the EMR Cluster id

	Once the stack runs successfully, your EMR Cluster and Fire is ready to use. Cluster creation time depends on your EMR cluster configuration

	To cross check the Fire installation

	Go to EMR from AWS web console

	Choose your EMR Cluster

	Identify the Master Node Public DNS

	Go to http://masternodeip:8085/index.html

Connect Fire to the New Cluster

	Go to User/Administration

	Click on Infer Hadoop Configuration

	Click on the Save button

Load Examples

	In Fire, click on Load Examples

	ssh to the master node

	cd /opt/fire/fire-3.1.0

	Upload the example data files to HDFS

	hadoop fs -put data

Create hadoop user

	Go to Administration/User

	Click on Add User

	Create a new user with username hadoop

	Log out and log back in as user hadoop

Start running the Examples

	Go to Applications

	Start creating/using the Applications

Summary

Using the above CFT you have your EMR cluster with Fire running seamlessly.

CloudFormation Template with MySQL

Overview

Using CloudFormation Templates, Fire can be easily installed on AWS. This CFT works with EMR 5.8 onwards.

The below steps would allow you to start up an EMR Cluster and have Fire setup on it.

The CFT does the following:

	Creates External DB for Fire to be used as the metastore for Fire data

	Creates EMR cluster with 1 master node and 2 worker nodes by default.

	Once the cluster is ready it runs the job/script to deploy Fire (takes around 1-1:30 min for deploying app!).

Relevant Files

Below are the Relevant Files

	Title

	Description

	File

	emr-file-mysql.json

	CloudFormation Template

	https://s3.amazonaws.com/sparkflows-cft/mysql-db/emr-fire-mysql.json

	deploy-fire-mysql.sh

	Script for deploying Fire with MySQL

	https://s3.amazonaws.com/sparkflows-cft/mysql-db/deploy-fire-mysql.sh

	script-runner.jar

	Script Runner

	https://s3.amazonaws.com/sparkflows-cft/mysql-db/script-runner.jar

Ports

	With this CFT and deploy-fire-mysql.sh, when Fire comes up, it would be listening on ports 8085 and 8086.

Download Files and Upload to your S3 Bucket

	Download CFT emr-fire-mysql.json from the above link.

	Download deploy-fire-mysql.sh and script-runner.jar from the above links and upload them to your s3 bucket

Update Cloudformation template based on your environment

Update the CFT emr-fire-mysql.json according to your requirement and environment in which you are deploying.

	ElasticMapReduce-Master-SecurityGroup under mastersg:

From AWS console -> EC2 -> Security Groups -> search for "ElasticMapReduce-master"

	ElasticMapReduce-Slave-SecurityGroup under slavesg:

From AWS console -> EC2 -> Security Groups -> search for "ElasticMapReduce-slave"

	Applications:

By default the CFT deploys Hadoop, Hive & Spark. Add any other Applications which you need.

	EbsRootVolumeSize:

If required change the root(/) ebs volume size. By default CFT has 50GB disk volume

	SizeInGB for Master and Core Instances:

If required change the SizeInGB under EbsConfiguration. By default CFT has 50GB disk volume (used for hdfs)

	VolumesPerInstance for Master and Core Instances:

If required change the VolumesPerInstance under EbsConfiguration By default cft has 1. It means one additional disk of 50GB added to each instance(for hdfs). e.g. If you change it 2, two 50GB (SizeInGB size) disks will be added to each instances.

	deploy-fire-mysql.sh and script-runner.jar:

Change the s3 bucket path for these two files, this s3 bucket must be same bucket as S3Bucket. You'll pass the S3Bucket value while creating the cloudformation stack.

Steps to Create EMR Cluster and Deploy Fire

	AWS web Console -> Management tools -> CloudFormation

	Click on Create Stack.

	Next page is Select Template

	Select the radio-button Upload a template to Amazon S3

	Select the updated emr-fire-mysql.json from your system

	Click Next

	Next page is Specify Details

	Enter CloudFormation stack name

Update Parameters where needed

	Name of Parameter

	Description

	AdditionalSecurityGroups

	From the list choose the additional secuirty group(sg), it’s required because default emr sg’s ports are not opened for ssh, fire & etc…

	AmiId

	EMR cluster can be launched using Custom AMI, pass the value if you have a Custom AMI

	ClusterName

	Name for EMR Cluster

	CoreInstanceType

	Provide the required instance type for core nodes, default instance type is m4.xlarge

	CoreNodes

	Choose the required number of core nodes, by default it’s 2

	EmrVersion

	Choose the required EMR version, it’s should be above EMR v.5.8.x

	Environment

	By default dev

	FireVersion

	Enter the required version of Fire

	KeyName

	Enter the valid pem key name to connect to emr nodes

	MasterInstanceType

	Provide the required instance type for master nodes, default instance type is m4.xlarge

	MasterNodes

	By default 1

	Owner

	provide the name of a team or person creating the cluster

	ReleaseVersion

	Enter the required ReleaseVersion, it has to match with fire version

	S3Bucket

	Provide the s3 bucket name, this s3 bucket should be same s3 bucket where deploy-fire.sh and script-runner.jar are uploaded

	Subnet

	Provide the proper subnet name, which has sufficient resources to create emr cluster

	TaskInstanceType

	Optional, required only if you’re choosing TaskNodes. Provide the required instance type for task nodes, default instance type is m4.xlarge

	TaskNodes

	Optional, required only if you want to create the cluster with tasknodes.By default zero, enter the required number of nodes

	Click Next

	Next Page is Options

	If required (not mandatory) enter tag details

	Click Next

	Next Page is Review

	Review all the details provided to create an EMR stack

	Click on Create

	It will start creating the Stack

	Next page is back to Cloudformation Page

	Choose your Stack name

	Click on Events to check the process

	Click on Resources to get the EMR Cluster id

	Once the stack runs successfully, your EMR Cluster and Fire is ready to use. Cluster creation time depends on your EMR cluster configuration

	To cross check the Fire installation

	Go to EMR from AWS web console

	Choose your EMR Cluster

	Identify the Master Node Public DNS

	Go to http://masternodeip:8085/index.html

Connect Fire to the New Cluster

	Go to Administration/Configuration

	Click on Infer Hadoop Configuration

	Click on the Save button

Load Examples

	In Fire, click on Load Examples

	ssh to the master node

	cd /opt/fire/fire-3.1.0

	hadoop fs -put data

Create hadoop user

	Go to Administration/User

	Click on Add User

	Create a new user with username hadoop

	Log out and log back in as user hadoop

Start running the Examples

	Go to Applications

	Start building your Applications.

Summary

Using the above CFT you have your EMR cluster with Fire running seamlessly.

AZURE Guide

	Introduction

	Deployment Guide
	prerequisite:

	Steps

	Loading Example Workflows

	Install and Start Running Example Workflows

	Azure Databricks Integration Steps
	Install Fire Insights

	Upload Fire Core Jar to Databricks

	Configure the Uploaded Library in Fire Insights

	Configure app.postMessageURL in Fire Insights

	Install Databricks JDBC Driver

	Create your REST API token in Databricks

	Create Databricks Connection in Fire Insights

	ADLS Integration
	System identity need to be enabled

	In storage account, add the role to provide the access

	login to Fire Insights

	Save Configuration

	Click on Data browser

Introduction

Fire Insights is the flagship product from Sparkflows. It is seamlessly integrated with Azure. With Fire Insights you can perform self-serve data processing, analytics and machine learning on Azure.

Fire Insights integrates with Azure Databricks, ADLS, HDInsight etc.

Fire Insights comes with a number of components including:

	Workflow Editor : To create workflows for data processing, analytics and machine learning.

	300+ Processors : These include reading data from various stores, data processing, machine learning and visualizations.

	Execution Engine : For executing the workflow on Azure VM or HDInsight

	Scheduler : For scheduling running the workflows at certain time intervals

	I-Dashboard : For Visualization using chart, dashboard

Deployment Guide

Fire Insights can be easily installed on an Azure Standalone VM.

prerequisite:

	java 8 should be installed

	if you do not already have it, Need to install

	Download it from below link:

https://www.oracle.com/in/java/technologies/javase/javase-jdk8-downloads.html

	Install using below command (Centos):

yum localinstall jdk-8uxxx-linux-x64.rpm

	Set the below in .bash_profile:

export JAVA_HOME=/usr/java/jdk1.8.0_xxx-amd64/

Below are the overall steps for installing Fire Insights on VM.

	ssh into the Azure VM

	Download Fire Insights from https://www.sparkflows.io/download

	Unzip it

	Create H2 Database

	Start Fire

Steps

	Create a VM on Azure:

Create a vm if you do not already have it running.

	Update the inbound rule

- ssh port ie 22 should be accessible to ssh to Azure VM.
- We would have Fire listening on ports 8080, so just ensure its opened.

	ssh into the VM:

ssh -i my.pem userp@public ip.

	Just Confirm that java 8 is already installed, if not follow above steps:

java -version

	Download the fire tgz file by one of the following options:

	
	https://www.sparkflows.io/download

	OR

	
	https://www.sparkflows.io/archives

	OR

	wget https://s3.amazonaws.com/sparkflows-release/fire/rel-x.y.z/2/fire-x.y.z.tgz

	Unpack it:

tar xvf fire-x.y.z.tgz

	Create H2 DB:

Fire stores its metadata into the embedded H2 database. You can also connect it to an external MySQL database.

 cd <fire install_dir>
 ./create-h2-db.sh

	Launch Fire Server:

cd <fire install_dir>
./run-fire-server.sh start

	Open your web browser and navigate to:

<machine_ip>:8080

	Login with the following default username and password:

username : admin
password : admin

Loading Example Workflows

	From the home page of Fire Insights, click on *Load Example Applications*

	Upload the Fire examples data with default or if data is available at anyother location, point to that location:

Install and Start Running Example Workflows

	Start off with executing the example workflows:

- Fire comes pre-packaged with a number of example workflows, you can start executing.

Azure Databricks Integration Steps

Fire Insights integrates with Databricks. It submits jobs to the Databricks clusters using the REST API of Databricks and have the results displayed back in Fire Insights.

Fire also fetches the list of Databases and Tables from Databricks, making it easier for the user to build their workflows and execute them. In addition Fire displays the list of Databricks clusters running for the user.

	Running Databricks on Azure : https://docs.microsoft.com/en-us/azure/azure-databricks/quickstart-create-databricks-workspace-portal

Below are the steps for Integrating Fire Insights with your Databricks Clusters.

Install Fire Insights

Install Fire Insights on any machine. The machine has to be reachable from the Databricks cluster.

Upload Fire Core Jar to Databricks

Upload Fire Insights jar to Databricks. Fire Insights jobs running on Databricks make use of this jar file.

Upload fire-x.y.z/fire-core-lib/fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar to Databricks. Upload it under Workspace as a Library on to Databricks.

1. Login to Databricks Cluster

2. Click on workspace in the left side pane

[image: Databricks]

3. Create a new Library

[image: Databricks]

4. Upload fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar from your machine by Clicking on Drop JAR here

[image: Databricks]

5. Once fire-spark_2_4-core-3.1.0-jar-with-dependencies.jar is uploaded, click on Create

[image: Databricks]

	Check the box with Install automatically on all clusters, in order to avoid installing it manually to every cluster.

[image: Databricks]

Configure the Uploaded Library in Fire Insights

Configure the path of the uploaded fire core jar library in Databricks in Fire Insights.

This has to be done under Administration/Configuration.

[image: Databricks]

Configure app.postMessageURL in Fire Insights

Configure app.postMessageURL to be the IP of the machine on which Fire Insights is installed. Jobs running on Databricks would post back results to Fire Insights using this URL.

[image: Postback URL]

Install Databricks JDBC Driver

Fire needs the Databricks JDBC Driver to be installed. Install it in the fire-user-lib and fire-server-lib folder of the Fire installation.

You can download the Databricks JDBC Driver from the Databricks site :

	https://docs.databricks.com/bi/jdbc-odbc-bi.html

	https://databricks.com/spark/odbc-driver-download

The driver is available as a zip file. eg: SimbaSparkJDBC-2.6.3.1003.zip

	Unzip the downloaded file. It will create a directory like SimbaSparkJDBC-2.6.3.1003

	Copy the jdbc jar file named SparkJDBC4.jar into fire-x.y.z/fire-user-lib and fire-x.y.z/fire-server-lib

Create your REST API token in Databricks

Create your token in Databricks. It would be used in making REST API calls to Databricks from Fire Insights.

1. Login to your Databricks Account

2. Click on Account icon in right corner top

[image: Databricks]

3. Click on User Settings

[image: Databricks]

4. Click on Generate New Token

[image: Databricks]

5. Add comment & Lifetime(days) for token expiry & Click on Generate

[image: Databricks]

6. Copy the token generated. Click on DONE

[image: Databricks]

Create Databricks Connection in Fire Insights

Create a connection in Fire Insights to Databricks.

It can be created by the Administrator under Administration/Global Connections. These connections are available for everyone to use.

It can also be created by any user with their Application. In this case, it is only available to the Application and its users.

	Specify your Databricks Token.

	Specify the Databricks JDBC URL of your cluster in Databricks.

[image: Databricks Connection]

Now we are ready to start using the Databricks Connection in Fire Insights to:

	Browse DBFS

	View your Databricks Clusters

	Browse your Databricks Databases & Tables

	Create Workflows which Read from and Write to Databricks

ADLS Integration

Fire Insights integrated with azure data lake storage, once configured you can use the filesystem for accessing data from it.

Below are the steps to Configured adls using managed identity

Managed identity allow the users to access the azure resources without hardcoding any credentials in code.

System identity need to be enabled

System identity need to be enabled on vm where Fire Insights is running or need to be install

[image: adls]

In storage account, add the role to provide the access

In storage account, add the role to provide the access to Azure vm with needed access

[image: adls]

login to Fire Insights

login to Fire Insights application and add below parameter in Configuration under administration section for AZURE.

	azure.enabled to true

	azure.homeDir as abfs://containerName@storageAccountName.dfs.core.windows.net

[image: adls]

Save Configuration

Save the above configuration and refresh the page & Click on Data browser to see ADLS page

[image: adls]

Click on Data browser

Click on ADLS to see ADLS FILESYSTEM in DATA BROWSERS

[image: adls]

Once the above configurations done, you can start using those file while creating dataset and workflow.

Load Balancer

Below are steps to Configure Network Load balancer and route using Route 53 in AWS

	AWS Network Load balancer

	Route 53

AWS Network Load balancer

It Explains about Creating Network Load balancer in AWS and Configuring it VM running with Fire Insights.

Below are steps involved in Creating Network Load balancer in AWS.

	Login with AWS Console and search for load balancer with EC2 feature.

[image: Load balancers]

	Create Load Balancer & select Network Load Balancer.

[image: Load balancers]

	Configure Load balancer

Add Name
Scheme : internet-facing
IP address type : ipv4
Listeners
Load Balancer Protocol : TLS (SECURETCP) Port: 443
Availability Zones
VPC : select VPC where application vm is running.
Availability Zones : select the specific zone.

[image: Load balancers]

	Configure Security Settings

Select default certificate.

AWS Certificate Manager (ACM) is the preferred tool to provision and store server certificates. If you previously stored a server certificate using IAM, you can deploy it to your load balancer.

Certificate type
Certificate name
Security policy

[image: Load balancers]

Note

Make sure to add certificate either through ACM or IAM

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/configuring-https-ssl-upload.html

	Configure Routing

Target group
Name : A name of target group
Target type : Instance
Protocol : TCP
Port : 80
Register Target

[image: Load balancers]

	Port forwarding

As Fire Insights by default running on port 8080 for HTTP & 8443 for HTTPS, Make sure forward HTTP or HTTPS to specified port on which Fire Insights is running.

sudo firewall-cmd --add-forward-port=port=443:proto=tcp:toport=8443 --permanent
sudo firewall-cmd --reload

Route 53

It Explains about Configuring Route 53 to Network Load balancer.

Below ares steps to follow:

	Login to AWS Console and Type R 53 in search box

Sign in to the AWS Management Console and open the Route 53 console at https://console.aws.amazon.com/route53/

[image: Load balancers]

	Get started with R 53 Dashboard

Register a domain

[image: Load balancers]

	Hosted zone

Create hosted zone

[image: Load balancers]

	Create records

Create records and Registered Network load balancer to it.

Value/Route traffic to : Alias to Network LB
Select Zone
By default load balancer domain name should be populated.
Record type : A -Routes traffic to IPV4 address and some aws resources.
Routing policy : Simple Routing

[image: Load balancers]

[image: Load balancers]

Superset

Superset enables powerful Visualizations. Superset can connect with Databricks clusters and display data from Tables in Databricks.

Below are steps involved in Installing Superset and Configuring to Databricks.

	Installation
	Steps involved in installing apache superset (centos7)

	Connecting Superset with Databricks
	Install the Python dependencies

Installation

Ensure that Superset machine has python 3.6.0+ installed on it.

Steps involved in installing apache superset (centos7)

	Install Superset:

pip install apache-superset

[image: superset]

	Initialize the database:

superset db upgrade

[image: superset]

	Create an admin user (you will be prompted to set a username, first and last name before setting a password):

export FLASK_APP=superset
superset fab create-admin

[image: superset]

	Load some data to play with:

superset load_examples

	Create default roles and permissions:

superset init

	Start a development web server on port 8088, using Gunicorn in background:

nohup gunicorn -b 0.0.0.0:8088 --limit-request-line 0 --limit-request-field_size 0 "superset.app:create_app()"

Once above command runs successfully, ensure that port 8088, on which Superset is running is accessible from your browser

	Open browser and login with public ip and port:

http://public-ip:8088/login

[image: superset]

	Use your created credentials to login:

[image: superset]

Connecting Superset with Databricks

Once Superset is running, you can configure Databricks database.

Note

Make sure that the Databricks cluster is up.

Install the Python dependencies

Install Needed python dependency for Databricks on the Superset VM:

pip install databricks-dbapi
pip install databricks-dbapi[sqlalchemy]

Once the above two python databricks dependencies have been installed successfully, restart superset server & Login to Superset UI & Click on database

[image: superset]

Now you can add databricks database by Clicking on NEW Tab & add Databricks Database name & SQLAlchemy URI:

databricks+pyhive://token:<token>@<companyname>.cloud.databricks.com:443/<database>?cluster=<cluster_id>]

[image: superset]

Click on TEST CONNECTION to test your connection. It should not throw any error and SAVE it,
Once the database is saved successfully, it would be available in Superset database list page.

[image: superset]

Now You can start using databricks database tables for charts and visualizations

[image: superset]

Python Integration

Sparkflows supports Python in Workflows in a few ways:

	PySpark Processor

The PySpark Processor allows writing PySpark/Python code to processes the incoming DataFrame and create a new DataFrame.
It can also be used to build scikit-learn models etc.

	Jython Processor

The Jython Processor allows writing Jython code to processes the incoming DataFrame and create a new DataFrame.

	Pipe Python Processor

Pipe Python Processor allows writing Python script to process the incoming DataFrame.

The incoming DataFrame is piped to the python script.

The Python script takes in each record of the DataFrame as a comma separated string. It parses the string, processes the record and writes out the new record.

	PySpark Processor
	Interface

	WorkflowContext

	Example 1

	Example 2

	Jython Processor
	Example Jython Code

	Pipe Python Processor
	Input DataFrame Schema

	Simple Example

	Output Schema of the Python Script

	Program Execution Output

	Pipe Python2 Processor
	Input DataFrame Schema

	Reading in Data in Python into a Pandas DataFrame

	Transform the Pandas DataFrame

	Writing the Pandas DataFrame schema back to Spark

	Writing the Pandas DataFrame back to Spark

	Output Schema of the Python Script

PySpark Processor

Fire Insights provides a PySpark processor for writing PySpark/Python code.

Interface

In the PySpark Processor, we have to implement the myfn function which gets invoked:

def myfn(spark: SparkSession, workflowContext: WorkflowContext, id: int, inDF: DataFrame):

* spark : SparkSession object
* workflowContext : Can be used for outputting results to the user
* id : id of the current processor
* inDF : Input PySpark dataframe

WorkflowContext

WorkflowContext provides the following methods for outputting data to the user:

* def outStr(self, text: str)
* def outNameValue(self, nm: str, val: str)
* def outSchema(self, id: int, title: str, df: DataFrame)
* def outDataFrame(self, id: int, title: str, df: DataFrame)
* def outPandasDataframe(self, id: int, title: str, df: pd.DataFrame)
* def outNumpy1darray(self, id: int, title: str, arr: np.ndarray)
* def outNumpy2darray(self, id: int, title: str, arr: np.ndarray)

Example 1

Below is an example code for the PySpark Node.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from pyspark.sql.types import StringType
from pyspark.sql.functions import *
from pyspark.sql import *
from workflowcontext import *

def myfn(spark: SparkSession, workflowContext: WorkflowContext, id: int, inDF: DataFrame):
 house_type_udf = udf(lambda bedrooms: "big house" if int(bedrooms) >2 else "small house", StringType())
 filetr_df = inDF.select("id", "price", "lotsize", "bedrooms")
 outDF = filetr_df.withColumn("house_type", house_type_udf(filetr_df.bedrooms))
 return outDF

Example 2

Below is another example which uses sklearn

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

	from pyspark.sql.types import StringType
from pyspark.sql.functions import *
from pyspark.sql import *
from workflowcontext import *

import numpy as np
import pandas as pd

from sklearn.linear_model import LinearRegression
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import metrics

from joblib import dump, load

def myfn(spark: SparkSession, workflowContext: WorkflowContext, id: int, inDF: DataFrame):
 # Convert the Spark DataFrame to a Pandas DataFrame using Arrow
 dataset = inDF.select("*").toPandas()

 dataset = dataset.fillna(method='ffill')

 X = dataset[
 ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide',
 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol']].values

 y = dataset['quality'].values

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

 # There are three steps to model something with sklearn
 # 1. Set up the model
 model = LinearRegression()
 # 2. Use fit
 ft = model.fit(X_train, y_train)
 print(ft)
 # 3. Check the score
 scr = model.score(X_test, y_test)
 workflowContext.outStr("Model Score : " + str(scr))

 # 4. Print model
 workflowContext.outStr("Model Coeffient : " + str(model.coef_))
 workflowContext.outStr("Model Intercept : " + str(model.intercept_))

 # 5. Predict test data
 y_pred = model.predict(X_test)

 # 6. See difference between actual and predicted value
 df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
 df1 = df.head(25)
 workflowContext.outPandasDataframe(id, "Actual - Predicted : ", df1)

 # 7. Evaluate the performance
 workflowContext.outStr("Mean Absolute Error:" + str(metrics.mean_absolute_error(y_test, y_pred)))
 workflowContext.outStr("Mean Squared Error:" + str(metrics.mean_squared_error(y_test, y_pred)))
 workflowContext.outStr("Root Mean Squared Error:" + str(np.sqrt(metrics.mean_squared_error(y_test, y_pred))))

 return inDF

Jython Processor

Sparkflows has a Jython Processor.

The Jython Processor allows writing Jython code to process the incoming DataFrame. It then produces a resulting DataFrame.

In the Jython node, the following variables are available:

	inDF : Incoming Spark DataFrame

	spark : The Spark Session object

Example Jython Code

Below are some example Jython code which can be used.

Select a specific column from the DataFrame

	outDF = inDF.select(“c2”)

Count the number of records after grouping them

	outDF = inDF.groupBy(“c2”).count()

Run a SQL on the input DataFrame

The Jython Processor registers the incoming dataframe as a temporary table with a configurable name.

The below SQL in Jython script, performs a SELECT on the registered temporary table.

	outDF = spark.sql(“SELECT c1, c2 FROM fire_temp_table”)

Run a SQL followed by further grouping and count

	outDF = spark.sql(“SELECT c1, c2 FROM fire_temp_table”)

	outDF = outDF.groupBy(“c2”).count()

Read from HDFS and create a new DataFrame

The below Jython script, reads a JSON file from HDFS.

	outDF = spark.read().json(“data/people.json”)

Pipe Python Processor

Fire Insights has a Pipe Python Processor.

It pipes the incoming DataFrame through pipe to the Python Script. It also passes the Schema of the DataFrame to the Python script through the command line argument. (argv[1])

The Python script is written in the Workflow Editor.

Below is an example workflow containing Pipe Python Processor.

[image: Pipe Python Workflow]

Input DataFrame Schema

The schema of the incoming dataframe is also passed into the Python script as an argument. It can be used in the Python script as needed.

The format of the dataframe schema is below:

colname1:datatype1|colname2:datatype2|colname3:datatype3

Below is an example of printing the arguments and an example result:

print "The arguments are: " , str(sys.argv)

['/tmp/fire/scripts/pipepython-1899418263068404925.py', 'id:DoubleType|label:DoubleType|f1:DoubleType|f2:DoubleType']

Simple Example

The below example reads in the incoming records, parses them, adds a new column whose value is the sum of the first and second fields. Finally it write out the updated record back for Spark to read:

#!/usr/bin/python

import sys

for line in sys.stdin:
 line = line.strip()
 if not line:
 continue

 fields = line.split(",")

 total = str(float(fields[0]) + float(fields[1]))

 result = ",".join(fields) + "," + total

 print result

Below is the code in the Dialog box of the Pipe Python Processor of the Workflow.

[image: Pipe Python Dialog]

Output Schema of the Python Script

The output schema of the Python Script is used in the Spark code for recreating the Spark DataFrame from the data received from running the Python script.

It has to be specified in the Pipe Python Processor Dialog.

[image: Pipe Python Schema]

Program Execution Output

Below is the output produced when executing the workflow.

[image: Pipe Python Output]

Pipe Python2 Processor

Fire Insights has a Pipe Python2 Processor.

It pipes the incoming DataFrame through pipe to the Python Script. It also passes the Schema of the DataFrame to the Python script through the command line argument. (argv[1])

The Python script is written in the Workflow Editor.

Below is an example workflow containing Pipe Python2 Processor.

[image: Pipe Python Workflow]

Input DataFrame Schema

The schema of the incoming dataframe is also passed into the Python script as an argument. It can be used in the Python script as needed.

The format of the dataframe schema is below:

colname1:datatype1|colname2:datatype2|colname3:datatype3

Below is an example of printing the arguments and an example result:

print "The arguments are: " , str(sys.argv)

['/tmp/fire/scripts/pipepython-1899418263068404925.py', 'id:DoubleType|label:DoubleType|f1:DoubleType|f2:DoubleType']

Reading in Data in Python into a Pandas DataFrame

Below is an example script which reads in the input lines and converts it to a Pandas DataFrame. It parses the schema passed in argv[1] to extract the column names which is used in creating the Pandas DataFrame:

#!/usr/bin/python

import sys
import pandas as pd

dataframe_list_of_rows = []

for line in sys.stdin:

 line = line.strip()
 if not line:
 continue

 row_list = []
 for field in line.split(","):
 row_list.append(field)

 # convert list to tuple
 row_tuple = tuple(row_list)
 dataframe_list_of_rows.append(row_tuple)

generate column names
schema = sys.argv[1]
column_names = []
schema_columns = schema.split("|")
for column_name_with_type in schema_columns:
 column_name_with_type_split = column_name_with_type.split(":")
 column_names.append(column_name_with_type_split[0])

create dataframe from the input rows
input_dataframe = pd.DataFrame.from_records(dataframe_list_of_rows, columns=column_names)

Transform the Pandas DataFrame

Now that we have the Pandas DataFrame in input_dataframe, we can transform it to create the result DataFrame - output_dataframe. In the below example, we are just setting the output dataframe to the input dataframe:

output_dataframe = input_dataframe

Writing the Pandas DataFrame schema back to Spark

Below is an example code for writing the Pandas Schema back to Spark. It is used in inferring the schema output of the Python code. This way users do not have to reenter the schema of the output in the Workflow:

dataframe_dtypes = output_dataframe.dtypes

f = open(sys.argv[2],'w+')
f.write(str(dataframe_dtypes))
f.close()

Fire expects each line of the schema file to contain the following:

	Name of the column

	Data Type of the column

There can be multiple spaces between the name and the data type.

Fire uses the below for mapping from the data type to Spark DataFrames Data Types:

	int : integer

	float : float

	double : double

	boolean : boolean

	string : string

Writing the Pandas DataFrame back to Spark

Below is an example code for writing the Pandas DataFrame back to Spark:

iterate over the dataframe created and return it to the pipeNode
for index, row in output_dataframe.iterrows():
 list = row.tolist()
 row_string = ','.join(str(e) for e in list)
 print(row_string)

Output Schema of the Python Script

The output schema of the Python Script is written to a file which is read by the Spark Code. Clicking on Refresh Schema infers the Python Schema output into Spark.

[image: Pipe Python Schema]

Performance Tuning

Performance is the cornerstone of any Big Data Processing. Fire is extremely optimized for best performance. Each of the Processors are written for extreme performance, the engine is optimized for the best performance.

There are certain things which need to be taken into account for any Spark job. Fire makes it extremely easy to apply them to a Workflow.

	Caching Level
	When to use Caching

	Executor Memory, vcores

	Repartioning
	When saving to JDBC/File etc.

	Debug Mode

Caching Level

Setting the right caching level of the Dataset outputs of the nodes is very important for performance in Apache Spark.

Fire allows you to set the caching output of the Dataset of any Processor.

When to use Caching

In general the default Caching does not have to be changed.

It is important to set Caching in the following scenarios:

	If the Dataset is going to be reused later. Below are some examples.

	A Dataset is read from HBase. Then another dataset is read and the two are joined. In this case it is a good idea to Cache the dataset read from HBase.

	A Dataset is joined with another Dataset. The result is then joing with another Dataset. In this case it is a good idea to cache the result of the first Join.

	A Dataset which is used in machine learning.

	Whenever a Dataset computation is expensive (JOIN etc.), caching can help in case the executor fails, the blocks are evicted from memory.

Executor Memory, vcores

When running Apache Spark jobs, we can define the number of executors, executor memory and number of vcores per executor.

Normally dynamic allocation of executors is enabled, and we do not need to specify the number of executors.

Certain jobs need higher executor memory and number of vcores. These can be specified with --executor-memory and --executor-vcores.

These additional spark configs can be specified in Fire in the Execute page. They can also be specified when the jobs are scheduled for execution.

Repartioning

Repartioning splits the datasets into the specified number of partitions.

This can help with performance

When saving to JDBC/File etc.

When saving a Dataset, the parallelism depends on the number of partitions of the Dataset. In case there are too few partitions, repartitioning the Dataset before saving would increase the parallelism.

Parallelism is also a double-edged sword. It is not a good idea to say have too many parallel connections to a Relational Database as it would put heavy load on the RDBMs.

Debug Mode

Fire Insights allows you to run the workflow in Debug mode.

In the debug mode a count is performed on the output from each Processor. This helps to know which Processor is exactly taking more time.

Apache Spark in general executes the DAG lazily. It starts the execution of the DAG only when it hits an Action. Hence, many times we do not know which Processor is actually taking more time.

Forcing Action with count in Debug mode forces execution of that step and insights into the time taken by the Processor.

Developer Guide

	Custom Node Development in Browser
	Click on CREATE PROCESSORS

	Execute Code

	Schema Update Code

	Testing the custom processor

	Using the new Processor

	Export Custom Processors

	Import Custom Processors

	Custom Node Development & Deployment (Java/Scala)
	Step 1 : Start by cloning the github repo: writing-new-node

	Step 2 : Install the Fire core jar to the local maven repository

	Step 3 : Code the new custom node

	Step 4 : Create the node JSON file

	Step 5 : Deploy the Custom Node in the Fire Server

	Use the custom node in Spark submit when running on the Spark cluster

	Databricks Custom Node Example JSON
	Execution Code

	Schema Propagation Code

	Building and Running Custom Node
	Install the scorecardpy dependencies

	Go to Custom Processors

	Click on CREATE PROCESSORS

	Execute Code

	Schema Update Code

	Using the new Processor

Custom Node Development in Browser

Fire Insights enables you to write custom nodes from your Browser.

You would provide the execute method for the Processor and the Schema update code. You would also provide the details of the widgets through which the user would provide the parameters for the new custom node.

Below are the steps for creating the custom node.

Once you login to Fire Insights application, there is PROCESSORS menu on top, select Custom Processors.

[image: Custom Processor]

Click on CREATE PROCESSORS

Click on CREATE PROCESSORS to start creating the new processor.

[image: Custom Processor]

[image: Custom Processor]

It would open up the Create Processor Page as below.

Enter the name and other details for the new processor.

Then provide details for the various fields of the new processors. These fields would appear in the processor dialog when used in the workflow editor.

[image: Custom Processor]

Click on the + sign to add a new field. For each field provide the following:

	WIDGET

	NAME

	TITLE

	VALUE

	DESCRIPTION

[image: Custom Processor]

Finally click on the Next button to go to the Code tab.

Execute Code

The Code tab is where you write the execution code for the new Custom Processor.

It shows the default template which you can update

[image: Custom Processor]

Then click on Next button to go to the Schema tab.

Schema Update Code

The Schema tab is where you add the code which updates the incoming schema to produce the output schema from this processor.

It displays the default template code which you can update.

[image: Custom Processor]

Finally click on the Submit button to finish creating the new custom processor.

Once the custom processor is submitted successfully, it will be visible in Custom Processors list page.

[image: Custom Processor]

Testing the custom processor

Fire Insights enables you to seamlessly Test your custom processor.

When editing the custom processor, select the Dataset for the data you want to feed to the custom processor. Then click on Test to view the output of the new custom processor.

[image: Custom Processor]

[image: Custom Processor]

Using the new Processor

The processor is now available in the Workflow Editor.

[image: Custom Processor]

You can click on the custom processor to start using it in your workflow.

You can also export & import them

Export Custom Processors

Fire Insights enables you to export Custom Processors from Browser to local machine.

Below are the steps to export Custom Processors.

Login to Fire Insights & go to Custom Processors list page.

[image: Custom Processor]

Select the Custom Processors which you want to export and click on export.

[image: Custom Processor]

NOTE: you can export multiple Custom Processors at a time too.

Once you click on export button, the selected Custom Processors will be downloaded to local machine in zip format.

[image: Custom Processor]

Import Custom Processors

Fire Insights enables you to import Custom Processors to different environment.

Below are the steps to Import Custom Processors.

Login to Fire Insights & go to Custom Processors list page.

[image: Custom Processor]

Select the IMPORT button, it will open a new windows to upload zip file from local machine.

[image: Custom Processor]

[image: Custom Processor]

Once you upload zip file of Custom Processors from local machine, press IMPORT button to import it.

[image: Custom Processor]

NOTE: You can import multiple Custom Processors at a time too.

Once you Click on IMPORT button, success message will display on imported Custom Processors.

[image: Custom Processor]

After success import, you can view those Custom Processors in Custom Processors list page.

[image: Custom Processor]

Now you can use those Custom Processors in your workflow.

Custom Node Development & Deployment (Java/Scala)

Fire Insights follows an open and extensible architecture allowing developers to add new custom nodes/processors that can be exposed in Fire UI and embedded into workflows.

The details for building new nodes are available at the URL below:

	https://github.com/sparkflows/writing-new-node

Examples of more complex nodes are at the URL below :

	https://github.com/sparkflows/sparkflows-stanfordcorenlp

Step 1 : Start by cloning the github repo: writing-new-node

The easiest way to start writing a new node or processor is by cloning the writing-new-node repo using the command below:

	git clone https://github.com/sparkflows/writing-new-node.git

Step 2 : Install the Fire core jar to the local maven repository

Insall the Fire core jar to your local maven repository. The pom.xml contains the dependency for it.

	mvn install:install-file -Dfile=fire-spark_2.4-core-3.1.0.jar -DgroupId=fire -DartifactId=fire-spark_2.4-core -Dversion=3.1.0 -Dpackaging=jar

Step 3 : Code the new custom node

The custom node might be a Dataset node or a Transform node.

A Dataset node reads data from some source into a Dataframe. It passes on this new Dataframe to the next node. Examples of data sources include:

	Files on HDFS

	HIVE tables

	HBase tables

	Cassandra

	MongoDB

	Salesforce / Marketo

A Transform node receives an input Dataframe(s), transforms it and sends the transformed Dataframe to the next node.

Writing a Dataset node

Create a new class that extends the NodeDataset class.

	Override the execute() method. The execute() method will read in data from the defined source into a Dataframe. It would then pass on the resulting DataFrame to output node(s).

	Override the getOutputSchema() method to return the schema of of the Dataframe created by the node.

Writing a Transform node

Create a new class that extends the Node class.

	Override the execute() method. The execute() method will transform the incoming DataFrame and then pass on the resulting DataFrame to output node(s).

	If the node is updating the incoming schema, also override the getOutputSchema() method. Otherwise the incoming schema to this node is sent to the next node(s).

Examples of Custom Nodes

Example of custom nodes are available at:

	https://github.com/sparkflows/writing-new-node/tree/master/src/main/java/fire/nodes/examples

Step 4 : Create the node JSON file

Create the JSON file for the new node. The JSON file is used for displaying the new node in the Workflow Editor and capturing the user inputs of the various fields of the node through a Dialog box. The JSON for the node also captures the name of the Java/Scala class which has the implementation code for the Node.

Fire supports various widgets types for capturing the details of the fields from the user through the Node Dialog Box.

Widget Types

The details of the various widget types is available at the URL below:

	https://github.com/sparkflows/writing-new-node/blob/master/docs/README_Processor_JSON.md

Examples of Node JSON

	https://github.com/sparkflows/writing-new-node/blob/master/json/nodes/testprintnrows.json

	https://github.com/sparkflows/writing-new-node/blob/master/json/nodes/testmovingaverage.json

Step 5 : Deploy the Custom Node in the Fire Server

Now that you have created a new node, follow the steps below to deploy it into the Fire Server:

	Create a jar file with mvn clean package

	Copy the jar file created in the previous step (target/writing-new-node-3.1.0.jar) into fire-user-lib directory of Fire Insights.

	Place the JSON file for the new node under the nodes directory.

	Restart the Fire Server.

The new node would be picked up by the Fire Server and be visible in the Workflow Editor. Check that new node is available as expected in the Workflow Editor.

Use the custom node in Spark submit when running on the Spark cluster

	Select the custom node jar checkbox when executing the workflow containing the custom node.

	You can also include the custom node with --jars <...> when running the workflow on the cluster

Databricks Custom Node Example JSON

Custom Nodes in Fire Insights can be exported as zip files and then subsequently imported into Fire Insights.

Click on the clink below to download a custom node zip file containing scorecardpy binning custom node.

Import it into Fire Insights by going to Processors/Custom Nodes.

The code looks like below:

Execution Code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 from pyspark.sql import DataFrame, SparkSession
 from fire.workflowcontext import WorkflowContext
 import scorecardpy as sc

 def myfn(spark: SparkSession, workflowContext: WorkflowContext, id: int, inDF: DataFrame, parameters: dict):
 # Write your code here by using input dataframe i.e inDF and pass the output result as outDF dataframe.

 pandas_df = inDF.toPandas()
 variables = ["purpose"]
 stopLimit = 0.1
 countDistrLimit = 0.05
 binNumLimit = 8
 method = "tree"
 positive = "bad|1"
 workflowContext.outStr(id, "Method: " + parameters['method'] + ", Positive:" + parameters['positive'])

 bins = sc.woebin(pandas_df, y="creditability", x=variables, stop_limit=float(stopLimit),
 count_distr_limit=float(countDistrLimit),
 bin_num_limit=int(binNumLimit), method=method, positive=positive)
 bins_ply = sc.woebin_ply(pandas_df, bins)
 spark_df = spark.createDataFrame(bins_ply)
 outDF = spark_df
 return outDF

Schema Propagation Code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 from fire.workflowengine.workflow import JobContext
 from fire.workflowengine.fireschema import FireSchema

 def schema(inputSchema: FireSchema, parameters: dict):
 #to add new column
 #inputSchema.append("house_type", "string")

 #to drop a column
 #inputSchema.drop("id")
 inputSchema.append('purpose_woe', 'double')

 return inputSchema

Building and Running Custom Node

Fire Insights allows you to build your own Custom Nodes.

In this tutorial we would build a custom node built upon scorecardpy.

Install the scorecardpy dependencies

Since we are using the library scorecardpy, we would install its packages both on the Fire Insights machine and on the Databricks cluster.

Use the command below to install it on the Fire Insights machines:

	pip install scorecardpy

Install it on your Databricks cluster with the below:

	Open a Notebook

	%sh pip install scorecardpy

Go to Custom Processors

Once you login to Fire Insights application, there is PROCESSORS menu in top, select Custom Processors.

[image: Custom Processor]

Click on CREATE PROCESSORS

Click on CREATE PROCESSORS to start creating the new processor.

[image: Custom Processor]

[image: Custom Processor]

It would open up the Create Processor Page as below.

Enter the name and other details for the new processor.

Then provide details for the various fields of the new processors. These fields would appear in the processor dialog when used in the workflow editor.

[image: Custom Processor]

Click on the + sign to add a new field. For each field provide the following:

	WIDGET

	NAME

	TITLE

	VALUE

	DESCRIPTION

[image: Custom Processor]

Finally click on the Next button to go to the Code tab.

Execute Code

The Code tab is where you write the execution code for the new Custom Processor.

Its updated for scorecardpy here.

It shows the default template which you can update for scorecardpy.

[image: Custom Processor]

Then click on Next button to go to the Schema tab.

Schema Update Code

The Schema tab is where you add the code which updates the incoming schema to produce the output schema from this processor.

It displays the default template code which you can update.

[image: Custom Processor]

Finally click on the Submit button to finish creating the new custom processor.

Once the custom processor submitted successfully, it will be vissible in Custom Processors list page.

[image: Custom Processor]

Using the new Processor

The processor is now available in the Workflow Editor.

[image: Custom Processor]

You can click on the custom processor to start using it in your workflow & submit the job.

[image: ../_images/scorecard-bin-submit.PNG]

Processors

	16-Utilities
	03-Execution

	02-Data-Partition

	01-Spark-Performance

	09-DataProfiling
	ColumnsCardinality

	SummaryStatistics

	SkewnessAndKurtosis

	HistoGram

	FlagOutlier

	DistinctValuesInColumn

	NullValuesInColumn

	CrossTab

	GraphWeekDayDistribution

	Correlation

	GraphYearDistribution

	GraphMonthDistribution

	05-FeatureEngineering
	WordCount

	MovingWindowFunctions

	DateToAge

	01-IO
	02-ReadStructured

	03-ReadUnstructured

	03-Save

	01-Connectors

	11-ML-SparkML
	12-FreqPatternMining

	04-FeatureTransformers

	03-FeatureExtraction

	11-CollaborativeFiltering

	09-Regression

	08-Clustering

	05-DimensionalityReduction

	02-FeatureScaler

	17-Util

	07-SplitDataset

	10-Classification

	13-EvaluatePredict

	06-FeatureSelection

	ML-TS
	ARIMA

	Prophet

	02-Parse
	FieldSplitter

	RegexTokenizer

	Fixed Length Fields

	ApacheLogs

	ParseJSONCol

	OCR

	MultiRegexExtractor

	06-Filter
	FilterByDateRange

	FilterByNumberRange

	ColumnFilter

	RowFilter

	FilterByStringLength

	NodeRowFilterByIndex

	DropColumns

	18-OpenNLP
	OpenNLPNameFinder

	OpenNLPSentenceDetector

	NodeOpenNLPDocumentCategorizer

	15-ScoreCardPy
	Binning Scorecard

	VariableSelection Scorecard

	03-Prepare
	13-Others

	10-Condition

	09-Split

	11-AddColumn

	12-CastDataType

	06-Math

	03-DateTime

	07-String

	05-DataCleaning

	04-DataValidation
	ValidateFieldsAdvanced

	CompareDatasets

	ValidateAddress

	ValidateFieldsSimple

	CustomProcessors
	pyspark

	17-Documentation
	StickyNote

	Notes

	12-ML-H2O
	H2OWord2Vec

	H2OScore

	H2OModelSave

	H2OPCA

	H2OGLM

	H2OScore

	H2OMojoLoad

	H2OXGBoostScore

	H2O Model Load

	H2OXGBoostWithGridSearch

	H2OXGBoost

	H2OXGBoost

	H2O Model Save

	H2ONeuralNetwork

	H2ONaiveBayes

	H2OGLRM

	H2OGBM

	H2OKMeans

	H2OIsolationForest

	H2ODRF

	H2OMojoSave

	H2OModelLoad

	13-ML-AWSSagemaker
	KMeansSageMakerEstimator

	XGBoostSageMakerEstimator

	PCASageMakerEstimator

	SageMakerLinearLearnerBinaryClassifier

	SageMakerLinearLearnerRegressor

	SaveSageMakerFormat

	14-ML-Sklearn
	SklearnPredict

	SklearnRegressionEvaluator

	Sklearn Model Load

	CustomMetrics

	SkLearnRidgeRegression

	SklearnRandomForestClassifier

	SklearnRandomForestRegression

	SklearnGradientBoostingRegression

	SklearnGradientBoostingClassifier

	SkLearnLassoRegression

	SklearnLogisticRegression

	Sklearn Model Save

	Sklearn Model Load From S3

	SklearnClassificationEvaluator

	Sklearn Model Save To S3

	CategoryEncoders

	08-Group
	GroupBy

	Cube

	Rollup

	PivotBy

	06-Code
	SQLExecuter

	PipePython2

	ScalaUDF

	Jython

	UnixShellCommands

	SQL

	Scala

	PipePython

	PySpark

	RunHIVEQL

	10-Visualization
	GraphRegionGeo

	PrintNRows

	GraphValues

	GraphGroupByColumn

	Sample PrintNRows

	19-Deprecated
	StringToDate

	15-Streaming
	StreamingSocketTextStream

	StreamingKafka

	StreamingTextFileStream

	15-StructuredStreaming
	StructuredStreamingCSV

	StructuredStreamingHiveSink2

	StructuredStreamingFileSink

	StructuredStreamingSocket

	StructuredStreamingHiveSink

	StructuredStreamingKinesis

	StructuredStreamingKafka

	StructuredStreamingConsoleSink

	14-DL
	KerasModelFit

	KerasPredict

	KerasModelCompile

	DenseLayer

	KerasModelSequential

	07-JoinUnion
	UnionAll

	GeoJoin

	JoinOnCommonColumns

	JoinOnColumns

	JoinUsingSQL

	UnionDistinct

	JoinOnCommonColumn

16-Utilities

	03-Execution
	ExecuteInLoop

	ReadParameters

	SpecifyParameters

	ExecuteWorkflow

	02-Data-Partition
	Coalesce

	Repartition

	NumberOfPartitions

	01-Spark-Performance
	CacheDataFrame

	PrintSparkConfiguration

	UnpersistDataFrame

03-Execution

	ExecuteInLoop
	Type

	Class

	Fields

	ReadParameters
	Input

	Output

	Type

	Class

	Fields

	SpecifyParameters
	Type

	Class

	Fields

	ExecuteWorkflow
	Type

	Class

	Fields

ExecuteInLoop

Type

transform

Class

fire.nodes.etl.NodeLoop

Fields

	Name

	Title

	Description

	loopCols

	Loop Columns

	

ReadParameters

Reads in the parameters from the given file.

Input

Input file has records in the following form on each line : name=value

Output

It adds the input parameters into the JobContext

Type

shellcommand

Class

fire.nodes.util.NodeReadParameters

Fields

	Name

	Title

	Description

	path

	Path

	Path of the parameters file containing the parameter name and value in each line

SpecifyParameters

Provides additional parameters to the workflow. When running with spark-submit, variables can also be given on the command line with –var name=value.

Type

doc

Class

fire.nodes.util.NodeSpecifyParameters

Fields

	Name

	Title

	Description

	names

	Parameter Names

	Parameter Names

	values

	Parameter Values

	Parameter Values

ExecuteWorkflow

Fires the given workflow. Does not wait for the workflow to complete to resume execution

Type

transform

Class

fire.nodes.util.NodeExecuteWorkflow

Fields

02-Data-Partition

	Coalesce
	Input

	Output

	Type

	Class

	Fields

	Details

	Repartition
	Input

	Type

	Class

	Fields

	NumberOfPartitions
	Type

	Class

	Fields

Coalesce

This node coalesces the DataFrame into specified number of Partitions

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

The output DataFrame has the specified number of partitions

Type

transform

Class

fire.nodes.etl.NodeCoalesce

Fields

	Name

	Title

	Description

	numPartitions

	Number of Partitions

	input for number of partitions

Details

This node coalesces the DataFrame into specified number of Partitions.

It is specially helpful for the case when too many small files are being created. In such a scenario, the Coalesce node can be used to limit the number of output files produced.

Repartition

This node repartitions incoming dataframe into a specified number of partitions

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeRepartition

Fields

	Name

	Title

	Description

	numPartitions

	Number of Partitions

	Number of Partitions

NumberOfPartitions

This node will get the number partitions in input dataframe.

Type

transform

Class

fire.nodes.util.NodeGetNumberOfPartitions

Fields

01-Spark-Performance

	CacheDataFrame
	Input

	Output

	Type

	Class

	Fields

	PrintSparkConfiguration
	Type

	Class

	Fields

	UnpersistDataFrame
	Input

	Output

	Type

	Class

	Fields

CacheDataFrame

Caches the DataFrame with the provided StorageLevel

Input

It takes in a DataFrame as input

Output

The input DataFrame is cached with the specified storage level and send to the output

Type

transform

Class

fire.nodes.util.NodeCacheDataFrame

Fields

	Name

	Title

	Description

	storageLevel

	Storage Level

	storage level name

PrintSparkConfiguration

Print the all spark configuration used in workflow.

Type

transform

Class

fire.nodes.util.NodeSparkConfiguration

Fields

UnpersistDataFrame

Unpersists the output DataFrames of the given Nodes

Input

It takes in a DataFrame as input

Output

The outputs the incoming DataFrame

Type

transform

Class

fire.nodes.util.NodeUnpersistDataFrame

Fields

	Name

	Title

	Description

	nodeIdsToUnpersist

	Node ID to Unpersist

	Output of node to unpersist

09-DataProfiling

	ColumnsCardinality
	Type

	Class

	Fields

	SummaryStatistics
	Type

	Class

	Fields

	Details

	SkewnessAndKurtosis
	Type

	Class

	Fields

	HistoGram
	Type

	Class

	Fields

	FlagOutlier
	Type

	Class

	Fields

	DistinctValuesInColumn
	Type

	Class

	Fields

	NullValuesInColumn
	Type

	Class

	Fields

	CrossTab
	Type

	Class

	Fields

	GraphWeekDayDistribution
	Type

	Class

	Fields

	Correlation
	Input

	Output

	Type

	Class

	Fields

	Details

	GraphYearDistribution
	Type

	Class

	Fields

	GraphMonthDistribution
	Type

	Class

	Fields

ColumnsCardinality

Distribution of categorical data. Calculates the count of records for each unique value for the column specified.

Type

transform

Class

fire.nodes.ml.NodeColumnsCardinality

Fields

	Name

	Title

	Description

	maxValuesToDisplay

	Max Values To Display

	Maximum number of values to display in result.

	inputCols

	Column Names

	Name of columns for the cardinality data

SummaryStatistics

Summary statistics provide useful information about sample data. eg: measures of spread.

Type

transform

Class

fire.nodes.ml.NodeSummary

Fields

Details

Summary statistics provides useful information about sample data. eg: measures of spread.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-statistics.html#summary-statistics

Summary Node provides a table consist of informations such as number of non-null entries (count), mean, standard deviation, and minimum and maximum value for each numerical column.

SkewnessAndKurtosis

Type

transform

Class

fire.nodes.etl.NodeSkewnessAndKurtosis

Fields

	Name

	Title

	Description

	inputCols

	Column Names

	Name of columns to get the skewness and kurtosis.

HistoGram

Computes a histogram of the data using number of bins evenly spaced between the minimum and maximum of the specific columns.

Type

transform

Class

fire.nodes.ml.NodeHistoGramCal

Fields

	Name

	Title

	Description

	inputCols

	Column Name

	Name of column

	bins

	Number of Bins

	Number of Bins

FlagOutlier

Flag the outlier based on the selected column using Box-and-Whisker technique.

Type

transform

Class

fire.nodes.ml.NodeFlagOutlier

Fields

	Name

	Title

	Description

	inputCol

	Input Column to flag the outlier

	The Input Column to flag the outlier

	lowerQuantile

	LowerQuantile

	

	upperQuantile

	UpperQuantile

	

DistinctValuesInColumn

Type

transform

Class

fire.nodes.etl.NodeDistinctValues

Fields

	Name

	Title

	Description

	distinctCols

	Column Names

	Name of columns to get the distinct combination of values.

NullValuesInColumn

Number of Null Values in Selected Columns.

Type

transform

Class

fire.nodes.etl.NodeNullValuesInColumn

Fields

	Name

	Title

	Description

	inputCols

	Column Names

	Name of columns for Number of Null Values Check

CrossTab

Categorical V.S. Categorical

Type

transform

Class

fire.nodes.ml.NodeCrosstab

Fields

GraphWeekDayDistribution

This node Finds the distribution of Week Days from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphWeekDayDistribution

Fields

Correlation

calculates the correlation between two series of data.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The input DataFrame is passed along to the next Processors

Type

transform

Class

fire.nodes.ml.NodeCorrelation

Fields

Details

This node calculates the correlation between two series of data in a common operation in Statistics.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-statistics.html#correlations

GraphYearDistribution

This node Finds the distribution of Years from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphYearDistribution

Fields

GraphMonthDistribution

This node Finds the distribution of months from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphMonthDistribution

Fields

05-FeatureEngineering

	WordCount
	Type

	Class

	Fields

	MovingWindowFunctions
	Input

	Output

	Type

	Class

	Fields

	DateToAge
	Type

	Class

	Fields

	Details

	Examples

WordCount

Type

transform

Class

fire.nodes.ml.NodeWordCount

Fields

MovingWindowFunctions

This node calculates the moving values of selected functions for the field(input column).

Input

It accepts a DataFrame as input from the previous Node

Output

A new columns is added which contains the results of applying the selected function on the given column of the input DataFrame

Type

transform

Class

fire.nodes.etl.NodeMovingWindowFunctions

Fields

	Name

	Title

	Description

	windowStart

	Window Start

	value to be used to calculate the window from

	windowEnd

	Window End

	value to be used to calculate the window to

	partitionCol

	Partition Column Name

	partition column to split the incoming dataframe for the sliding/window operation

	orderCol

	Order Column Name

	the order of the selected column for the sliding/window operation

	inputCols

	Input Columns

	input column name for calc

	functions

	Functions

	

DateToAge

This node converts a date-column into columns of age (both in years and in days).

Type

transform

Class

fire.nodes.etl.NodeDateToAge

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	Input Column Name

	yearsOutputColName

	Years Output Column Name

	Num Years Output Column Name

	daysOutputColName

	Days Output Column Name

	Num Days Output Column Name

Details

Calculates age from the given date or timestamp column.
Age is calculated and displayed in years and days columns.

Examples

Examples when date is 06-25-2019

dd-MM-yyyy : 20-09-2018 , 0 year : 278 days
MM-dd-yyyy : 09-30-2018 , 0 year : 268 days
yyyy-MM-dd : 2012-01-31 , 7 year : 2702 days

01-IO

	02-ReadStructured
	ReadExcel

	EmptyDataset

	ReadCSV

	ReadAvro

	ReadXML

	QueryJDBCConnection

	JDBCIncrementalLoad

	DB2 JDBC

	ReadParquet

	ReadDatabricksTable

	JDBCConnection

	CreateDataset

	DatasetStructured

	ReadJDBC

	ReadHanaCsv

	URLSingleRecordJSONReader

	ReadLibsvm

	ReadJSON

	URLTextFileReader

	ReadShapeFile

	03-ReadUnstructured
	TextFiles

	WholeTextFiles

	Tika

	PDF

	PDFImageOCR

	BinaryFiles

	03-Save
	SaveJDBC

	UpsertJDBC

	SaveCSV

	SaveJSON

	KafkaProducer

	SaveParquet

	SaveORC

	InsertIntoHIVETable

	SaveAsHIVETable

	SaveAvro

	01-Connectors
	Salesforce

	ReadMarketo

	SaveRedshift-AWS

	WriteToSnowFlake

	SaveCassandra

	ExecuteQueryInSnowFlake

	ReadMongoDB

	SaveMongoDB

	ReadDatabricksTable

	ReadHIVETable

	SaveHBase

	SaveElasticSearch

	ReadFromSnowFlake

	SFTP

	ReadCassandra

	SaveDatabricksTable

	ReadRedshift-AWS

	ReadElasticSearch

02-ReadStructured

	ReadExcel
	Type

	Class

	Fields

	EmptyDataset
	Input

	Output

	Type

	Class

	Fields

	ReadCSV
	Input

	Output

	Type

	Class

	Fields

	ReadAvro
	Input

	Output

	Type

	Class

	Fields

	ReadXML
	Input

	Output

	Type

	Class

	Fields

	QueryJDBCConnection
	Input

	Output

	Type

	Class

	Fields

	JDBCIncrementalLoad
	Input

	Type

	Class

	Fields

	DB2 JDBC
	Type

	Class

	Fields

	ReadParquet
	Input

	Output

	Type

	Class

	Fields

	ReadDatabricksTable
	Input

	Output

	Type

	Class

	Fields

	JDBCConnection
	Input

	Output

	Type

	Class

	Fields

	CreateDataset
	Input

	Output

	Type

	Class

	Fields

	DatasetStructured
	Input

	Output

	Type

	Class

	Fields

	Details

	ReadJDBC
	Input

	Output

	Type

	Class

	Fields

	ReadHanaCsv
	Input

	Output

	Type

	Class

	Fields

	URLSingleRecordJSONReader
	Type

	Class

	Fields

	ReadLibsvm
	Input

	Output

	Type

	Class

	Fields

	ReadJSON
	Type

	Class

	Fields

	Details

	URLTextFileReader
	Type

	Class

	Fields

	ReadShapeFile
	Input

	Output

	Type

	Class

	Fields

ReadExcel

Dataset Node for reading Excel files

Type

dataset

Class

fire.nodes.dataset.NodeDatasetExcel

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Excel file

	sheetName

	Sheetname

	Excel Sheet Name

	header

	Header

	Does the file have a header row

	outputColNames

	Column Names for the Excel

	New Output Columns of the SQL

	outputColTypes

	Column Types for the Excel

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Excel

	Format of the Output Columns

EmptyDataset

It creates an empty DataFrame

Input

It does not read any input

Output

It creates an empty DataFrame

Type

dataset

Class

fire.nodes.dataset.NodeDatasetEmpty

Fields

ReadCSV

It reads in CSV files and creates a DataFrame from it

Input

It reads in CSV text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetCSV

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	separator

	Separator

	CSV Separator

	header

	Header

	Does the file have a header row

	dropMalformed

	Drop Malformed

	Whether to drop Malformed records or error

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

ReadAvro

Dataset Node for reading Apache Avro files

Input

It reads in Avro files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetAvro

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Avro file/directory

	outputColNames

	Column Names for the Avro

	Output Columns of the Avro

	outputColTypes

	Column Types for the Avro

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Avro

	Format of the Output Columns

ReadXML

It reads in XML files and creates a DataFrame from it

Input

It reads in XML text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetXML

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	rowTag

	Row Tag

	Row Tag

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

QueryJDBCConnection

This node executes query in Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeJDBCQueryUsingConnection

Fields

	Name

	Title

	Description

	connection

	Connection

	The JDBC connection to connect

	query

	Query

	

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

JDBCIncrementalLoad

This node is used to load incremental data from RDBMS to Hive.

Input

RDBMS detail like url, username , password, hivedb , hive table name

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBCIncrementalLoad

Fields

	Name

	Title

	Description

	sqldb

	SqlDB

	

	sqlServer

	SqlServer

	

	sqlUser

	SqlUser

	

	password

	password

	

	sqltable

	SqlTable

	

	sqlkeycolumn

	SqlKeyColumn

	

	homeDirectory

	Config Path

	

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

DB2 JDBC

This node reads data from other databases using JDBC.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBC

Fields

	Name

	Title

	Description

	url

	DB2 JDBC URL

	The JDBC URL to connect to

	user

	User

	User for connecting to the DB

	password

	Password

	Password for connecting to the DB

	dbtable

	DB2 Table

	The JDBC table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	driver

	DB2 Driver

	The class name of the JDBC driver needed to connect to this URL

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

ReadParquet

Dataset Node for reading Apache Parquet files

Input

It reads in Parquet files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetParquet

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Parquet file/directory

	outputColNames

	Column Names for the Parquet

	Output Columns of the Parquet

	outputColTypes

	Column Types for the Parquet

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Parquet

	Format of the Output Columns

ReadDatabricksTable

This node reads data from Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeReadDatabricksTable

Fields

	Name

	Title

	Description

	db

	Databricks Database

	Databricks Database

	table

	Databricks Table

	Databricks Table from which to read the data

	driver

	Driver

	The class name of the JDBC driver needed to connect to this URL

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

JDBCConnection

This node reads data from Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBCUsingConnection

Fields

	Name

	Title

	Description

	connection

	Connection

	The JDBC connection to connect

	dbtable

	DB Table

	The JDBC table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

CreateDataset

Creates a dataset with the specified number of Rows and 9 pre-defined columns

Input

It does not read data from any external source

Output

It creates a DataFrame with the specified number of Rows

Type

dataset

Class

fire.nodes.dataset.NodeDatasetCreate

Fields

	Name

	Title

	Description

	numRows

	Number of Rows

	Number of Rows in the Output Dataset

DatasetStructured

This Node creates a DataFrame by reading data from HDFS, HIVE etc. The dataset has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.

Input

It reads in data from HIVE or files HDFS

Output

It creates a DataFrame from the input data and sends it to its output.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetStructured

Fields

	Name

	Title

	Description

	dataset

	Dataset

	Selected Dataset

Details

This Node creates a DataFrame by reading data from HDFS, HIVE etc.

The data has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.

ReadJDBC

This node reads data from Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBC

Fields

	Name

	Title

	Description

	url

	URL

	The JDBC URL to connect to

	user

	User

	User for connecting to the DB

	password

	Password

	Password for connecting to the DB

	dbtable

	DB Table

	The JDBC table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	driver

	Driver

	The class name of the JDBC driver needed to connect to this URL

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

ReadHanaCsv

It reads in Hana CSV files and creates a DataFrame from it

Input

It reads in CSV text files and sql file to create schema from it

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeReadHANACSVDump

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	hdfsSqlFile

	SQL File

	Path of the sql file that contains create table script.

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

URLSingleRecordJSONReader

It reads in single record JSON from the given URL and creates a DataFrame from it

Type

dataset

Class

fire.nodes.dataset.NodeDatasetURLSingleRecordJsonReader

Fields

	Name

	Title

	Description

	URL

	URL

	URL from where to read the JSON string from

	outputColNames

	Column Names

	Column Names

	outputColTypes

	Column Types

	Data Types

	outputColFormats

	Column Formats

	Formats

ReadLibsvm

It reads in Libsvm files and creates a DataFrame from it

Input

It reads in Libsvm text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetLibsvm

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	numFeatures

	NumFeatures

	Number of features in feature column

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

ReadJSON

Dataset Node for reading JSON files

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJSON

Fields

	Name

	Title

	Description

	path

	Path

	Path of the JSON file/directory

	multiLine

	Multi Line

	

	outputColNames

	Column Name

	New Output Column Name

	outputColTypes

	Column Type

	Data Type of the Output Column

	outputColFormats

	Column Format

	Format of the Output Column

Details

It reads in JSON files. Each JSON record has to be on a separate line for Spark to handle it correctly.

There cannot be line break within a record.

URLTextFileReader

Reads text file from the given URL and creates a DataFrame from it. Each line in the file is a record in the DataFrame.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetUrlTextFileReader

Fields

	Name

	Title

	Description

	url

	URL

	URL of the file

ReadShapeFile

It reads in Shape files and creates a DataFrame from it

Input

It reads in Shape files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetShapeFile

Fields

	Name

	Title

	Description

	path

	Path

	Path of the input directory

03-ReadUnstructured

	TextFiles
	Type

	Class

	Fields

	WholeTextFiles
	Type

	Class

	Fields

	Tika
	Type

	Class

	Fields

	PDF
	Type

	Class

	Fields

	PDFImageOCR
	Input

	Output

	Type

	Class

	Fields

	BinaryFiles
	Type

	Class

	Fields

	Details

TextFiles

Reads in Text Files from a given path and loads each line as a separate Row

Type

dataset

Class

fire.nodes.dataset.NodeDatasetTextFiles

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	outputCol

	Output Column Name

	Text Lines Column in the Output DataFrame

WholeTextFiles

Reads in Whole Text Files directory from a given path and loads each files as a separate Row with key(file name and values(file content)

Type

dataset

Class

fire.nodes.dataset.NodeDatasetWholeTextFiles

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text files directory

Tika

Reads in files from a given path and parses them with Apache Tika

Type

dataset

Class

fire.nodes.dataset.NodeDatasetTika

Fields

	Name

	Title

	Description

	path

	Path

	Path of the file/directory

	fileNameCol

	File Name Column

	File Name Column in the Output DataFrame

	contentCol

	Content Column

	Tika output Column in the Output DataFrame

PDF

Reads in PDF Files from a given path and extracts the text content from them

Type

dataset

Class

fire.nodes.dataset.NodeDatasetPDF

Fields

	Name

	Title

	Description

	path

	Path

	Path of the PDF file/directory

	fileNameCol

	File Name

	File Name Column in the Output DataFrame

	contentCol

	File Content

	File Content Column in the Output DataFrame

PDFImageOCR

Reads in PDF Files from a given path, extracts the images from them and converts them to text with Tesseract

Input

It reads in a PDF file or a directory containing PDF files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetPDFImageOCR

Fields

	Name

	Title

	Description

	path

	Path of the PDF files

	Path of the PDF file/directory

	fileNameCol

	File Name Column

	File Name Column in the Output DataFrame

	outputCol

	Column Name which contains the result of OCR

	OCR output Column in the Output DataFrame

BinaryFiles

Reads in Binary Files from a given path and loads them as FileName/Content

Type

dataset

Class

fire.nodes.dataset.NodeDatasetBinaryFiles

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Binary file/directory

	fileNameCol

	File Name Column

	File Name Column in the Output DataFrame

	binaryContentCol

	Binary File Content Column

	Binary File Content Column in the Output DataFrame

Details

It creates a new Dataframe from some data.
Data can be in binary, text, parquet, pdf, image files.

03-Save

	SaveJDBC
	Type

	Class

	Fields

	UpsertJDBC
	Type

	Class

	Fields

	SaveCSV
	Type

	Class

	Fields

	SaveJSON
	Type

	Class

	Fields

	KafkaProducer
	Type

	Class

	Fields

	SaveParquet
	Type

	Class

	Fields

	SaveORC
	Type

	Class

	Fields

	InsertIntoHIVETable
	Type

	Class

	Fields

	Details

	SaveAsHIVETable
	Type

	Class

	Fields

	Details

	SaveAvro
	Type

	Class

	Fields

SaveJDBC

This node writes data to databases using JDBC.

Type

transform

Class

fire.nodes.save.NodeSaveJDBC

Fields

	Name

	Title

	Description

	url

	URL

	The JDBC URL to connect to

	table

	DB Table

	The JDBC table to write to

	driver

	Driver

	The class name of the JDBC driver needed to connect to the URL

	user

	User

	Username with which to connect to the DB

	password

	Password

	Password with which to connect to the DB

	truncate

	Truncate

	Whether to truncate the table in case Save Mode is Overwrite

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the table Exists

UpsertJDBC

This node insert or update the data to databases using JDBC.

Type

transform

Class

fire.nodes.save.NodeUpsertJDBC

Fields

	Name

	Title

	Description

	primaryKeyColumn

	PrimaryKeyColumn

	Key column name in table

	url

	URL

	The JDBC URL to connect to

	table

	DB Table

	The JDBC table to write to

	driver

	Driver

	The class name of the JDBC driver needed to connect to the URL

	user

	User

	Username with which to connect to the DB

	password

	Password

	Password with which to connect to the DB

SaveCSV

Saves the DataFrame into the specified location in CSV Format

Type

transform

Class

fire.nodes.save.NodeSaveCSV

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the CSV files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

	header

	Header

	Should a Header Row be saved with each File?

	partitionColNames

	Partition Column Names

	Partition Column Names

SaveJSON

Saves the DataFrame into the specified location in JSON Format

Type

transform

Class

fire.nodes.save.NodeSaveJSON

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the JSON files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

	partitionColNames

	Partition Column Names

	Partition Column Names

KafkaProducer

Write out the Dataframe to a specified Apache Kafka Topic

Type

transform

Class

fire.nodes.save.NodeKafkaProducer

Fields

	Name

	Title

	Description

	brokers

	Kafka Brokers

	Brokers

	topic

	Topic

	Kafka Topic to write out the incoming Dataframe to

SaveParquet

Saves the DataFrame into the specified location in Parquet Format. When running on Hadoop, it is saved onto HDFS.

Type

transform

Class

fire.nodes.save.NodeSaveParquet

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the Parquet files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

	partitionColNames

	Partition Column Names

	Partition Column Names

SaveORC

Saves the DataFrame into the specified location in ORC Format

Type

transform

Class

fire.nodes.save.NodeSaveORC

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the ORC files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

InsertIntoHIVETable

Saves the DataFrame into an Apache HIVE Table

Type

transform

Class

fire.nodes.save.NodeInsertIntoTable

Fields

	Name

	Title

	Description

	database

	HIVE Database

	Name of the HIVE Database

	table

	HIVE Table

	Name of the HIVE table

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

	partitionBy

	Partition By

	Partition By Column (can be empty)

	bucketBy

	Bucket By

	Bucket By Column (can be empty)

Details

When using Insert Into Table, the HIVE table has to already exist.

Otherwise it throws the following exception:

org.apache.spark.sql.catalyst.analysis.NoSuchTableException: Table or view ‘xyz’ not found in database ‘abc’;

SaveAsHIVETable

Saves the DataFrame into an Apache HIVE Table

Type

transform

Class

fire.nodes.save.NodeSaveAsTable

Fields

	Name

	Title

	Description

	database

	HIVE Database

	Name of the HIVE Database

	table

	HIVE Table

	Name of the HIVE table

	partitionBy

	Partition By

	List of columns to partition by - separated by space

	format

	Format

	File format when saving to HIVE Table

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

Details

If the HIVE table does not exist, it would create the table.

SaveAvro

Saves the DataFrame into the specified location in Apache Avro Format

Type

transform

Class

fire.nodes.save.NodeSaveAvro

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the Avro files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

01-Connectors

	Salesforce
	Type

	Class

	Fields

	ReadMarketo
	Type

	Class

	Fields

	SaveRedshift-AWS
	Type

	Class

	Fields

	WriteToSnowFlake
	Type

	Class

	Fields

	SaveCassandra
	Type

	Class

	Fields

	ExecuteQueryInSnowFlake
	Type

	Class

	Fields

	ReadMongoDB
	Type

	Class

	Fields

	SaveMongoDB
	Input

	Output

	Type

	Class

	Fields

	ReadDatabricksTable
	Input

	Output

	Type

	Class

	Fields

	ReadHIVETable
	Input

	Output

	Type

	Class

	Fields

	SaveHBase
	Input

	Output

	Type

	Class

	Fields

	Details

	SaveElasticSearch
	Type

	Class

	Fields

	ReadFromSnowFlake
	Type

	Class

	Fields

	SFTP
	Type

	Class

	Fields

	ReadCassandra
	Type

	Class

	Fields

	SaveDatabricksTable
	Input

	Output

	Type

	Class

	Fields

	ReadRedshift-AWS
	Type

	Class

	Fields

	ReadElasticSearch
	Type

	Class

	Fields

Salesforce

This node reads data from Salesforce.

Type

dataset

Class

fire.nodes.salesforce.NodeReadSalesforce

Fields

	Name

	Title

	Description

	sql

	SQL

	Sql for reading salesforce data ex - select id, name, amount from opportunity

	userNmae

	User Name

	UserName of Salesforce

	password

	Password

	Password of Salesforce

	readOption

	Read Option

	Pulling data/Object from salesforce

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

ReadMarketo

Node for reading Marketo files

Type

dataset

Class

fire.nodes.marketo.NodeReadMarketo

Fields

	Name

	Title

	Description

	clientId

	Client Id

	Marketo account clientId

	clientSecret

	Client Secret

	Marketo account clientSecret

	instanceUrl

	Instance Url

	Instance URL to be used to access Marketo. It has to be specified without /rest. i.e it should be like https://119-AAA-888.mktorest.com

	object

	Object

	Object to be queried from Marketo. ex. leads

	filterType

	Filter Type

	Filter field to be used

	filterValues

	Filter Values

	Comma separated filter values to be applied

	fromDate

	From Date

	(Optional) Datatime from which the data has to be fetched. It has to be in ISO 8601 format

	customObject

	Custom Object

	(Optional) Boolean to specify if the specified object is custom object, Default value is false

	apiVersion

	Api Version

	(Optional) API Version to be used. Default value is v1

	modifiedFields

	Modified Fields

	(Optional) Fields to be considered for leadChanges. It has to be comma separated field names

	queryType

	Query Type

	Query Type of Marketo

	outputColNames

	Column Names for the Marketo

	New Output Columns of the SQL

	outputColTypes

	Column Types for the Marketo

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Marketo

	Format of the Output Columns

SaveRedshift-AWS

This node save data to Redshift using JDBC.

Type

transform

Class

fire.nodes.aws.NodeSaveRedshift

Fields

	Name

	Title

	Description

	url

	URL

	The JDBC URL to connect to

	dbtable

	Redshift Table

	The Redshift table that should be write. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	awsAccessKeyId

	AWS Access Key Id

	AWS Access Key Id

	awsSecretAccessKey

	AWS Secret Access Key

	AWS Secret Access Key

	tempS3Dir

	Temporary S3 directory

	Temporary S3 directory

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

WriteToSnowFlake

Type

transform

Class

fire.nodes.snowflake.NodeWriteToSnowFlake

Fields

	Name

	Title

	Description

	sfUrl

	SF Url

	SnowFlake URL to connect to

	sfUser

	SF User

	User for connecting to the SnowFlake

	sfPassword

	SF Password

	Password for connecting to the SnowFlake

	sfDatabase

	SF Database

	Database for connecting to the SnowFlake

	sfSchema

	SF Schema

	Schema for connecting to the SnowFlake

	sfWarehouse

	SF Warehouse

	Warehouse for connecting to the SnowFlake

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the table Exists

	dbtable

	SF Table

	

SaveCassandra

Saves the rows of the incoming DataFrame into Apache Cassandra

Type

transform

Class

fire.nodes.cassandra.NodeSaveCassandra

Fields

	Name

	Title

	Description

	table

	Cassandra Table Name

	Cassandra Table into which data gets loaded

	keyspace

	Cassandra Keyspace Name

	The keyspace where table is looked for

	host

	Host

	

	username

	Username

	

	password

	Password

	

ExecuteQueryInSnowFlake

Type

dataset

Class

fire.nodes.snowflake.NodeExecuteQueryInSnowFlake

Fields

	Name

	Title

	Description

	sfUrl

	SF Url

	SnowFlake URL to connect to

	sfUser

	SF User

	User for connecting to the SnowFlake

	sfPassword

	SF Password

	Password for connecting to the SnowFlake

	sfDatabase

	SF Database

	Database for connecting to the SnowFlake

	sfSchema

	SF Schema

	Schema for connecting to the SnowFlake

	sfWarehouse

	SF Warehouse

	Warehouse for connecting to the SnowFlake

	query

	SF Query

	

	outputColNames

	Output Column Names

	Name of the Output Columns

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

ReadMongoDB

Reads data from MongoDB

Type

dataset

Class

fire.nodes.mongodb.NodeReadMongoDB

Fields

	Name

	Title

	Description

	mongoURI

	MongoDB URI

	URI of MongoDB to read from

	mongoDBName

	MongoDB Database

	Name of the MongoDB database to read from

	mongoTableName

	MongoDB Table

	Name of the MongoDB table to read from

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

SaveMongoDB

It Saves the incoming Dataframe into MongoDB

Input

It takes in a DataFrame as input

Output

Incoming dataFrame is passed along to the next nodes.

Type

transform

Class

fire.nodes.mongodb.NodeSaveMongoDB

Fields

	Name

	Title

	Description

	mongoURI

	mongo URI

	URI of mongodb

	mongoDBName

	mongoDB Name

	mongoDB Name

	mongoTableName

	mongo Table Name

	mongo Table Name

ReadDatabricksTable

This node reads a table from Databricks

Input

It reads data from Databricks Table

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.databricks.NodeReadDatabricksTable

Fields

ReadHIVETable

This node reads data from Apache HIVE table and creates a DataFrame from it

Input

It reads in CSV text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.hive.NodeHIVE

Fields

SaveHBase

Saves all the rows in the incoming DataFrame onto Apache HBase using the specific field mapping

Input

It takes in a DataFrame as input

Output

Incoming dataFrame is passed along to the next nodes.

Type

transform

Class

fire.nodes.hbase.NodeSaveHBase

Fields

Details

SaveHBase node saves all the rows in the incoming DataFrame onto HBase using the specific field mapping.

The DataFrame columns which do not have to be loaded into HBase are left empty.

SaveElasticSearch

Stores the rows of the incoming DataFrame into Elastic Search

Type

transform

Class

fire.nodes.elasticsearch.NodeSaveElasticSearch

Fields

	Name

	Title

	Description

	indexName

	Index Name

	Name of the Elastic Search Index

	elasticSearchHost

	Elastic Search Host

	Name of the Elastic Search Host

	elasticSearchPort

	Elastic Search Port

	Port of Elastic Search

	esIndexAutoCreate

	es.index.auto.create

	ES Index Auto Create

	esNodesWANOnly

	es.nodes.wan.only

	ES Nodes WAN Only

	esNodesIngestOnly

	es.nodes.ingest.only

	ES Nodes Ingest Only

	esNodesDataOnly

	es.nodes.data.only

	ES Nodes Data Only

	esNetHttpAuthUser

	es.net.http.auth.user

	Username

	esNetHttpAuthPass

	es.net.http.auth.pass

	Password

	esConfKeys

	Config Key/Value Pairs

	More Config Values

	esConfValues

	Config Key/Value Pairs

	More Config Values

ReadFromSnowFlake

Type

dataset

Class

fire.nodes.snowflake.NodeReadFromSnowFlake

Fields

	Name

	Title

	Description

	sfUrl

	SF Url

	SnowFlake URL to connect to

	sfUser

	SF User

	User for connecting to the SnowFlake

	sfPassword

	SF Password

	Password for connecting to the SnowFlake

	sfDatabase

	SF Database

	Database for connecting to the SnowFlake

	sfSchema

	SF Schema

	Schema for connecting to the SnowFlake

	sfWarehouse

	SF Warehouse

	Warehouse for connecting to the SnowFlake

	dbtable

	SF Table

	

	outputColNames

	Output Column Names

	Name of the Output Columns

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

SFTP

Secure file transfer protocol

Type

dataset

Class

fire.nodes.sftp.NodeSftp

Fields

	Name

	Title

	Description

	sftpHost

	Sftp Host

	IP address of sftp

	sftPort

	Sft Port

	Port no of SFTP. Default port is 22

	sftpUser

	Sftp User Name

	SFTP User Name

	sftpPass

	Sftp Password

	SFTP User Password

	sftpUserDir

	Sftp User Directory

	user directory path(File take from)

	sftpDirectory

	Sftp Directory

	server directory path(Inside SFTP uploads folder ‘/uploads’)

	pemKey

	Pem Key

	Path of pem key directory

ReadCassandra

This node reads data from Apache Cassandra

Type

dataset

Class

fire.nodes.cassandra.NodeReadCassandra

Fields

	Name

	Title

	Description

	table

	Cassandra Table

	Cassandra Table from which to read the data

	keyspace

	Cassandra Keyspace

	Cassandra Keyspace

	host

	Cassandra host

	

	username

	Username

	

	password

	Password

	

SaveDatabricksTable

This node saves a input data as table in Databricks

Input

It take dataframe as input data.

Output

It creates a Table in Databricks from the dataframe(input data).

Type

transform

Class

fire.nodes.databricks.NodeSaveDatabricksTable

Fields

	Name

	Title

	Description

	database

	Databricks Database

	Name of the Database

	table

	Databricks Table

	Name of the table

	partitionBy

	Partition By

	List of columns to partition by - separated by space

	format

	Format

	File format when saving to Table

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

ReadRedshift-AWS

This node reads data from Redshift using JDBC.

Type

dataset

Class

fire.nodes.aws.NodeReadRedshift

Fields

	Name

	Title

	Description

	url

	URL

	The JDBC URL to connect to

	dbtable

	Redshift Table

	The Redshift table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	awsAccessKeyId

	AWS Access Key Id

	AWS Access Key Id

	awsSecretAccessKey

	AWS Secret Access Key

	AWS Secret Access Key

	tempS3Dir

	Temporary S3 directory

	Temporary S3 directory

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

ReadElasticSearch

Reads data from Elastic Search

Type

dataset

Class

fire.nodes.elasticsearch.NodeReadElasticSearch

Fields

	Name

	Title

	Description

	indexName

	Index Name

	Name of the Elastic Search Index

	elasticSearchHost

	Elastic Search Host

	Name of the Elastic Search Host

	elasticSearchPort

	Elastic Search Port

	Port of Elastic Search

	temporaryTable

	Spark Temporary Table for Reading from ES

	Spark Temporary Table to be used for reading from Elastic Search

	sql

	SQL for reading from Elastic Search

	SQL for reading from Elastic Search. Where condition can be applied here for limiting the rows read from ES.

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

11-ML-SparkML

	12-FreqPatternMining
	FPGrowth

	04-FeatureTransformers
	VectorAssembler

	IDF

	StopWordsRemover

	Tokenizer

	PolynominalExpansion

	VectorIndexer

	Normalizer

	OneHotEncoder

	NGramTransformer

	Binarizer

	VectorFunctions

	WordToScoreMapping

	IndexString

	QuantileDiscretizer

	SQLTransformer

	StringIndexer

	03-FeatureExtraction
	RFormula

	HashingTF

	CountVectorizer

	Word2Vec

	11-CollaborativeFiltering
	ALS

	09-Regression
	GBTRegression

	AFTSurvivalRegression

	XGBoostRegressor

	DecisionTreeRegression

	RandomForestRegression

	LinearRegression

	08-Clustering
	LDA

	GaussianMixture

	KMeans

	05-DimensionalityReduction
	SVD

	PCA

	02-FeatureScaler
	MinMaxScaler

	StandardScaler

	17-Util
	Spark ML Model Load

	TrainValidationSplit

	Spark ML Model Save

	Spark ML ROC

	CrossValidator

	Spark Pipeline

	07-SplitDataset
	Split With Stratified Sampling

	Split

	SplitProbabilityColumn

	10-Classification
	MultiLayerPerceptron

	GBTClassifier

	XGBoostClassifier

	LogisticRegression

	DecisionTreeClassifier

	NaiveBayes

	RandomForestClassifier

	13-EvaluatePredict
	MulticlassClassificationEvaluator

	RegressionEvaluator

	Predict

	BinaryClassificationEvaluator

	06-FeatureSelection
	ChiSqSelector

	VectorSlicer

12-FreqPatternMining

	FPGrowth
	Type

	Class

	Fields

	Details

FPGrowth

Does Pattern Mining using FPGrowth Algorithm

Type

transform

Class

fire.nodes.ml.NodeFPGrowth

Fields

	Name

	Title

	Description

	transactionCol

	Transaction Column

	Input data set, each element contains a transaction

	minSupport

	Min Support

	The minimum support for an itemset to be identified as frequent

	numPartitions

	Number of Partitions

	The number of partitions used to distribute the work

Details

This node does Pattern Mining using FPGrowth Algorithm.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html

04-FeatureTransformers

	VectorAssembler
	Input

	Output

	Type

	Class

	Fields

	IDF
	Input

	Output

	Type

	Class

	Fields

	StopWordsRemover
	Output

	Type

	Class

	Fields

	Details

	Tokenizer
	Input

	Output

	Type

	Class

	Fields

	PolynominalExpansion
	Input

	Output

	Type

	Class

	Fields

	VectorIndexer
	Input

	Output

	Type

	Class

	Fields

	Normalizer
	Input

	Output

	Type

	Class

	Fields

	Details

	OneHotEncoder
	Input

	Output

	Type

	Class

	Fields

	NGramTransformer
	Input

	Output

	Type

	Class

	Fields

	Details

	Binarizer
	Input

	Output

	Type

	Class

	Fields

	Details

	VectorFunctions
	Type

	Class

	Fields

	WordToScoreMapping
	Type

	Class

	Fields

	IndexString
	Type

	Class

	Fields

	Details

	QuantileDiscretizer
	Input

	Output

	Type

	Class

	Fields

	Details

	SQLTransformer
	Type

	Class

	Fields

	StringIndexer
	Input

	Output

	Type

	Class

	Fields

VectorAssembler

Merges multiple columns into a vector column

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column to the incoming DataFrame. The new column contains the values of the input columns concatenated into a vector in the specified order.

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorAssembler

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Input column of type - all numeric, boolean and vector

	outputCol

	Output Column

	Output column name

IDF

Compute the Inverse Document Frequency (IDF) given a collection of documents.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column of type vector, It takes feature vectors (generally created from HashingTF) as input and scales each column. Intuitively, it down-weights columns which appear frequently in a corpus.

Type

ml-transformer

Class

fire.nodes.ml.NodeIDF

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Input Column Name

	outputCol

	Output Column

	Output column name

	minDocFreq

	MinDocFreq

	The minimum of documents in which a term should appear.

StopWordsRemover

Filters out stop words from input. Null values from input array are preserved unless adding null to stopWords explicitly.

Output

It adds a new column containing the sequence of strings from the input column but with the stop words removed, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeStopWordsRemover

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Column containing the array text from which the stop words have to be removed

	outputCol

	Output Column

	Contains array of text by dropping list of stop words

	caseSensitive

	Case Sensitive

	Case Sensitive

	stopWords

	Comma Separated List of Custom Stop Words. If not provided, the default list of stop words would be used.

	Custom List of Stop Words

Details

Stop words filters out stop words from input. Null values from input array are preserved unless adding null to stopWords explicitly.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#stopwordsremover

Tokenizer

A tokenizer that converts the input string to lowercase and then splits it by white spaces.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the results of tokenization of the input column, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeTokenizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Column containing text (such as sentence)

	outputCol

	Output Column

	Output column name

PolynominalExpansion

Perform feature expansion in a polynomial space

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column of type vector, Expanding your features into a polynomial space, which is formulated by an n-degree combination of original dimensions.

Type

ml-transformer

Class

fire.nodes.ml.NodePolynominalExpansion

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	degree

	Degree

	The polynomial degree to expand, which should be >= 1. A value of 1 means no expansion.

VectorIndexer

Vector Indexer indexes categorical features inside of a Vector. It decides which features are categorical and converts them to category indices. The decision is based on the number of distinct values of a feature.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It indexes categorical features in datasets of Vectors and stores the result into a new column of the DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorIndexer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The Input column name

	outputCol

	Output Column

	Output column name

	maxCategories

	Maximum Categories

	Threshold for the number of values a categorical feature can take. If a feature is found to have > maxCategories values, then it is declared continuous. Must be >= 2

Normalizer

Normalizer is a Transformer which transforms a dataset of Vector rows, normalizing each Vector to have unit norm.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the normalized value of the input column, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeNormalizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	p

	P

	Normalization in L^p space. Must be >= 1. (default: p = 2)

Details

Normalizer is a Transformer which transforms a dataset of Vector rows, normalizing each Vector to have unit norm.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#normalizer

OneHotEncoder

Maps a column of label indices to a column of binary vectors, with at most a single one-value

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column which contains the mapping of a column of label indices to a column of binary vectors, with at most a single one-value.

Type

ml-transformer

Class

fire.nodes.ml.NodeOneHotEncoder

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Input columns for encoding

	outputCols

	Output Columns

	Output columns

NGramTransformer

Converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words.When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column consisting of a sequence of nn-grams where each nn-gram is represented by a space-delimited string of nn consecutive words, to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeNGramTransformer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Contains sequence of strings

	inputColStringArrCol

	List of Words

	Sequence of words

	outputCol

	Output Column

	Consist of a sequence of n-grams where each n-gram is represented by a space-delimited string of n consecutive words

	numberOfGrams

	Number of Grams

	Sequence of ‘string array’ for integer ‘Number of Grams’

Details

This node converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words.When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned”

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#n-gram

Binarizer

Binarize a column of continuous features given a threshold.

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

A new column containing the binarized values is added to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeBinarizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	threshold

	Threshold

	The features greater than the threshold, will be binarized to 1.0.The features equal to or less than the threshold, will be binarized to 0.0.

Details

This node binarizes a column of continuous features given a threshold.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-features.html#binarizer

VectorFunctions

Vector Functions for transforming Vectors

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorFunctions

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The Input column name

	vectorFunction

	Vector Function

	Vector Function Name

	parameter

	Parameter

	Parameter for the Function

	outputCol

	Output Column

	Output column name

WordToScoreMapping

Map the original word of hashValue to score.

Type

ml-transformer

Class

fire.nodes.ml.NodeWordToScoreMapping

Fields

	Name

	Title

	Description

	words

	Words

	Array of words

	features

	Features

	Vector with hash value of words

	output

	Output

	

IndexString

Maps a column of indices back to a new column of corresponding string values. The index-string mapping is either from the ML attributes of the input column, or from user-supplied labels

Type

ml-transformer

Class

fire.nodes.ml.NodeIndexString

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Column containing label indices

	outputCol

	Output Column

	Output column name

Details

This node maps a column of indices back to a new column of corresponding string values. The index-string mapping is either from the ML attributes of the input column, or from user-supplied labels

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#indextostring

QuantileDiscretizer

QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical features.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column of binned categorical features.

Type

ml-transformer

Class

fire.nodes.ml.NodeQuantileDiscretizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The Input column name

	outputCol

	Output Column

	Output column name

	numBuckets

	NumBuckets

	Maximum number of buckets (quantiles or categories) into which the data points are grouped. Must be >= 2.

Details

QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#quantilediscretizer

SQLTransformer

This node runs the given SQL on the incoming DataFrame using Spark ML SQLTransformer

Type

transform

Class

fire.nodes.ml.NodeSQLTransformer

Fields

	Name

	Title

	Description

	tempTable

	Temp Table

	Temp Table Name to be used

	sql

	SQL

	SQL to be run

	outputColNames

	Output Column Names

	Name of the Output Columns

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

StringIndexer

StringIndexer encodes a string column of labels to a column of label indices

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the encoding of the string column of labels to a column of label indices, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeStringIndexer

Fields

	Name

	Title

	Description

	handleInvalid

	Handle Invalid

	Invalid entries to be skipped or thrown error

	inputCols

	Input Columns

	Input columns for encoding

	outputCols

	Output Columns

	Output columns

03-FeatureExtraction

	RFormula
	Type

	Class

	Fields

	HashingTF
	Input

	Output

	Type

	Class

	Fields

	CountVectorizer
	Input

	Output

	Type

	Class

	Fields

	Details

	Word2Vec
	Input

	Output

	Type

	Class

	Fields

	Details

RFormula

RFormula feature selection, RFormula selects columns specified by an R model formula. Currently we support a limited subset of the R operators, including ‘~’, ‘.’, ‘:’, ‘+’, and ‘-‘

Type

ml-transformer

Class

fire.nodes.ml.NodeRFormula

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	The features column name

	formula

	Formula

	formula

	labelCol

	Label Column

	The label column name

HashingTF

Maps a sequence of terms to term frequencies using the hashing trick.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

A new column is added to the input DataFrame containing hashing of the bag of words into a feature vector

Type

ml-transformer

Class

fire.nodes.ml.NodeHashingTF

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Contains sets of terms. In text processing, a ‘set of terms’ might be a bag of words

	outputCol

	Output Column

	Output column name

CountVectorizer

Extracts the vocabulary from a given collection of documents and generates a vector of token counts for each document.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column to the incoming DataFrame containing the vector of token counts in the input column, to generate the output DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeCountVectorizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Input column name

	outputCol

	Output Column

	Output column name

	vocabularySize

	Vocabulary Size

	Max size of the vocabulary.

Details

CountVectorizer and CountVectorizerModel aim to help convert a collection of text documents to vectors of token counts. When an a-priori dictionary is not available, CountVectorizer can be used as an Estimator to extract the vocabulary and generates a CountVectorizerModel. The model produces sparse representations for the documents over the vocabulary, which can then be passed to other algorithms like LDA.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-features.html#countvectorizer

Word2Vec

Transforms vectors of words into vectors of numeric codes for the purpose of further processing by NLP or machine learning algorithms.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

A new column containing feature vector is added to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeWord2Vec

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Contains sequences of words

	inputColStringArrCol

	Text Array Column

	The text array column which is produced

	outputCol

	Output Column

	Output column name

	vectorSize

	Vector Size

	Vector Size

	minCount

	Min Count

	Min Count

Details

Word2Vec is an Estimator which takes sequences of words representing documents and trains a Word2VecModel. The model maps each word to a unique fixed-size vector. The Word2VecModel transforms each document into a vector using the average of all words in the document; this vector can then be used for as features for prediction, document similarity calculations, etc.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#word2vec

11-CollaborativeFiltering

	ALS
	Input

	Output

	Type

	Class

	Fields

	Details

ALS

Alternating Least Squares (ALS) matrix factorization.

Input

It takes in a DataFrame as input and performs ALS

Output

It generates the ALSModel and passes it to the next Predict and ModelSave Nodes. It also passes the incoming DataFrame to the next Nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeALS

Fields

	Name

	Title

	Description

	userCol

	User Column

	The column name for user ids.

	itemCol

	Item Column

	The column name for item ids.

	ratingCol

	Rating Column

	The column name for ratings.

	predictionCol

	Prediction Column

	The prediction column created during model scoring

	maxIter

	Max iterations

	The maximum number of iterations.

	regParam

	Regularization Param

	The regularization parameter.(>=0)

	alpha

	Alpha

	The alpha parameter in the implicit preference formulation.(>=0)

	checkpointInterval

	Checkpoint Interval

	The checkpoint interval.

	nonnegative

	Non negative

	Whether to apply nonnegativity constraints.

	numItemBlocks

	Num Item Blocks

	The number of item blocks.

	numUserBlocks

	Num User Blocks

	The number of user blocks.

	rank

	Rank

	The rank of the matrix factorization.

	seed

	Seed

	Random Seed.

	implicitPrefs

	Implicit Prefs

	whether to use implicit preference

Details

Collaborative filtering is commonly used for recommender systems. These techniques aim to fill in the missing entries of a user-item association matrix. spark.mllib currently supports model-based collaborative filtering, in which users and products are described by a small set of latent factors that can be used to predict missing entries. spark.mllib uses the alternating least squares (ALS) algorithm to learn these latent factors.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-collaborative-filtering.html

09-Regression

	GBTRegression
	Input

	Output

	Type

	Class

	Fields

	Details

	AFTSurvivalRegression
	Output

	Type

	Class

	Fields

	Details

	XGBoostRegressor
	Input

	Output

	Type

	Class

	Fields

	DecisionTreeRegression
	Input

	Output

	Type

	Class

	Fields

	Details

	RandomForestRegression
	Input

	Output

	Type

	Class

	Fields

	LinearRegression
	Input

	Output

	Type

	Class

	Fields

	Details

GBTRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Logistic Regression

Output

It generates the GBTRegression and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeGBTRegression

Fields

Details

GBT Regression supports both continuous and categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-trees-gbts

AFTSurvivalRegression

Accelerated failure time (AFT) model which is a parametric survival regression model for censored data.

Output

It generates the LAFTSurvivalRegressionModel and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeAFTSurvivalRegression

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting

	labelCol

	Label Column

	The label column for model fitting

	censorCol

	Censor Column

	Indicator of the event has occurred or not. If the value is 1.O, it means the event has occurred i.e. uncensored; otherwise censored

	fitIntercept

	Fit Intercept

	Whether to fit an intercept term

	maxIter

	Maximum Iterations

	Maximum number of iterations (>= 0)

	tol

	Tolerance

	The convergence tolerance for iterative algorithms

	quantileProbabilities

	QuantileProbabilities

	Values of the quantile probabilities array should be in the range (0, 1)

	quantilesCol

	Quantiles Column

	The quantiles column created during model scoring

	predictionCol

	Prediction Column

	The prediction column created during model scoring

Details

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression

XGBoostRegressor

Input

It takes in a DataFrame as input and performs XGBoost Regression

Output

The XGBoost Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeXGBoostRegressor

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting

	labelCol

	Label Column

	The label column for model fitting

	predictionCol

	Prediction Column

	The prediction column created during model scoring.

	maxDepth

	Max Depth

	The Maximum depth of a tree

	maxBins

	Max Bins

	The maximum number of bins used for discretizing continuous features.Must be >= 2 and >= number of categories in any categorical feature.

	maxLeaves

	Max Leaves

	

	numRound

	Num Round

	

	numWorkers

	Num Workers

	

	objective

	Objective

	

	eta

	Eta

	

	regLambda

	Reg Lambda

	

	regAlpha

	Reg Alpha

	

	subsample

	Subsample

	

	sampleType

	SampleType

	

	treeMethod

	TreeMethod

	

	useExternalMemory

	UseExternalMemory

	

	seed

	Seed

	

	baseScore

	Base Score

	

	minChildWeight

	Min Child Weight

	

	colsampleBylevel

	ColSampleByLevel

	

	colsampleBytree

	ColSampleByTree

	

	minSplitLoss

	MinSplitLoss

	

	maxDeltaStep

	MaxDeltaStep

	

	sketchEps

	SketchEps

	

	scalePosWeight

	ScalePosWeight

	

	growPlicy

	GrowPlicy

	

	normalizeType

	NormalizeType

	

	skipDrop

	SkipDrop

	

	rateDrop

	RateDrop

	

DecisionTreeRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Decision Tree Regression

Output

The Decision Tree Regression Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeDecisionTreeRegression

Fields

Details

Decision tree supports both continuous and categorical features.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/1.6.0/ml-classification-regression.html#decision-tree-regression

RandomForestRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Random Forest Regression

Output

It generates the Random Forest Regression Model and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeRandomForestRegression

Fields

LinearRegression

The interface for working with linear regression models and model summaries is similar to the logistic regression case.

Input

This takes in a DataFrame and performs Logistic Regression

Output

It generates the LinearRegressionModel and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeLinearRegression

Fields

Details

The interface for working with linear regression models and model summaries is similar to the logistic regression case.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression

08-Clustering

	LDA
	Input

	Output

	Type

	Class

	Fields

	GaussianMixture
	Input

	Output

	Type

	Class

	Fields

	Details

	KMeans
	Input

	Output

	Type

	Class

	Fields

	Details

LDA

LDA is given a collection of documents as input data, via the featuresCol parameter. Each document is specified as a Vector of length vocabSize, where each entry is the count for the corresponding term (word) in the document

Input

It takes in a DataFrame as input and performs LDA

Output

LDA Model is passed to the next Node for Prediction or Storing

Type

ml-estimator

Class

fire.nodes.ml.NodeLDA

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting.

	k

	K

	The number of topics to create.

	maxIter

	Max Iterations

	The maximum number of iterations.

	optimizer

	Optimizer

	Optimizer or inference algorithm used to estimate the LDA model.

	topicDistributionCol

	TopicDistributionColumn

	Output column with estimates of the topic mixture distribution for each document

	checkpointInterval

	checkpointInterval

	The checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.

	subsamplingRate

	subsamplingRate

	Fraction of the corpus to be sampled and used in each iteration of mini-batch gradient descent, in range (0, 1].

	seed

	Seed

	Random Seed.

	maxTermsPerTopic

	MaxTermsPerTopic

	Number of Terms in Topics

GaussianMixture

This class performs expectation maximization for multivariate Gaussian Mixture Models (GMMs). A GMM represents a composite distribution of independent Gaussian distributions with associated mixing weights specifying each’s contribution to the composite.

Input

It takes in a DataFrame as input and performs GaussianMixture clustering

Output

The input DataFrame is passed along to the next Processors

Type

ml-estimator

Class

fire.nodes.ml.NodeGaussianMixture

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting.

	k

	K

	The number of clusters to create.

	maxIter

	Max Iterations

	The maximum number of iterations.

	predictionCol

	Prediction Column

	The prediction column created during model scoring.

	seed

	Seed

	Random Seed.

	tol

	Tolerence

	The convergence tolerance for iterative algorithms.

Details

GaussianMixture clustering will maximize the log-likelihood for a mixture of k Gaussians, iterating until the log-likelihood changes by less than convergenceTol, or until it has reached the max number of iterations.
While this process is generally guaranteed to converge, it is not guaranteed to find a global optimum.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/2.2.0/mllib-clustering.html#gaussian-mixture

KMeans

K-means clustering with support for k-means|| initialization proposed by Bahmani et al

Input

It takes in a DataFrame as input and performs K-Means clustering

Output

The input DataFrame is passed along to the next Processors

Type

ml-estimator

Class

fire.nodes.ml.NodeKMeans

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting.

	k

	K

	The number of clusters to create.

	maxIter

	Max Iterations

	The maximum number of iterations.

	predictionCol

	Prediction Column

	The prediction column created during model scoring.

	seed

	Seed

	Random Seed.

	tol

	Tolerence

	The convergence tolerance for iterative algorithms.

	initMode

	initMode

	The initialization algorithm mode.

	initSteps

	initSteps

	The number of steps for the k-means|| initialization mode. It will be ignored when other initialization modes are chosen.

Details

K-means clustering with support for k-means|| initialization proposed by Bahmani et al

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-clustering.html#k-means

05-DimensionalityReduction

	SVD
	Type

	Class

	Fields

	PCA
	Input

	Output

	Type

	Class

	Fields

	Details

SVD

Type

transform

Class

fire.nodes.ml.NodeSVD

Fields

PCA

Trains a model to project vectors to a low-dimensional space using PCA.

Input

This takes in a DataFrame as input

Output

The output DataFrame is a projection of the vectors in the incoming DataFrame to a low-dimensional space using PCA

Type

ml-transformer

Class

fire.nodes.ml.NodePCA

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	k

	K

	The number of principal components

Details

PCA trains a model to project vectors to a low-dimensional space using PCA.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#pca

02-FeatureScaler

	MinMaxScaler
	Input

	Output

	Type

	Class

	Fields

	StandardScaler
	Input

	Output

	Type

	Class

	Fields

	Details

MinMaxScaler

MinMaxScaler transforms a dataset of Vector rows, rescaling each feature to a specific range (often [0, 1])

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

A new column containing the scaled features is added to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeMinMaxScaler

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	max

	Max

	The upper bound after transformation, shared by all features

	min

	Min

	The lower bound after transformation, shared by all features

StandardScaler

StandardScaler transforms a dataset of Vector rows, normalizing each feature to have unit standard deviation and/or zero mean.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column containing the transform of the input Vector column to unit standard deviation and/or zero mean features to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeStandardScaler

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	withMean

	With Mean

	Centers the data with mean before scaling.

	withStd

	With Standard Dev

	Scales the data to unit standard deviation

Details

StandardScaler transforms a dataset of Vector rows, normalizing each feature to have unit standard deviation and/or zero mean.

StandardScaler is an Estimator which can be fit on a dataset to produce a StandardScalerModel; this amounts to computing summary statistics. The model can then transform a Vector column in a dataset to have unit standard deviation and/or zero mean features.

If the standard deviation of a feature is zero, it will return default 0.0 value in the Vector for that feature.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#standardscaler

17-Util

	Spark ML Model Load
	Type

	Class

	Fields

	TrainValidationSplit
	Input

	Output

	Type

	Class

	Fields

	Details

	Spark ML Model Save
	Input

	Output

	Type

	Class

	Fields

	Spark ML ROC
	Type

	Class

	Fields

	CrossValidator
	Input

	Output

	Type

	Class

	Fields

	Details

	Spark Pipeline
	Input

	Output

	Type

	Class

	Fields

	Details

Spark ML Model Load

Type

ml-modelload

Class

fire.nodes.ml.NodeModelLoad

Fields

TrainValidationSplit

This node represents Train Validation Split from Spark ML

Input

TrainValidationSplit takes an Estimator, a set of ParamMaps provided in the estimatorParamMaps parameter, and anEvaluator.

Output

The incoming DataFrame is passed to the output.

Type

ml-trainvalidationsplit

Class

fire.nodes.ml.NodeTrainValidationSplit

Fields

	Name

	Title

	Description

	trainRatio

	Train Ratio

	Training Ratio

Details

This node represents Train Validation Split from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#example-model-selection-via-train-validation-split

Spark ML Model Save

This node saves the ML model generated at the specified path

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.ml.NodeModelSave

Fields

Spark ML ROC

Type

transform

Class

fire.nodes.etl.NodeROC

Fields

	Name

	Title

	Description

	probabilityCol

	Probability Column

	

	labelCol

	Label Column

	

CrossValidator

This node represents Cross Validator from Spark ML

Input

It takes in a DataFrame, Estimator and Evaluator as input.

Output

The incoming dataframe is passed to the output.

Type

ml-crossvalidator

Class

fire.nodes.ml.NodeCrossValidator

Fields

	Name

	Title

	Description

	numFolds

	Num Folds

	The number of folds

Details

This node represents Cross Validator from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#example-model-selection-via-cross-validation

Spark Pipeline

This node represents Pipeline from Spark ML

Input

It takes in a DataFrame as input.

Output

The incoming DataFrame is passed to the output.

Type

ml-pipeline

Class

fire.nodes.ml.NodePipeline

Fields

Details

This node represents Pipeline from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#pipeline-components

07-SplitDataset

	Split With Stratified Sampling
	Input

	Output

	Type

	Class

	Fields

	Details

	Split
	Input

	Output

	Type

	Class

	Fields

	SplitProbabilityColumn
	Type

	Class

	Fields

Split With Stratified Sampling

This node splits the incoming DataFrame into 2. It takes in the fraction to use in splitting the data by Stratified Sampling.

Input

It takes in a DataFrame as input

Output

The input DataFrame is split into 2 DataFrames and output

Type

transform

Class

fire.nodes.util.SplitWithStratifiedSampling

Fields

	Name

	Title

	Description

	keyInputCol

	Column Name

	column that defines strata

	fraction

	Fraction

	sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero

	seed

	Seed

	random seed

Details

Split With Stratified Sampling, which is the preferred way to sample from populations with varing subpopulation sizes.

More details are available at : https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.sampleBy

Split

This node splits the incoming DataFrame into 2. It takes in the fraction to use in splitting the data. For example, if the fraction is .7, it would split the data into 2 DataFrames, one containing 70% of the rows and the other containing the remaining 30%.

Input

It takes in a DataFrame as input

Output

The input DataFrame is split into 2 DataFrames and output

Type

transform

Class

fire.nodes.ml.NodeSplit

Fields

	Name

	Title

	Description

	fraction1

	Fraction 1

	Fraction to be used for Splitting the DataFrame into two. The first DataFrame would go to the lower edge output. The other would go to the higher edge output.

SplitProbabilityColumn

Type

transform

Class

fire.nodes.ml.NodeSplitProbabilityCol

Fields

	Name

	Title

	Description

	probabilityColName

	Probability Column

	

	numFields

	NumFields

	Number of fields in probability columns to extract

10-Classification

	MultiLayerPerceptron
	Type

	Class

	Fields

	GBTClassifier
	Input

	Output

	Type

	Class

	Fields

	XGBoostClassifier
	Input

	Output

	Type

	Class

	Fields

	LogisticRegression
	Input

	Output

	Type

	Class

	Fields

	Details

	Examples

	DecisionTreeClassifier
	Input

	Output

	Type

	Class

	Fields

	Details

	NaiveBayes
	Type

	Class

	Fields

	RandomForestClassifier
	Input

	Output

	Type

	Class

	Fields

	Details

MultiLayerPerceptron

It supports creation of full connected neural network.

Type

ml-estimator

Class

fire.nodes.ml.NodeMultilayerPerceptron

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting

	labelCol

	Label Column

	The label column for model fitting

	predictionCol

	Prediction Column

	The prediction column created during model scoring.

	layers

	Layers - comma separated list of integers

	The integer array specifying the number of activation units in each layer

	maxIter

	Max number of iterations

	Number of iterations to train the Neural network

	blockSize

	Block Size

	Block size

	seed

	Seed

	The initial seed to initialise the neural network.

	tol

	Tol

	

	solver

	Solver

	solver

	stepSize

	Step Size

	Step size

GBTClassifier

Gradient-Boosted Trees (GBTs) is a learning algorithm for classification. It supports binary labels, as well as both continuous and categorical features. Note: Multiclass labels are not currently supported.

Input

It takes in a DataFrame as input and performs GBT Classification

Output

The GBT Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeGBTClassifier

Fields

XGBoostClassifier

Input

It takes in a DataFrame as input and performs XGBoost Classification

Output

The XGBoost Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeXGBoostClassifier

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting

	labelCol

	Label Column

	The label column for model fitting

	predictionCol

	Prediction Column

	The prediction column created during model scoring.

	numClass

	Num Class

	

	maxDepth

	Max Depth

	The Maximum depth of a tree

	maxBins

	Max Bins

	The maximum number of bins used for discretizing continuous features.Must be >= 2 and >= number of categories in any categorical feature.

	maxLeaves

	Max Leaves

	

	numRound

	Num Round

	

	numWorkers

	Num Workers

	

	objective

	Objective

	

	eta

	Eta

	

	regLambda

	Reg Lambda

	

	regAlpha

	Reg Alpha

	

	subsample

	Subsample

	

	sampleType

	SampleType

	

	treeMethod

	TreeMethod

	

	useExternalMemory

	UseExternalMemory

	

	seed

	Seed

	

	baseScore

	Base Score

	

	minChildWeight

	Min Child Weight

	

	colsampleBylevel

	ColSampleByLevel

	

	colsampleBytree

	ColSampleByTree

	

	minSplitLoss

	MinSplitLoss

	

	maxDeltaStep

	MaxDeltaStep

	

	sketchEps

	SketchEps

	

	scalePosWeight

	ScalePosWeight

	

	growPlicy

	GrowPlicy

	

	normalizeType

	NormalizeType

	

	skipDrop

	SkipDrop

	

	rateDrop

	RateDrop

	

LogisticRegression

Logistic regression. Currently, this class only supports binary classification.

Input

This takes in a DataFrame and performs Logistic Regression

Output

The Logistic Regression Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeLogisticRegression

Fields

Details

Logistic regression is a popular method to predict a categorical response.

It is a special case of Generalized Linear models that predicts the probability of the outcomes.
In spark.ml logistic regression can be used to predict a binary outcome by using binomial logistic regression, or it can be used to predict a multiclass outcome by using multinomial logistic regression.

More details are available at : https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#logistic-regression

Examples

The below example is available at : https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#logistic-regression

import org.apache.spark.ml.classification.LogisticRegression

// Load training data
val training = spark.read.format(“libsvm”).load(“data/mllib/sample_libsvm_data.txt”)

	val lr = new LogisticRegression()

	.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)

// Fit the model
val lrModel = lr.fit(training)

// Print the coefficients and intercept for logistic regression
println(s”Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}”)

// We can also use the multinomial family for binary classification
val mlr = new LogisticRegression()

.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
.setFamily(“multinomial”)

val mlrModel = mlr.fit(training)

// Print the coefficients and intercepts for logistic regression with multinomial family
println(s”Multinomial coefficients: ${mlrModel.coefficientMatrix}”)
println(s”Multinomial intercepts: ${mlrModel.interceptVector}”)

DecisionTreeClassifier

It supports both binary and multiclass labels, as well as both continuous and categorical features.

Input

It takes in a DataFrame and performs Decision Tree Classification

Output

The Decision Tree Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeDecisionTreeClassifier

Fields

Details

Decision trees supports both binary and multiclass labels, as well as both continuous and categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier

NaiveBayes

Creates a NaiveBayes model. Supports both Multinomial NB which can handle finitely supported discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a binary (0/1) data, it can also be used as Bernoulli NB.The input feature values must be nonnegative

Type

ml-estimator

Class

fire.nodes.ml.NodeNaiveBayes

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting

	labelCol

	Label Column

	The label column for model fitting

	predictionCol

	Prediction Column

	The prediction column created during model scoring

	modelType

	modelType

	The model type. Supported options: multinomial and bernoulli. (default = multinomial)

	smoothing

	Smoothing

	The smoothing parameter.

RandomForestClassifier

Supports both binary and multiclass labels, as well as both continuous and categorical features.

Input

Takes in a DataFrame and performs Random Forest Classification

Output

Random Forest Classification Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeRandomForestClassifier

Fields

Details

Random forests supports both binary and multiclass labels, as well as both continuous and categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier

13-EvaluatePredict

	MulticlassClassificationEvaluator
	Type

	Class

	Fields

	Details

	RegressionEvaluator
	Input

	Output

	Type

	Class

	Fields

	Details

	Predict
	Input

	Output

	Type

	Class

	Fields

	BinaryClassificationEvaluator
	Output

	Type

	Class

	Fields

	Details

MulticlassClassificationEvaluator

Evaluator for multiclass classification, which expects two input columns: score and label.

Type

ml-evaluator

Class

fire.nodes.ml.NodeMulticlassClassificationEvaluator

Fields

	Name

	Title

	Description

	labelCol

	Label Column

	The label column for model fitting.

	predictionCol

	Prediction Column

	The prediction column.

	metricName

	Metric Name

	The metric used in evaluation.

Details

Evaluator for multiclass classification, which expects two input columns: score and label.

More at Spark MLlib/ML docs page :https://spark.apache.org/docs/1.6.0/mllib-evaluation-metrics.html#multiclass-classification

RegressionEvaluator

Evaluator for regression, which expects two input columns: prediction and label.

Input

It takes in a DataFrame as input

Output

The incoming DataFrame is passed to the output

Type

ml-evaluator

Class

fire.nodes.ml.NodeRegressionEvaluator

Fields

	Name

	Title

	Description

	labelCol

	Label Column

	The label column for model fitting.

	predictionCol

	Prediction Column

	The prediction column.

	metricName

	Metric Name

	The metric used in evaluation.

Details

Evaluator for regression, which expects two input columns: prediction and label.

More at Spark MLlib/ML docs page:

http://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.ml.evaluation.RegressionEvaluator

Predict

Predict node takes in a DataFrame and Model and makes predictions

Input

It takes in a DataFrame and Model as input

Output

A new column containing the predictions is added to the input DataFrame

Type

ml-predict

Class

fire.nodes.ml.NodePredict

Fields

BinaryClassificationEvaluator

Evaluator for binary classification, which expects two input columns: rawPrediction and label.

Output

It outputs the Probability for each class

Type

ml-evaluator

Class

fire.nodes.ml.NodeBinaryClassificationEvaluator

Fields

	Name

	Title

	Description

	labelCol

	Label Column

	The label column for model fitting.

	predictionCol

	Prediction Column

	The prediction column.

	metricName

	Metric Name

	The metric used in evaluation.

Details

Evaluator for binary classification, which expects two input columns: rawPrediction and label.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-evaluation-metrics.html#binary-classification

06-FeatureSelection

	ChiSqSelector
	Type

	Class

	Fields

	VectorSlicer
	Type

	Class

	Fields

ChiSqSelector

Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label.

Type

ml-transformer

Class

fire.nodes.ml.NodeChiSqSelector

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	The features column name

	outputCol

	Output Column

	The output column name

	labelCol

	Label Column

	The label column name

	numTopFeatures

	NumTopFeatures

	Number of features that selector will select (ordered by statistic value descending).

VectorSlicer

VectorSlicer feature selection, which takes a feature vector and outputs a new feature vector with a sub-array of the original features. It is useful for extracting features from a vector column

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorSlicer

Fields

	Name

	Title

	Description

	inputCol

	Features Column

	The features column name

	outputCol

	Output Column

	The output column name

ML-TS

	ARIMA
	Type

	Class

	Fields

	Prophet
	Type

	Class

	Fields

ARIMA

Type

ml-transformer

Class

fire.nodes.ts.NodeAutoARIMA

Fields

	Name

	Title

	Description

	y

	Y

	The time-series to which to fit the ARIMA estimator

	seasonal

	Seasonal

	Whether to fit a seasonal ARIMA. Default is True

	stepwise

	Stepwise

	Whether to use the stepwise algorithm to identify the optimal model parameters.

	trace

	Trace

	Whether to print status on the fits.

	suppress_warnings

	Suppress Warnings

	If suppress_warnings is True, all of the warnings coming from ARIMA will be squelched.

	error_action

	Error Action

	If unable to fit an ARIMA for whatever reason, this controls the error-handling behavior. One of (warn, raise, ignore)

	scoring

	Scoring

	The metric to use for scoring the out-of-sample data. One of (mse, mae)

	n_periods

	Forecast

	Int number of periods to forecast forward.

Prophet

Type

ml-transformer

Class

fire.nodes.ts.NodeProphet

Fields

02-Parse

	FieldSplitter
	Input

	Output

	Type

	Class

	Fields

	RegexTokenizer
	Type

	Class

	Fields

	Fixed Length Fields
	Type

	Class

	Fields

	ApacheLogs
	Type

	Class

	Fields

	ParseJSONCol
	Type

	Class

	Fields

	OCR
	Type

	Class

	Fields

	MultiRegexExtractor
	Input

	Output

	Type

	Class

	Fields

FieldSplitter

This node splits the string of the specified input column using the specified delimiter

Input

It accepts a DataFrame as input from the previous Node

Output

New columns are added to the incoming DataFrame with values from the result of splitting the value in the input column

Type

transform

Class

fire.nodes.etl.NodeFieldSplitter

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	input column name

	outputCols

	Output Columns

	new column names separed by comma’,’.(eg: col1,co2,col3)

	sep

	Separator

	separator to split the input column value(default: space)

	onError

	On Error

	

RegexTokenizer

This node creates a new DataFrame by the process of taking text (such as a sentence) and breaking it into individual terms (usually words) based on regular express

Type

transform

Class

fire.nodes.etl.NodeRegexTokenizer

Fields

	Name

	Title

	Description

	inputCol

	Column

	input column for tokenizing

	outputCol

	Tokenized Column

	New output column after tokenization

	pattern

	Pattern

	The regex pattern used to match delimiters

	gaps

	Gaps

	Indicates whether the regex splits on gaps

Fixed Length Fields

Fixed Length

Type

transform

Class

fire.nodes.etl.NodeFixedLength

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	input column name

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	colLengths

	Length of each column

	Length of the columns in characters

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

ApacheLogs

Reads in Apache Log files from a given path, parses them and loads them into a DataFrame

Type

dataset

Class

fire.nodes.logs.NodeApacheFileAccessLog

Fields

	Name

	Title

	Description

	path

	Path

	Full path for the directory or file for the Apache File Logs

ParseJSONCol

Parses JSON content in a given Col

Type

transform

Class

fire.nodes.etl.NodeParseJSONColumn

Fields

	Name

	Title

	Description

	jsonColName

	JSON Col Name

	Column containing the JSON Content

	inputCol

	Input Col

	Input Columns

	jsonFieldNames

	JSON Field names

	JSON Field names

	jsonFieldTypes

	JSON Field Type

	Data Type of the JSON field

OCR

Performs Optical Character Recognition using the Tesseract Library. Please make sure the TESSDATA_PREFIX environment variable is set to the parent directory of your ‘tessdata’ directory. Download the tessdata directory with git clone https://github.com/tesseract-ocr/tessdata.git

Type

transform

Class

fire.nodes.ocr.NodeOCRTesseract

Fields

	Name

	Title

	Description

	imageNameCol

	Image Name Column

	input image column name

	imageCol

	Image Column

	input image column name

	outputCol

	Output OCR Column

	output column name

MultiRegexExtractor

This node to extract pattren from input columns

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node extract pattren from input columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiRegexExtractor

Fields

	Name

	Title

	Description

	inputColNames

	InputColumnsName

	Columns

	outputColNames

	OuputColumnsName

	name of the output column

	patterns

	Patterns

	patterns or regex to extract the input column name

	groups

	Groups

	An regular expression group number starting with 1, defining which portion of the matching string will be returned

06-Filter

	FilterByDateRange
	Type

	Class

	Fields

	FilterByNumberRange
	Input

	Type

	Class

	Fields

	ColumnFilter
	Input

	Output

	Type

	Class

	Fields

	RowFilter
	Input

	Output

	Type

	Class

	Fields

	Details

	FilterByStringLength
	Input

	Type

	Class

	Fields

	NodeRowFilterByIndex
	Input

	Output

	Type

	Class

	Fields

	DropColumns
	Input

	Output

	Type

	Class

	Fields

FilterByDateRange

This node filters Rows within the given date range

Type

transform

Class

fire.nodes.etl.NodeFilterByDateRange

Fields

	Name

	Title

	Description

	inputCol

	Column

	input column name

	fromDateCol

	From Date

	Takes Start Date in the form of yyyy-MM-dd

	toDateCol

	To Date

	Takes End Date in the form of yyyy-MM-dd

FilterByNumberRange

This node filter Rows in the given Number Range

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFilterByNumberRange

Fields

	Name

	Title

	Description

	inputCol

	Input Column Name

	input column name

	lowestValue

	Lowest Value

	input lowest value

	highestValue

	Highest Value

	input highest value

ColumnFilter

This node creates a new DataFrame that contains only the selected columns

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

This node filters the specified columns from the incoming DataFrame

Type

transform

Class

fire.nodes.etl.NodeColumnFilter

Fields

	Name

	Title

	Description

	outputCols

	Columns

	Columns to be included in the output DataFrame

RowFilter

This node creates a new DataFrame containing only rows satisfying given condition

Input

It accepts DataFrame as input from the previous Node

Output

This node filters the rows based on the conditional expression to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeRowFilter

Fields

	Name

	Title

	Description

	conditionExpr

	Conditional Expression

	The filtering condition. Rows not satisfying given condition will be excluded from output DataFrame. eg: usd_pledged_real > 0 and (category = 1 or category == 2) and goal > 100

Details

This node creates a new DataFrame containing only rows satisfying the given condition.

Examples of Conditional Expression

col1 > 5 AND col2 > 3

name is not NULL

name is NULL

usd_pledged_real > 0 and (category = “Narrative Film” or category == “Music”) and goal > 100

datetime > ‘2011-01-01 00:00:00.0’ (datetime column is of type timestamp)

datetime > ‘2011-01-01 00:00:00.0’ and datetime < ‘2016-01-01 00:00:00.0’

FilterByStringLength

This node filters the Rows within the given string length. The column to be used for determining the string length is specified

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFilterByStringLength

Fields

	Name

	Title

	Description

	inputCol

	Input Column Name

	input column name

	minLength

	Minimum length

	Minimum length of String

	maxLength

	Maximum length

	Maximum length of String

NodeRowFilterByIndex

This node creates a new DataFrame containing only rows satisfying given condition

Input

It accepts DataFrame as input from the previous Node

Output

This node filters the rows based on the conditional expression to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeRowFilterByIndex

Fields

	Name

	Title

	Description

	indexes

	Indexes

	Comma separated index values starts from 0. ex: 0, 1, 2, 5

	indexesRange

	IndexesRange

	Index ranges example like 10-14 i.e 10, 11, 12, 13, 14.

DropColumns

This node creates a new DataFrame by deleting columns specified as an input

Input

It takes in a DataFrame as input

Output

The specified columns are dropped from the incoming DataFrame to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeDropColumns

Fields

	Name

	Title

	Description

	dropCols

	Columns

	The columns to be excluded from the output DataFrame

18-OpenNLP

	OpenNLPNameFinder
	Input

	Output

	Type

	Class

	Fields

	Details

	OpenNLPSentenceDetector
	Input

	Type

	Class

	Fields

	Details

	NodeOpenNLPDocumentCategorizer
	Input

	Output

	Type

	Class

	Fields

	Details

OpenNLPNameFinder

This node finds names using OpenNLP. It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

Input

It takes in a DataFrame as input.

Output

It extracts the names from the specified column and stores the result in the specified output column.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPNameFinder

Fields

	Name

	Title

	Description

	model

	Model

	Path to the model file (on HDFS when running on the cluster)

	inputCol

	Input Text Column

	input column name

	outputCol

	Output Column

	Output Column containing the results

Details

This node performs namefinder using OpenNLP to easily detect named entities and numbers in text.

To be able to detect entities the Name Finder needs a model. The model is dependent on the language and entity type it was trained for.

https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition.cmdline

The OpenNLP project offers a number of pre-trained name finder models which are trained on various freely available corpora. They can be downloaded at the OpenNLP download page.

http://opennlp.sourceforge.net/models-1.5/

OpenNLPSentenceDetector

This node detects sentences using OpenNLP - https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.sentdetect. It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

Input

It takes in a DataFrame as input.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPSentenceDetector

Fields

	Name

	Title

	Description

	model

	Model

	Path to the model file (on HDFS when running on the cluster)

	inputCol

	Input Text Column

	input cpulmn name

	outputCol

	Output Column

	Output Column containing the results

Details

This node detects sentences using OpenNLP -

https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.sentdetect.

It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

NodeOpenNLPDocumentCategorizer

This node classifies text into pre-defined categories using OpenNLP - https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.doccat. It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

Input

It takes in a DataFrame as input.

Output

It finds the Document Category and stores the result in the specified output column.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPDocumentCategorizer

Fields

	Name

	Title

	Description

	model

	Model

	Path to the model file (on HDFS when running on the cluster)

	inputCol

	Input Text Column

	input cpulmn name

	outputCol

	Output Column

	Output Column containing the results

Details

This node classifies text into pre-defined categories using OpenNLP

https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.doccat.

It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

15-ScoreCardPy

	Binning Scorecard
	Type

	Class

	Fields

	VariableSelection Scorecard
	Type

	Class

	Fields

Binning Scorecard

Type

ml-transformer

Class

fire.nodes.scorecardpy.NodeBinning

Fields

	Name

	Title

	Description

	y

	Y

	

	x

	X

	

	stopLimit

	StopLimit

	

	countDistrLimit

	CountDistrLimit

	

	binNumLimit

	BinNumLimit

	

	method

	Methos

	

	positive

	Positive

	

VariableSelection Scorecard

Type

ml-transformer

Class

fire.nodes.scorecardpy.NodeVariableSelection

Fields

	Name

	Title

	Description

	y

	Y

	

	ivLimit

	IvLimit

	

	missingLimit

	MissingLimit

	

	identicalLimit

	IdenticalLimit

	

	positive

	Positive

	

03-Prepare

	13-Others
	MultiWindowAnalytics

	RoundValue

	SortBy

	Transpose

	WindowRanking

	GeoPoint

	MultiWindowRanking

	ColumnsRename

	RecoverHivePartitions

	CDCUsingFullTableMerge

	Count

	Sample

	SortColumns

	RegisterTempTable

	GeoIP

	WindowAnalytics

	10-Condition
	Assert

	Decision

	09-Split
	Split By Expression

	SplitByMultipleExpressions

	CompareAllColumnsSingleOutput

	Compare Specific Columns

	CompareSpecificColumns

	Compare All Columns

	11-AddColumn
	Expressions

	AddColumns

	GenerateUID

	Hash

	GenerateUUID

	CaseWhen

	ConcatColumns

	ZipWithIndex

	12-CastDataType
	CastToSingleType

	CastToDifferentTypes-2

	CastToDifferentTypes-1

	06-Math
	MathFunctions

	MathFunctionsMultiple

	MathExpression

	03-DateTime
	DateDifference

	TimeFunctions

	DateTimeFieldExtract

	StringToUnixTime

	StringToDate

	UnixTimeToString

	DateToString

	07-String
	StringFunctions

	StringFunctionsMultiple

	TextCaseTransformer

	05-DataCleaning
	DataWrangling

	RemoveUnwantedCharactersMult

	ImputingWithMedian

	DropRowsWithNull

	DropDuplicateRows

	FindAndReplaceUsingRegexMultiple

	FindAndReplaceUsingRegex

	ImputingWithConstant

	ImputingWithMeanValue

	RemoveDuplicateRows

	Dedup

	RemoveUnwantedCharacters

	ImputingWithModeValue

13-Others

	MultiWindowAnalytics
	Type

	Class

	Fields

	RoundValue
	Input

	Type

	Class

	Fields

	SortBy
	Type

	Class

	Fields

	Transpose
	Input

	Output

	Type

	Class

	Fields

	WindowRanking
	Type

	Class

	Fields

	GeoPoint
	Type

	Class

	Fields

	MultiWindowRanking
	Type

	Class

	Fields

	ColumnsRename
	Input

	Output

	Type

	Class

	Fields

	RecoverHivePartitions
	Type

	Class

	Fields

	Details

	CDCUsingFullTableMerge
	Type

	Class

	Fields

	Count
	Input

	Output

	Type

	Class

	Fields

	Sample
	Type

	Class

	Fields

	SortColumns
	Type

	Class

	Fields

	RegisterTempTable
	Input

	Output

	Type

	Class

	Fields

	GeoIP
	Input

	Output

	Type

	Class

	Fields

	WindowAnalytics
	Type

	Class

	Fields

MultiWindowAnalytics

Type

transform

Class

fire.nodes.etl.NodeMultiWindowAnalytics

Fields

	Name

	Title

	Description

	analyticsCols

	AnalyticsColumn

	

	windowFunctions

	Window Function

	Window Function Name

	partitionByCols

	PartitionBy

	partition column names separated by comma(,)

	orderByCols

	OrderBy

	order by column names separated by comma(,)

	outPutColumns

	OutPutColumn

	Enter output field(column) name

RoundValue

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.etl.NodeRoundDouble

Fields

	Name

	Title

	Description

	inputCols

	Input Column

	The columns containing double or float values to round.

	precision

	Precision

	The scale of the double values to round to.

SortBy

It sorts the incoming DataFrame on the fields specified.

Type

transform

Class

fire.nodes.etl.NodeSortBy

Fields

	Name

	Title

	Description

	description

	Description

	Description

	sortByColNames

	Columns

	Columns on which to Sort By

	ascDesc

	Sorting Order

	Whether to sort in ascending or descending order

Transpose

This node transposes a dataframe without performing aggregation function by given column(transposeby). ALL INPUT COLUMNS TO THIS NODE HAVE TO BE OF THE SAME TYPE

Input

It accepts a DataFrame as input from the previous Node

Output

Output dataframe consisting of three columns transposeBy, column_name, column_value

Type

transform

Class

fire.nodes.etl.NodeTranspose

Fields

	Name

	Title

	Description

	transposeBy

	TransposeByColumn Name

	transposeBy column name

WindowRanking

Type

transform

Class

fire.nodes.etl.NodeWindowRanking

Fields

	Name

	Title

	Description

	partitionByCols

	PartitionBy

	partition column names separated by comma(,)

	orderByCols

	OrderBy

	order by column names separated by comma(,)

	windowFunction

	Window Function

	Window Function Name

GeoPoint

Type

transform

Class

fire.nodes.etl.NodeGeoPoint

Fields

	Name

	Title

	Description

	longitude

	Longitude

	

	latitude

	Latitude

	

MultiWindowRanking

Type

transform

Class

fire.nodes.etl.NodeMultiWindowRanking

Fields

	Name

	Title

	Description

	windowFunctions

	WindowFunction

	Window Function Name

	partitionByCols

	PartitionBy

	partition column names separated by comma(,)

	orderByCols

	OrderBy

	order by column names separated by comma(,)

	outPutColumns

	OutputColumn

	Enter output field(column) name

ColumnsRename

This node creates a new DataFrame by renaming existing columns with new name

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

The specified columns are renamed to have the new names.

Type

transform

Class

fire.nodes.etl.NodeColumnsRename

Fields

	Name

	Title

	Description

	currentColNames

	Current Column Names

	Current Column Names

	newColNames

	Columns New Name

	New name for existing columns

RecoverHivePartitions

Node to recover the partitions of external hve table.

Type

doc

Class

fire.nodes.etl.NodeRecoverHivePartitions

Fields

	Name

	Title

	Description

	databaseName

	HIVE Database

	Name of the HIVE Database

	tableName

	HIVE Table

	Name of the HIVE table

Details

This node is used recover the partitions of external hve table.

It will run the command: “MSCK REPAIR TABLE ${databaseName}.${tableName}”

CDCUsingFullTableMerge

CDC Using Full Table Merge

Type

transform

Class

fire.nodes.etl.NodeCDCUsingFullTableMerge

Fields

	Name

	Title

	Description

	baseTable

	Base Table Name

	Name of the Base Table

	idCols

	ID Column Names

	ID Column names

	modifiedDateCol

	Modified Date Column

	Modified Date Column

Count

This node counts the number of records in the incoming Dataframe and puts the count into a variable to the used by subsequent Nodes

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is sent to the output

Type

transform

Class

fire.nodes.etl.NodeCount

Fields

	Name

	Title

	Description

	variable

	Variable Name

	Name of the Variable in which the count is stored

Sample

Samples the incoming DataFrame

Type

transform

Class

fire.nodes.etl.NodeSample

Fields

	Name

	Title

	Description

	withReplacement

	With Replacement

	With or without Replacement

	fraction

	Fraction

	Fraction

	seed

	Seed

	Seed

SortColumns

It sort the columns selection.

Type

transform

Class

fire.nodes.etl.NodeSortColumns

Fields

	Name

	Title

	Description

	sortColumnNames

	Columns

	Sort the Column Name

RegisterTempTable

This node registers the incoming DataFrame as a temporary table in Spark

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is output without any changes

Type

transform

Class

fire.nodes.etl.NodeRegisterTempTable

Fields

	Name

	Title

	Description

	tempTable

	Temporary Table

	Name of the temporary table to be created

GeoIP

This node converts IP to geo location

Input

The input dataframe is passed in the variable inDF

Output

Transforms the IP to Geo location

Type

transform

Class

fire.nodes.etl.NodeGeoIP

Fields

	Name

	Title

	Description

	ipCol

	IP Column

	IP Column in the DataFrame

	databaseFilePath

	Database File Path

	Database File Path

WindowAnalytics

Type

transform

Class

fire.nodes.etl.NodeWindowAnalytics

Fields

	Name

	Title

	Description

	partitionByCols

	PartitionBy

	partition column names separated by comma(,)

	orderByCols

	OrderBy

	order by column names separated by comma(,)

	windowFunction

	Window Function

	Window Function Name

	analyticsCol

	Analytics Column

	

	window_offset

	Window Offset

	It’s used in lead and lag functions.

10-Condition

	Assert
	Input

	Output

	Type

	Class

	Fields

	Decision
	Type

	Class

	Fields

Assert

This Node takes in an expression. It evaluates the expression and based on the results sends the execution to the first or the second output Node

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is sent to the output. Only one of the output Nodes receives the DataFrame based on the results of the expression

Type

transform

Class

fire.nodes.etl.NodeAssert

Fields

	Name

	Title

	Description

	expression

	Expression

	Expression to be evaluated. It can use variables computed in the previous Nodes

Decision

It computes expressions to determine if the condition is met or not. Accordingly proceeds to the next step or stops here.

Type

transform

Class

fire.nodes.etl.NodeDecision

Fields

	Name

	Title

	Description

	description

	Description

	Description

	inputCols

	Columns

	Columns

	functions

	Function

	Function to apply

	symbols

	Symbol

	Symbol to apply

	values

	Values

	Values

09-Split

	Split By Expression
	Input

	Type

	Class

	Fields

	SplitByMultipleExpressions
	Input

	Type

	Class

	Fields

	CompareAllColumnsSingleOutput
	Type

	Class

	Fields

	Compare Specific Columns
	Type

	Class

	Fields

	CompareSpecificColumns
	Type

	Class

	Fields

	Compare All Columns
	Type

	Class

	Fields

Split By Expression

This node splits the incoming DataFrame into two output DataFrames by applying the conditional logic

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeSplitByExpression

Fields

	Name

	Title

	Description

	conditionExpr

	Conditional Expression to split the Data on

	Conditional Expression to be used for Splitting the DataFrame into two. DataFrame which matches the condition will go to the lower edge output. The other would go to the higher edge output.

SplitByMultipleExpressions

Splits the incoming DataFrame into multiple output DataFrames by applying the conditional logic

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeSplitByMultipleExpressions

Fields

	Name

	Title

	Description

	conditionExpr1

	Conditional Expression 1 to split the Data on

	Conditional Expression 1 to be used for Splitting the Dataset

	conditionExpr2

	Conditional Expression 2 to split the Data on

	Conditional Expression 2 to be used for Splitting the Dataset

	conditionExpr3

	Conditional Expression 3 to split the Data on

	Conditional Expression 3 to be used for Splitting the Dataset

	conditionExpr4

	Conditional Expression 4 to split the Data on

	Conditional Expression 4 to be used for Splitting the Dataset

	conditionExpr5

	Conditional Expression 5 to split the Data on

	Conditional Expression 5 to be used for Splitting the Dataset

CompareAllColumnsSingleOutput

Compares 2 incoming DataFrames. Outputs 1 DataFrame (A-B) or (B-A) or (A intersection B) based on user’s input

Type

join

Class

fire.nodes.etl.NodeCompareAllColumnsSingleOutput

Fields

	Name

	Title

	Description

	compareOption

	Compare Type

	Comparision options whether (A-B) or (B-A) or (A intersection B)

Compare Specific Columns

Compares 2 incoming DataFrames on specific columns. Outputs 1 DataFrame (A-B) or (B-A) or (A intersection B) based on user’s input

Type

join

Class

fire.nodes.etl.NodeCompareSpecificColumnsSingleOutput

Fields

	Name

	Title

	Description

	columnsToCompare

	Columns to Compare

	Columns to be used in the comparison

	compareOption

	Compare Type

	Comparision options whether (A-B) or (B-A) or (A intersection B)

CompareSpecificColumns

Compares 2 incoming DataFrames on specific columns. Outputs 3 DataFrames (A-B), (B-A), (A intersection B)

Type

join

Class

fire.nodes.etl.NodeCompareSpecificColumns

Fields

	Name

	Title

	Description

	columnsToCompare

	Columns to Compare

	Columns to be used in the comparison

Compare All Columns

Compares 2 incoming DataFrames. Outputs 3 DataFrames (A-B), (B-A), (A intersection B)

Type

join

Class

fire.nodes.etl.NodeCompareAllColumns

Fields

11-AddColumn

	Expressions
	Type

	Class

	Fields

	AddColumns
	Input

	Output

	Type

	Class

	Fields

	GenerateUID
	Type

	Class

	Fields

	Hash
	Input

	Output

	Type

	Class

	Fields

	GenerateUUID
	Input

	Output

	Type

	Class

	Fields

	CaseWhen
	Type

	Class

	Fields

	ConcatColumns
	Input

	Output

	Type

	Class

	Fields

	ZipWithIndex
	Type

	Class

	Fields

Expressions

Expressions

Type

transform

Class

fire.nodes.etl.NodeExpressions

Fields

	Name

	Title

	Description

	description

	Description

	Description

	outputCols

	New Columns Name

	New Columns Name

	expressions

	Expressions

	Expressions

AddColumns

This node allows adding new columns with certain values

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node adds the user specified columns to the DataFrame

Type

transform

Class

fire.nodes.etl.NodeAddColumns

Fields

	Name

	Title

	Description

	addCurrentDateCol

	Add Current Date Column

	Whether to add the current date as a new column

	currentDateColName

	Current Date Column Name

	Name of the new Current Date Column Created

	addCurrentTimeCol

	Add Current Time Column

	Whether to add the current time as a new column

	currentTimeColName

	Current Time Column Name

	Name of the new Current Time Column Created

	addConstantStringCol1

	Add Constant String Column

	Whether to add a new columns with constant string value

	constantStringColName1

	Constant String Column Name

	Constant String Name

	constantStringColValue1

	Constant String Column Value

	Constant String Value

	addConstantIntCol1

	Add Constant Integer Column

	Whether to add a new columns with constant integer value

	constantIntColName1

	Constant Integer Column Name

	Constant Integer Column Name

	constantIntColValue1

	Constant Integer Column Value

	Constant Integer Value

GenerateUID

This node Generates a new column with unique Index/Value for each row in the Dataset for each partition. Each Partition starts a new range.

Type

transform

Class

fire.nodes.etl.NodeGenerateUID

Fields

	Name

	Title

	Description

	outputCol

	UID Column Name

	UID column name

Hash

This node adds a new Columns which contains the Hash of the specified columns

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added to the incoming DataFrame by creating a Hash of the specified input columns.

Type

transform

Class

fire.nodes.etl.NodeHash

Fields

	Name

	Title

	Description

	inputCols

	Columns

	Columns to be concatenated

	hashingAlgorithm

	Hashing Algorithm

	Hashing Algorithm

	outputCol

	Output Column Name

	Column name for Hash

	bitLength

	Bit Length

	Bit Length

	sep

	Separator

	Separator to be used when concatenating the columns

GenerateUUID

This node Generates a Universally Unique ID

Input

It accepts a dataframe as input

Output

It adds a new column for UUID to the input DataFrame. This new DataFrame is sent to the output

Type

transform

Class

fire.nodes.etl.NodeGenerateUUID

Fields

	Name

	Title

	Description

	outputCol

	Output Column

	Output Column Name

CaseWhen

Sets values based on conditions

Type

transform

Class

fire.nodes.etl.NodeCaseWhen

Fields

	Name

	Title

	Description

	outputCol

	Output Column Name

	output column name

	whenConditions

	When Condition

	When Condition

	values

	Value

	Value when this condition is true

	finallyElse

	Else

	else

ConcatColumns

This node creates a new DataFrame by concatenating the specified columns of the input DataFrame

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added to the incoming DataFrame by concatenating the specified columns. The new DataFrame is sent to the output of this Node.

Type

transform

Class

fire.nodes.etl.NodeConcatColumns

Fields

	Name

	Title

	Description

	inputCols

	Columns

	Columns to be concatenated

	outputCol

	Concatenated Column Name

	Column name for the concatenated columns

	sep

	Separator

	Separator to be used when concatenating the columns

ZipWithIndex

This node Generates a new column with unique Index/Value for each row in the Dataset

Type

transform

Class

fire.nodes.etl.NodeZipWithIndex

Fields

	Name

	Title

	Description

	indexColName

	Index Column Name

	Index column name

12-CastDataType

	CastToSingleType
	Input

	Output

	Type

	Class

	Fields

	CastToDifferentTypes-2
	Input

	Output

	Type

	Class

	Fields

	CastToDifferentTypes-1
	Input

	Output

	Type

	Class

	Fields

CastToSingleType

This node creates a new DataFrame by casting the specified input columns to a new data type

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeCastColumnType

Fields

	Name

	Title

	Description

	inputCols

	Columns

	Columns to be cast to new data type

	outputColType

	New Data Type

	New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)

	replaceExistingCols

	Replace Existing Cols

	Whether to replace existing columns or create new ones

CastToDifferentTypes-2

This node creates a new DataFrame by casting the specified columns into new types

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiCastColumnType2

Fields

	Name

	Title

	Description

	inputColNames

	Columns

	Columns

	outputColTypes

	New Data Type

	New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)

	replaceExistingCols

	Replace Existing Cols

	Whether to replace existing Columns or create New Ones

	formats

	Formats

	Formats like yyy-MM-dd used in input & output

CastToDifferentTypes-1

This node creates a new DataFrame by casting the specified columns into new types

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiCastColumnType

Fields

	Name

	Title

	Description

	inputColNames

	Columns

	Columns

	outputColTypes

	New Data Type

	New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)

	replaceExistingCols

	Replace Existing Cols

	Whether to replace existing Columns or create New Ones

06-Math

	MathFunctions
	Input

	Output

	Type

	Class

	Fields

	MathFunctionsMultiple
	Type

	Class

	Fields

	MathExpression
	Type

	Class

	Fields

MathFunctions

This node performs specified math function on a row

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added which contains the results of applying the Math function on the given column of the input DataFrame

Type

transform

Class

fire.nodes.etl.NodeMathFuntions

Fields

	Name

	Title

	Description

	inputCol

	Input Column Name

	input column name

	mathFunction

	Math Function

	Math Function Name

	outputCol

	Output Column

	Output Column Name

	scale

	Scale

	Scale to be used when applying the Math Function

MathFunctionsMultiple

Math Functions Multiple

Type

transform

Class

fire.nodes.etl.NodeMathFunctionsMultiple

Fields

	Name

	Title

	Description

	description

	Description

	Description

	inputCols

	Columns

	Columns

	functions

	Function

	Math Function to apply

	replaceExistingCols

	Replace Existing Cols

	Replace Existing Columns (true, false)

	scales

	Scale

	Scale to be used when applying the Math Function

MathExpression

Type

transform

Class

fire.nodes.etl.NodeMathExpression

Fields

	Name

	Title

	Description

	outputCols

	OutPut Column

	Output Column Name

	expressions

	Math Expression

	Define math expression.

03-DateTime

	DateDifference
	Input

	Type

	Class

	Fields

	Details

	Examples

	TimeFunctions
	Type

	Class

	Fields

	DateTimeFieldExtract
	Input

	Output

	Type

	Class

	Fields

	Details

	StringToUnixTime
	Type

	Class

	Fields

	Details

	Examples

	StringToDate
	Type

	Class

	Fields

	Details

	Examples

	UnixTimeToString
	Type

	Class

	Fields

	Details

	Examples

	DateToString
	Type

	Class

	Fields

	Details

	Examples

DateDifference

This node finds difference between two dates

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeDateDiff

Fields

	Name

	Title

	Description

	fromDate

	FromDate

	From date column name

	toDate

	Todate

	To date column name

	useCurrentDateAsToDateCol

	useCurrentDateAsToCol

	Current Date As ToDate

	days

	Days

	Days difference

	hours

	Hours

	Hours difference

	minutes

	Minutes

	Minutes difference

	seconds

	Seconds

	Seconds difference

Details

Calculates difference between 2 given dates.
Difference between dates is displayed in days, hours, minutes, and seconds columns.

Examples

Format Examples

dd-MM-yy : 30-11-95 to 19-02-18 diff- 8608 days : 206609 hours : 12396574 min : 743794461 : second
dd-MM-yyyy : 10-02-1996 to 20-09-2017 diff- 8536 days : 204881 hours : 12292884 min : 737573070 : second
MM-dd-yyyy : 19-10-1994 to 06-12-2017 diff- 9015 days : 216377 hours : 12982644 min : 778958670 : second
yyyy-MM-dd : 1994-12-25 to 2019-01-16 diff- 8948 days : 214769 hours : 12886164 min : 773169870 : second
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59 to 2010-12-30 22:59:59 diff-397 days: 1 hour: 0 minutes : 0 seconds

TimeFunctions

Type

transform

Class

fire.nodes.etl.NodeTimeFunctions

Fields

	Name

	Title

	Description

	timeStampCol

	TimeStamp Column Name

	input column name

	timeFunctions

	Time Functions

	Time Functions Name

DateTimeFieldExtract

It creates a new DataFrame by extracting Date and Time fields.

Input

It takes in a DataFrame as Input

Output

Node to extract year/month/dayofmonth/hour/minute/seconad values from TimeStamp

Type

transform

Class

fire.nodes.etl.NodeDateTimeFieldExtract

Fields

	Name

	Title

	Description

	inputCol

	Column

	The input column name

	extractYear

	Extract Year

	Extract Year

	extractMonth

	Extract Month

	Extract Month

	extractDayOfMonth

	Extract Day of Month

	Extract Day of Month

	extractHour

	Extract Hour

	Extract Hour

	extractMinute

	Extract Minute

	Extract Minute

	extractSecond

	Extract Second

	Extract Second

	extractWeekOfYear

	Extract WeekOfYear

	Extract WeekOfYear

Details

Extracts year, month, day of month, hour, minute, second and week of year in different columns.

StringToUnixTime

This nodes converts a string to Unix Time

Type

transform

Class

fire.nodes.etl.NodeStringToUnixTime

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	Input Column Name

	inputColFormat

	Input Column Format

	Input Column Format (eg: yyyy-MM-dd HH:mm:ss)

	outputColName

	Output Column Name

	Output Column Name

Details

This node converts a string column to unix time (seconds).

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

Example:
Date (string), Format , Unix time (seconds)

2003-07-25 , yyy-MM-dd , 1059091200

StringToDate

This node converts a string column to date using the given date/time format

Type

transform

Class

fire.nodes.etl.NodeMultiStringToDate

Fields

	Name

	Title

	Description

	inputColNames

	Columns

	Columns

	inputColFormats

	Input Column Formats

	Input Column Formats. eg: yyyy-MM-dd yyyy-MM-dd HH:mm:ss

	outputColNames

	Output Column Names

	Output Column Names

	outputColTypes

	New Data Types

	New data types (DATE, TIMESTAMP)

Details

This node converts multiple string columns to date/time.

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

UnixTimeToString

This node converts Unix Time to String

Type

transform

Class

fire.nodes.etl.NodeUnixTimeToString

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	input column name

	outputColName

	Output Column Name

	Output Column Name

	outputColFormat

	Output Column Format

	Output Column Format (eg: yyyy-MM-dd HH:mm:ss)

Details

This node converts unix time (seconds) to string type.

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

Example:
select an input column (long type), output column name and desired output column format.
It will add one more column in string format.

If you input a date format like dd-MM-yy. It will add one column having value like 31-01-12.

DateToString

This node converts a date/time column to string with given format

Type

transform

Class

fire.nodes.etl.NodeMultiDateToString

Fields

	Name

	Title

	Description

	inputColNames

	Input Column Name

	Input Column Name

	outputColFormats

	Output Column Formats

	Output Column Formats. eg: yyyy-MM-dd yyyy-MM-dd HH:mm:ss

	outputColNames

	Output Column Names

	Output Column Names

Details

This node converts date/time column to string type with given format.

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

07-String

	StringFunctions
	Input

	Type

	Class

	Fields

	StringFunctionsMultiple
	Type

	Class

	Fields

	TextCaseTransformer
	Input

	Type

	Class

	Fields

StringFunctions

This node performs specified String function on a row

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeStringFunctions

Fields

	Name

	Title

	Description

	inputCols

	Input Column Name

	input column name

	stringFunction

	String Function

	String Function Name

	replaceExistingCols

	ReplaceExistingCols

	replaceExistingCols

StringFunctionsMultiple

String Functions Multiple

Type

transform

Class

fire.nodes.etl.NodeStringFunctionsMultiple

Fields

	Name

	Title

	Description

	description

	Description

	Description

	inputCols

	Columns

	Columns

	functions

	Function

	String Function to apply

	replaceExistingCols

	Replace Existing Cols

	Replace Existing Columns (true or false)

TextCaseTransformer

This node converts text to upper or lower case

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeTextCaseTransformer

Fields

	Name

	Title

	Description

	inputCol

	Input Column Name

	input column name

	mode

	Text Case Type

	input to convert text to upper or lower case

	outputCol

	Output Column

	Output Column

05-DataCleaning

	DataWrangling
	Input

	Output

	Type

	Class

	Fields

	Details

	RemoveUnwantedCharactersMult
	Input

	Type

	Class

	Fields

	ImputingWithMedian
	Type

	Class

	Fields

	DropRowsWithNull
	Input

	Output

	Type

	Class

	Fields

	DropDuplicateRows
	Type

	Class

	Fields

	FindAndReplaceUsingRegexMultiple
	Input

	Type

	Class

	Fields

	FindAndReplaceUsingRegex
	Input

	Type

	Class

	Fields

	ImputingWithConstant
	Type

	Class

	Fields

	ImputingWithMeanValue
	Type

	Class

	Fields

	RemoveDuplicateRows
	Input

	Output

	Type

	Class

	Fields

	Dedup
	Input

	Output

	Type

	Class

	Fields

	Details

	RemoveUnwantedCharacters
	Input

	Type

	Class

	Fields

	ImputingWithModeValue
	Type

	Class

	Fields

DataWrangling

This node creates a new DataFrame by applying each of the Rules specified

Input

It takes in a DataFrame as Input

Output

It creates the output DataFrame by applying the data wrangling rules provided

Type

transform

Class

fire.nodes.etl.NodeDataWrangling

Fields

	Name

	Title

	Description

	rules

	Rules

	Rules to be applied on column and rows

Details

Rename one column to another
rename col:c1 to c2;

Drop Column
drop col:col4

Delete columns with some condition
delete col:col3 > 44

Substring col:col2 0,3
get substring between 0 and 3rd column from the column col2

Trim Values : Removes leading and trailing whitespace from a string value.

set col:Name value: trim(Name)

Sets the new value of Name column to be trim(Name)

RemoveUnwantedCharactersMult

This node removes unwanted characters

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeRemoveUnwantedCharactersMultiple

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Input columns

	removeWhitespaces

	Remove Whitespaces

	Removes white space

	removeLetters

	Remove Letters

	Removes letters

	removeDigits

	Remove Digits

	Removes digits

	removeSigns

	Remove Signs

	Removes signs

	removeCommas

	Remove Commas

	Removes commas

ImputingWithMedian

Imputing with median

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMedian

Fields

	Name

	Title

	Description

	colNames

	Input Columns

	Input column of type - all numeric for median impute

DropRowsWithNull

This node creates a new DataFrame by dropping rows containing null values

Input

It accepts DataFrame as input from the previous Node

Output

This node drops rows containing null values

Type

transform

Class

fire.nodes.etl.NodeDropRowsWithNull

Fields

DropDuplicateRows

1>When user don’t select any column, returns a new Dataset that contains only the unique rows from this Dataset. 2> Returns a new Dataset with duplicate rows removed, considering only the subset of columns.

Type

transform

Class

fire.nodes.etl.NodeDropDuplicateRows

Fields

	Name

	Title

	Description

	colNames

	Columns

	Columns to be used in determining if any two rows are duplication. No columns indicate to use all the available columns.

FindAndReplaceUsingRegexMultiple

This node finds and replaces text in a column containing string

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFindAndReplaceUsingRegexMultiple

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Columns on which to apply Regex

	searchPatterns

	Find

	Enter Search Pattern

	replacePatterns

	Replace

	Enter replacement Value

FindAndReplaceUsingRegex

This node finds and replaces text in a column containing string

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFindAndReplaceUsingRegex

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Columns on which to apply Regex

	searchPattern

	Find

	Enter Search Pattern

	replacePattern

	Replace

	Enter replacement Value

ImputingWithConstant

It imputes missing value with constant value. It fills missing values (None) in selected columns with given constant value for the corresponding column, in the incoming DataFrame.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithConstant

Fields

	Name

	Title

	Description

	colNames

	Columns

	Columns to be processed for missing values

	constants

	Constants

	Missing value will be replaced with constant

ImputingWithMeanValue

Imputing the continuous variables by mean.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMean

Fields

	Name

	Title

	Description

	inputCols

	Column Names

	Columns type should be continuous

RemoveDuplicateRows

This node take an array of fields, compare rows on those fields. If they full match then its a match. From the matches it would randomly take one row and drop the rest.

Input

It accepts a DataFrame as input from the previous Node

Output

The output Dataframe is the same as the input Dataframe with the duplicate rows removed

Type

transform

Class

fire.nodes.etl.NodeRemoveDuplicateRows

Fields

	Name

	Title

	Description

	order

	Order

	Whether to take the first or last matching record when removing duplicates

	inputCols

	Columns

	The columns to be selected for match

Dedup

This node is used for problems like entity resolution or data matching. Entity resolution or Data matching is the problem of finding and linking different mentions of the same entity in a single data source or across multiple data sources.

Input

It takes in a DataFrame as input

Output

Dataframe with confidence score field and other selected scores for entities

Type

transform

Class

fire.nodes.ml.NodeDedup

Fields

	Name

	Title

	Description

	confidenceScore

	Confidence Score

	Confidence Score

	lhsCols

	LHS Variables

	LHS columns for matching

	rhsCols

	RHS Variables

	RHS columns for matching

	matchingAlgorithms

	Algorithm to use

	Algorithm to use for matching

	matchingWeights

	Weights

	Weights for matches

	outputCols

	Output Column

	Output Column

Details

Levenstein

The Levenshtein distance between two strings is defined as the minimum number of edits needed to transform one string into the other, with the allowable edit operations being insertion, deletion, or substitution of a single character.

How many char you change to make two strings equal.

JaroWinker

Jaro–Winkler distance for two strings is, the more similar the strings are. The Jaro–Winkler distance metric is designed and best suited for short strings such as person names. The score is normalized such that 0 equates to no similarity and 1 is an exact match.

Good for short words, typos and nikename.

Fullmatch

Fullmatch distance for two strings is, how two strings are match exactly. The score is assigned such that 1 is for exact match and 0 is for not match.

Jaccard

The Jaccard similarity measures similarity between finite sample sets, and is defined as the cardinality of the intersection of sets divided by the cardinality of the union of the sample sets. Suppose you want to find jaccard similarity between two sets A and B it is the ration of cardinality of A ∩ B and A ∪ B.

Sparkflows provide default 3-gram Jaccard similarity measures.

Longest common subsequences(LCS): LCS distance between strings s1 and s2, computed as |s1| +|s2| - 2 * |LCSfunction(s1, s2)| and distance is normalized between 0 and 1.

LCSfunction returns the length of Longest Common Subsequence (LCS) between strings s1 and s2.

Notional distance

Notional distance between two numbers X and Y, computed as abs(X - Y) / abs(x) + abs(Y).

Date Difference

Date Difference gives number of days between two dates(yyyy-MM-dd).

RemoveUnwantedCharacters

This node removes unwanted characters

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeRemoveUnwantedCharacters

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Input columns

	removeWhitespaces

	Remove Whitespaces

	Removes white space

	removeLetters

	Remove Letters

	Removes letters

	removeDigits

	Remove Digits

	Removes digits

	removeSigns

	Remove Signs

	Removes signs

	removeCommas

	Remove Commas

	Removes commas

ImputingWithModeValue

Imputing with most frequently observed value. It fills missing values (None) in selected columns with most frequently observed value in the corresponding column, in the incoming DataFrame.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMode

Fields

	Name

	Title

	Description

	colNames

	Columns

	Columns to be processed for imputing the missing values.

04-DataValidation

	ValidateFieldsAdvanced
	Type

	Class

	Fields

	CompareDatasets
	Type

	Class

	Fields

	ValidateAddress
	Input

	Output

	Type

	Class

	Fields

	ValidateFieldsSimple
	Type

	Class

	Fields

ValidateFieldsAdvanced

Validation Multiple Node

Type

transform

Class

fire.nodes.etl.NodeValidationMultiple

Fields

	Name

	Title

	Description

	description

	Description

	Validations being Performed

	measureValue

	Validation Successful if Percent Good Records >=

	Condition for Validation Passing

	inputCols

	Columns

	Columns

	functions1

	Function

	Validation Function to apply

	values1

	Values

	Values

	conditions1

	Condition

	Validation Condition to apply

	functions2

	Function

	Validation Function to apply

	values2

	Values

	Values

	conditions2

	Condition

	Validation Condition to apply

	functions3

	Function

	Validation Function to apply

	values3

	Values

	Values

CompareDatasets

Validate the input datasets

Type

join

Class

fire.nodes.validation.NodeCompareDatasets

Fields

ValidateAddress

This node validate the USA address

Input

It accepts a DataFrame as input from the previous Node

Output

A new column isValidAddress is added which contains valid or inValid values

Type

transform

Class

fire.nodes.etl.NodeValidateAddress

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	input column name

ValidateFieldsSimple

Validation Node

Type

transform

Class

fire.nodes.etl.NodeValidation

Fields

	Name

	Title

	Description

	description

	Description

	Validations being Performed

	inputCols

	Columns

	Columns

	functions

	Function

	Validation Function to apply

	values

	Values

	Values

CustomProcessors

	pyspark
	ScoreCard_Binning

pyspark

	ScoreCard_Binning
	Type

	Class

	Fields

ScoreCard_Binning

Type

transform

Class

fire.nodes.etl.NodeCustomPySpark_dd281630-bf8f-4e04-8526-1cb555871c46

Fields

17-Documentation

	StickyNote
	Type

	Class

	Fields

	Notes
	Type

	Class

	Fields

StickyNote

Allows capturing Notes on the Workflow

Type

sticky

Class

fire.nodes.doc.NodeStickyNote

Fields

	Name

	Title

	Description

	bgColor

	Bg Color

	Background of note

	width

	Width

	Width of note

	height

	Height

	Height of note

	comment

	Comment

	Comments for the Workflow

Notes

Allows capturing Notes on the Workflow

Type

doc

Class

fire.nodes.doc.NodeDocLarge

Fields

	Name

	Title

	Description

	comment

	Comment

	Comments for the Workflow

12-ML-H2O

	H2OWord2Vec
	Input

	Type

	Class

	Fields

	Details

	H2OScore
	Type

	Class

	Fields

	H2OModelSave
	Type

	Class

	Fields

	H2OPCA
	Input

	Type

	Class

	Fields

	Details

	H2OGLM
	Input

	Type

	Class

	Fields

	Details

	H2OScore
	Type

	Class

	Fields

	H2OMojoLoad
	Type

	Class

	Fields

	H2OXGBoostScore
	Type

	Class

	Fields

	H2O Model Load
	Type

	Class

	Fields

	H2OXGBoostWithGridSearch
	Input

	Type

	Class

	Fields

	H2OXGBoost
	Input

	Type

	Class

	Fields

	H2OXGBoost
	Input

	Type

	Class

	Fields

	Details

	H2O Model Save
	Input

	Output

	Type

	Class

	Fields

	H2ONeuralNetwork
	Input

	Type

	Class

	Fields

	Details

	H2ONaiveBayes
	Input

	Type

	Class

	Fields

	Details

	H2OGLRM
	Input

	Type

	Class

	Fields

	Details

	H2OGBM
	Input

	Type

	Class

	Fields

	Details

	H2OKMeans
	Input

	Type

	Class

	Fields

	Details

	H2OIsolationForest
	Input

	Type

	Class

	Fields

	Details

	H2ODRF
	Input

	Type

	Class

	Fields

	Details

	H2OMojoSave
	Type

	Class

	Fields

	H2OModelLoad
	Type

	Class

	Fields

H2OWord2Vec

H2O Word2Vec

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OWord2vec

Fields

	Name

	Title

	Description

	min_word_freq

	Min Word Freq

	Specify an integer for the minimum word frequency. Word2vec will discard words that appear less than this number of times.

	vec_size

	Vec Size

	Specify the size of word vectors.

	window_size

	Window Size

	This specifies the size of the context window around a given word.

	epochs

	Epochs

	Specify the number of training iterations to run.

	init_learning_rate

	Init Learning Rate

	Set the starting learning rate.

	sent_sample_rate

	Sent Sample Rate

	Set the threshold for the occurrence of words. Those words that appear with higher frequency in the training data will be randomly down-sampled. An ideal range for this option 0, 1e-5.

	aggregateMethod

	AggregateMethod

	Specifies how to aggregate sequences of words.

Details

The Word2vec algorithm takes a text corpus as an input and produces the word vectors as output. The algorithm first creates a vocabulary from the training text data and then learns vector representations of the words.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/word2vec.html#

H2OScore

Type

join

Class

fire.nodes.h2o.NodeH2OScore

Fields

H2OModelSave

Saves an H2O binary ML model

Type

ml-modelsave

Class

fire.nodes.h2o.NodeH2OModelSave

Fields

	Name

	Title

	Description

	path

	Path

	Absolute Path for saving the H2O Mojo

H2OPCA

H2O PCA

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OPCA

Fields

Details

Principal Components Analysis (PCA) is closely related to Principal Components Regression. The algorithm is carried out on a set of possibly collinear features and performs a transformation to produce a new set of uncorrelated features.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/pca.html

H2OGLM

H2O GLM

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGlm

Fields

Details

Generalized Linear Models (GLM) estimate regression models for outcomes following exponential distributions. In addition to the Gaussian (i.e. normal) distribution, these include Poisson, binomial, and gamma distributions. Each serves a different purpose, and depending on distribution and link function choice, can be used either for prediction or classification.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html

H2OScore

Type

ml-predict

Class

fire.nodes.h2o.NodeH2OScore

Fields

	Name

	Title

	Description

	isTestData

	isTestData

	To enable the test metrics.

H2OMojoLoad

Loads an H2O Mojo ML model

Type

ml-modelload

Class

fire.nodes.h2o.NodeH2OMojoLoad

Fields

	Name

	Title

	Description

	path

	Path

	Absolute Path for loading the H2O Mojo

H2OXGBoostScore

Type

ml-predict

Class

fire.nodes.h2o.NodeH2OXGBoostScore

Fields

	Name

	Title

	Description

	isTestData

	isTestData

	To enable the test metrics.

H2O Model Load

This node load the H2O model.

Type

ml-modelload

Class

fire.nodes.h2o.NodeH2OModelLoad

Fields

H2OXGBoostWithGridSearch

H2O XGBoost

Input

It takes in a DataFrame as input

Type

join

Class

fire.nodes.h2o.node_h2oxgboost_gridsearch

Fields

H2OXGBoost

H2O XGBoost

Input

It takes in a DataFrame as input

Type

join

Class

fire.nodes.h2o.node_h2oxgboost

Fields

	Name

	Title

	Description

	responseCol

	Response Column

	

	featureCols

	Feature Columns

	Specify the column or columns to be included for feature.

	ntrees

	NTrees

	Specify the number of trees to build

	tree_method

	Tree Method

	Specify the construction tree method to use.

	grow_policy

	Grow Policy

	

	max_depth

	Max Depth

	Specify the maximum tree depth (Setting this value to 0 specifies no limit)

	max_leaves

	Max Leaves

	Specify the maximum number of leaves to include each tree

	col_sample_rate_per_tree

	Col Sample Rate Per Tree

	

	sample_rate

	Sample rate

	Specify the row sampling rate (x-axis). (Note that this method is sample without replacement)

	learn_rate

	Learn Rate

	Specify the learning rate (The range is 0.0 to 1.0)

	stopping_rounds

	Stopping Rounds

	

	stopping_metric

	Stopping Metric

	Specify the construction tree method to use.

	seed

	Seed

	

H2OXGBoost

H2O XGBoost

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OXGBoost

Fields

Details

XGBoost is a supervised learning algorithm that implements a process called boosting to yield accurate models. Boosting refers to the ensemble learning technique of building many models sequentially, with each new model attempting to correct for the deficiencies in the previous model.

More details are available at : https://h2o-release.s3.amazonaws.com/h2o/rel-weierstrass/2/docs-website/h2o-docs/data-science/xgboost.html

H2O Model Save

This node saves the H2O model at the specified path.

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.h2o.NodeH2OModelSave

Fields

H2ONeuralNetwork

H2O Deep Learning/Neural Network

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2ONeuralNetwork

Fields

Details

H2O’s Deep Learning is based on a multi-layer feedforward artificial neural network that is trained with stochastic gradient descent using back-propagation. The network can contain a large number of hidden layers consisting of neurons with tanh, rectifier, and maxout activation functions.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html

H2ONaiveBayes

H2O Naive Bayes

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2ONaiveBayes

Fields

Details

Naïve Bayes is a classification algorithm that relies on strong assumptions of the independence of covariates in applying Bayes Theorem. The Naïve Bayes classifier assumes independence between predictor variables conditional on the response, and a Gaussian distribution of numeric predictors with mean and standard deviation computed from the training dataset.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/naive-bayes.html

H2OGLRM

H2O GLRM

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGlrm

Fields

Details

Generalized Low Rank Models (GLRM) is an algorithm for dimensionality reduction of a dataset. It is a general, parallelized optimization algorithm that applies to a variety of loss and regularization functions. Categorical columns are handled by expansion into 0/1 indicator columns for each level. With this approach, GLRM is useful for reconstructing missing values and identifying important features in heterogeneous data.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glrm.html

H2OGBM

H2O GBM

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGbm

Fields

Details

Gradient Boosting Machine (for Regression and Classification) is a forward learning ensemble method. The guiding heuristic is that good predictive results can be obtained through increasingly refined approximations. H2O’s GBM sequentially builds regression trees on all the features of the dataset in a fully distributed way - each tree is built in parallel.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html

H2OKMeans

H2O KMeans

Input

It takes in a DataFrame as input

Type

ml-estimator

Class

fire.nodes.h2o.NodeH2OKMeans

Fields

Details

K-Means falls in the general category of clustering algorithms. Clustering is a form of unsupervised learning that tries to find structures in the data without using any labels or target values. Clustering partitions a set of observations into separate groupings such that an observation in a given group is more similar to another observation in the same group than to another observation in a different group.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/k-means.html

H2OIsolationForest

Isolation Forest is similar in principle to Random Forest and is built on the basis of decision trees.

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OIsolationForest

Fields

Details

Isolation Forest is similar in principle to Random Forest and is built on the basis of decision trees. Isolation Forest, however, identifies anomalies or outliers rather than profiling normal data points. Isolation Forest isolates observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of that selected feature. This split depends on how long it takes to separate the points.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/if.html

H2ODRF

H2O DRF

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2ODrf

Fields

Details

Distributed Random Forest (DRF) is a powerful classification and regression tool. When given a set of data, DRF generates a forest of classification or regression trees, rather than a single classification or regression tree. Each of these trees is a weak learner built on a subset of rows and columns. More trees will reduce the variance. Both classification and regression take the average prediction over all of their trees to make a final prediction, whether predicting for a class or numeric value.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html

H2OMojoSave

Saves an H2O MOJO ML model

Type

ml-modelsave

Class

fire.nodes.h2o.NodeH2OMojoSave

Fields

	Name

	Title

	Description

	path

	Path

	Path for saving the H2O Mojo

H2OModelLoad

Loads an H2O binary ML model

Type

ml-modelload

Class

fire.nodes.h2o.NodeH2OModelLoad

Fields

	Name

	Title

	Description

	path

	Path

	Path for loading the H2O Mojo

13-ML-AWSSagemaker

	KMeansSageMakerEstimator
	Type

	Class

	Fields

	XGBoostSageMakerEstimator
	Type

	Class

	Fields

	PCASageMakerEstimator
	Type

	Class

	Fields

	SageMakerLinearLearnerBinaryClassifier
	Type

	Class

	Fields

	SageMakerLinearLearnerRegressor
	Type

	Class

	Fields

	SaveSageMakerFormat
	Type

	Class

	Fields

KMeansSageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeKMeansSageMakerEstimator

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint Instance Type

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

	k

	K

	The number of clusters to create.

	featureDim

	Feature Dim

	The number of dimensions in dataset

XGBoostSageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeXGBoostSageMakerEstimator

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint Instance Type

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

	booster

	Booster

	Select the type of model to run at each iteration. It has 2 options: gbtree: tree-based models & gblinear: linear models

	silent

	Silent

	Silent mode is activated is set to 1, i.e. no running messages will be printed

	nthread

	NThread

	If you wish to run on all cores, value should not be entered and algorithm will detect automatically

	objective

	Objective

	This defines the loss function to be minimized

	numTrees

	Num Trees

	The number of rounds for boosting

	numClasses

	Num Classes

	For Objective: multi:softmax, you also need to set an additional num_class (number of classes) parameter defining the number of unique classes

	seed

	Seed

	Can be used for generating reproducible results and also for parameter tuning

PCASageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodePCASageMakerEstimator

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint Instance Type

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

	numComponents

	Num Components

	The number of principal components to find.

	featureDim

	Feature Dim

	The number of dimensions in dataset

SageMakerLinearLearnerBinaryClassifier

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeLinearLearnerBinaryClassifier

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint Instance Type

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

SageMakerLinearLearnerRegressor

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeLinearLearnerRegressor

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint InstanceType

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

SaveSageMakerFormat

Saves the DataFrame into the specified location in Sagemaker Format

Type

transform

Class

fire.nodes.sagemaker.NodeSaveSagemaker

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the Sagemaker files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

	labelColumnName

	Label Column Name

	label column name

	featuresColumnName

	Features Column Name

	features column name

14-ML-Sklearn

	SklearnPredict
	Input

	Output

	Type

	Class

	Fields

	SklearnRegressionEvaluator
	Input

	Output

	Type

	Class

	Fields

	Sklearn Model Load
	Type

	Class

	Fields

	CustomMetrics
	Type

	Class

	Fields

	SkLearnRidgeRegression
	Type

	Class

	Fields

	SklearnRandomForestClassifier
	Type

	Class

	Fields

	SklearnRandomForestRegression
	Type

	Class

	Fields

	SklearnGradientBoostingRegression
	Type

	Class

	Fields

	SklearnGradientBoostingClassifier
	Type

	Class

	Fields

	SkLearnLassoRegression
	Type

	Class

	Fields

	SklearnLogisticRegression
	Type

	Class

	Fields

	Sklearn Model Save
	Input

	Output

	Type

	Class

	Fields

	Sklearn Model Load From S3
	Input

	Output

	Type

	Class

	Fields

	SklearnClassificationEvaluator
	Input

	Output

	Type

	Class

	Fields

	Sklearn Model Save To S3
	Input

	Output

	Type

	Class

	Fields

	CategoryEncoders
	Type

	Class

	Fields

SklearnPredict

Predict node takes in a DataFrame and Model and makes predictions

Input

It takes in a DataFrame and Model as input

Output

A new column containing the predictions is added to the input DataFrame

Type

ml-predict

Class

fire.nodes.sklearn.NodeSklearnPredict

Fields

SklearnRegressionEvaluator

Evaluator for regression, which expects two input columns: prediction and label.

Input

It takes in a DataFrame as input

Output

The incoming DataFrame is passed to the output

Type

transform

Class

fire.nodes.sklearn.NodeSklearnRegressionEvaluator

Fields

	Name

	Title

	Description

	targetCol

	Label Column

	The label column for model fitting.

	predictCol

	Prediction Column

	The prediction column.

Sklearn Model Load

This node load the Sklearn model stored in the pickel file.

Type

ml-modelload

Class

fire.nodes.sklearn.NodeModelLoad

Fields

CustomMetrics

Type

transformer

Class

fire.nodes.sklearn.NodeCustomMetrics

Fields

	Name

	Title

	Description

	actualCol

	ActualCol

	

	predictedCol

	PredictedCol

	

	aggregatedAt

	AggregatedAt

	

	metricsType

	metricsType

	Window Function Name

SkLearnRidgeRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnRidgeRegression

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	alpha

	Alpha

	

	fitintercept

	Fitintercept

	

	normalize

	Normalize

	

	maxiter

	Maxiter

	

	tol

	Tolerence

	

	solver

	Solver

	

	randomstate

	randomstate

	Random state

SklearnRandomForestClassifier

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnRandomForestClassifier

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	n_estimators

	NEstimators

	

	criterion

	Criterion

	

	max_depth

	MaxDepth

	Default value is None i.e -1

	min_samples_split

	MinSamplesSplit

	

	min_samples_leaf

	MinSamplesLeaf

	

	min_weight_fraction_leaf

	MinWeightFractionLeaf

	

	max_features

	MaxFeatures

	

	max_leaf_nodes

	MaxLeafNodes

	Default value is None i.e -1

	min_impurity_decrease

	MinImpurityDecrease

	

	min_impurity_split

	MinImpuritySplit

	

	bootstrap

	Bootstrap

	

	oob_score

	OobScore

	

	random_state

	RandomState

	Default value is None i.e -1

	warm_start

	WarmStart

	

SklearnRandomForestRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnRandomForestRegression

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	n_estimators

	NEstimators

	

	criterion

	Criterion

	

	max_depth

	MaxDepth

	Default value is None i.e -1

	min_samples_split

	MinSamplesSplit

	

	min_samples_leaf

	MinSamplesLeaf

	

	min_weight_fraction_leaf

	MinWeightFractionLeaf

	

	max_features

	MaxFeatures

	

	max_leaf_nodes

	MaxLeafNodes

	Default value is None i.e -1

	min_impurity_decrease

	MinImpurityDecrease

	

	min_impurity_split

	MinImpuritySplit

	

	bootstrap

	Bootstrap

	

	oob_score

	OobScore

	

	random_state

	RandomState

	Default value is None i.e -1

	warm_start

	WarmStart

	

SklearnGradientBoostingRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnGradientBoostingRegressor

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	loss

	Loss

	

	learning_rate

	LearningRate

	

	n_estimators

	NEstimators

	

	subsample

	Subsample

	

	criterion

	Criterion

	

	min_samples_split

	MinSamplesSplit

	

	min_samples_leaf

	MinSamplesLeaf

	

	min_weight_fraction_leaf

	MinWeightFractionLeaf

	

	max_depth

	MaxDepth

	Default value is None i.e -1

	min_impurity_decrease

	MinImpurityDecrease

	

	min_impurity_split

	MinImpuritySplit

	

	random_state

	RandomState

	Default value is None i.e -1

	max_features

	MaxFeatures

	

	alpha

	Alpha

	

	verbose

	Verbose

	

	max_leaf_nodes

	MaxLeafNodes

	Default value is None i.e -1

	warm_start

	WarmStart

	

	presort

	Presort

	

	validation_fraction

	ValidationFraction

	

	n_iter_no_change

	NIterNoChange

	Default value is None i.e -1

	tol

	Tol

	

SklearnGradientBoostingClassifier

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnGradientBoostingClassifier

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	loss

	Loss

	

	learning_rate

	LearningRate

	

	n_estimators

	NEstimators

	

	subsample

	Subsample

	

	criterion

	Criterion

	

	min_samples_split

	MinSamplesSplit

	

	min_samples_leaf

	MinSamplesLeaf

	

	min_weight_fraction_leaf

	MinWeightFractionLeaf

	

	max_depth

	MaxDepth

	

	min_impurity_decrease

	MinImpurityDecrease

	

	min_impurity_split

	MinImpuritySplit

	

	random_state

	RandomState

	Default value is None i.e -1

	max_features

	MaxFeatures

	

	verbose

	Verbose

	

	max_leaf_nodes

	MaxLeafNodes

	Default value is None i.e -1

	warm_start

	WarmStart

	

	presort

	Presort

	

	validation_fraction

	ValidationFraction

	

	n_iter_no_change

	NIterNoChange

	Default value is None i.e -1

	tol

	Tol

	

SkLearnLassoRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnLassoRegression

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	alpha

	Alpha

	

	fit_intercept

	Fitintercept

	

	normalize

	Normalize

	

	precompute

	Precompute

	

	max_iter

	Maxiter

	

	tol

	Tol

	

	warm_start

	WarmStart

	

	positive

	Positive

	

	random_state

	RandomState

	Default value is None i.e -1

	selection

	Selection

	

SklearnLogisticRegression

Type

ml-estimator

Class

fire.nodes.sklearn.NodeSklearnLogisticRegression

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	penalty

	Penalty

	

	dual

	Dual

	

	tol

	Tol

	

	C

	C

	

	fit_intercept

	Fitintercept

	

	intercept_scaling

	InterceptScaling

	

	class_weight

	ClassWeight

	

	random_state

	RandomState

	

	solver

	Solver

	

	max_iter

	Maxiter

	

	multi_class

	MultiClass

	

	verbose

	Verbose

	

	warm_start

	WarmStart

	

	l1_ratio

	L1Ratio

	

Sklearn Model Save

This node saves the Sklearn model generated at the specified path in pickle file.

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.sklearn.NodeModelSave

Fields

Sklearn Model Load From S3

This node load the Sklearn model stored in the pickel format in S3.

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.sklearn.NodeSklearnModelLoadFromS3

Fields

SklearnClassificationEvaluator

Evaluator for classification, which expects two input columns: prediction and label.

Input

It takes in a DataFrame as input

Output

The incoming DataFrame is passed to the output

Type

transform

Class

fire.nodes.sklearn.NodeSklearnClassificationEvaluator

Fields

	Name

	Title

	Description

	targetCol

	Label Column

	The label column for model fitting.

	predictCol

	Prediction Column

	The prediction column.

Sklearn Model Save To S3

This node saves the Sklearn model generated at the specified path in S3 in pickle format.

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.sklearn.NodeSklearnModelSaveToS3

Fields

CategoryEncoders

Type

ml-transformer

Class

fire.nodes.sklearn.NodeCategoryEncoders

Fields

	Name

	Title

	Description

	category_features_column

	Category Features Column

	

08-Group

	GroupBy
	Type

	Class

	Fields

	Cube
	Type

	Class

	Fields

	Rollup
	Type

	Class

	Fields

	PivotBy
	Type

	Class

	Fields

GroupBy

Grouper Node

Type

transform

Class

fire.nodes.etl.NodeGroupBy

Fields

Cube

Cube Node generates a result set that shows aggregates for all combinations of values in the selected columns.

Type

transform

Class

fire.nodes.etl.NodeCube

Fields

	Name

	Title

	Description

	cubeCols

	Cube Columns

	

	aggregateCols

	Aggregate Columns

	Aggregate Columns

	aggregateOperations

	Aggregate Operation to use

	Aggregate Operation

Rollup

Rollup Node generates a result set that shows aggregates for a hierarchy of values in the selected columns.

Type

transform

Class

fire.nodes.etl.NodeRollup

Fields

	Name

	Title

	Description

	rollupCols

	Rollup Columns

	

	aggregateCols

	Aggregate Columns

	Aggregate Columns

	aggregateOperations

	Aggregate Operation to use

	Aggregate Operation

PivotBy

Pivot Node

Type

transform

Class

fire.nodes.etl.NodePivotBy

Fields

06-Code

	SQLExecuter
	Input

	Output

	Type

	Class

	Fields

	PipePython2
	Input

	Output

	Type

	Class

	Fields

	ScalaUDF
	Input

	Type

	Class

	Fields

	Jython
	Input

	Output

	Type

	Class

	Fields

	Details

	UnixShellCommands
	Type

	Class

	Fields

	SQL
	Input

	Output

	Type

	Class

	Fields

	Scala
	Input

	Output

	Type

	Class

	Fields

	PipePython
	Input

	Output

	Type

	Class

	Fields

	PySpark
	Input

	Output

	Type

	Class

	Fields

	RunHIVEQL
	Input

	Output

	Type

	Class

	Fields

SQLExecuter

This node runs the given SQL query

Input

This type of node takes the sql query of any statement type

Output

This node execute the given SQL query

Type

dataset

Class

fire.nodes.runrdbmssql.NodeSqlExecuter

Fields

	Name

	Title

	Description

	url

	Db Url

	Url of SQL

	driver

	driver class name

	driver class name for SQL

	user name

	User Name

	User name of SQL

	password

	password

	password of SQL

	statementType

	Statement Type

	statementType of SQL

	query

	query

	write query to wxecute

PipePython2

This node runs any given Python code. It pipes the incoming DataFrame through pipe to the Python Script. Output back to Spark has to be written out using print.

Input

It pipes the incoming DataFrame through pipe to the Python Script. It also passes the Schema of the DataFrame to the Python script through the command line argument - argv[1]

Output

Output back to Spark has to be written out using print.

Type

transform

Class

fire.nodes.etl.NodePipePython2

Fields

	Name

	Title

	Description

	codeHeader

	Pipe Header Code

	Header part of the Python code to be run. It receives each record as a string

	codeBody

	Pipe Body Code

	Body part of the Python code to be run.

	codeFooter

	Pipe Footer Code

	Footer part of the Python code to be run. It should write out each resulting record back as a string.

	outputColNames

	Output Column Names

	Output Schema of Pipe Python Processor

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

ScalaUDF

This node runs any given Scala code for UDFs

Input

.

Type

scala

Class

fire.nodes.etl.NodeUDFScala

Fields

	Name

	Title

	Description

	code

	Scala

	Scala code to be run.

Jython

This node runs any given Jython code. The input dataframe is passed in the variable inDF. The output dataframe should be placed in the variable outDF

Input

The input dataframe is passed in the variable in DF

Output

The output dataframe should be placed in the variable outDF

Type

transform

Class

fire.nodes.etl.NodeJython

Fields

Details

This node runs any given Jython code.

Below is an example jython code. It takes the input dataframe ‘inDF’, and returns the new dataframe ‘outDF’

outDF = inDF.groupBy(“c2”).count()

UnixShellCommands

This node execute shell command

Type

shellcommand

Class

fire.nodes.etl.NodeShellCommand

Fields

	Name

	Title

	Description

	shellCommand

	shell Command

	Unix Shell Command

SQL

This node runs the given SQL on the incoming DataFrame

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node runs the given SQL on the incoming DataFrame to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeSQL

Fields

Scala

This node runs any given Scala code. The input dataframe is passed in the variable inDF. The output dataframe is passed back by registering it as a temporary table.

Input

The input dataframe is passed in the variable inDF.

Output

The output dataframe is passed back by registering it as a temporary table

Type

scala

Class

fire.nodes.etl.NodeScala

Fields

PipePython

This node runs any given Python code. It pipes the incoming DataFrame through pipe to the Python Script. Output back to Spark has to be written out using print.

Input

It pipes the incoming DataFrame through pipe to the Python Script. It also passes the Schema of the DataFrame to the Python script through the command line argument - argv[1]

Output

Output back to Spark has to be written out using print.

Type

transform

Class

fire.nodes.etl.NodePipePython

Fields

	Name

	Title

	Description

	code

	Pipe Python

	Python code to be run. It receives each record as a string and outputs records back as a string.

	outputColNames

	Output Column Names

	Output Schema of Pipe Python Processor

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

PySpark

This node runs any given PySpark code. The input dataframe is passed in the variable inDF. The output dataframe is passed back by registering it as a temporary table.

Input

The input dataframe is passed in the variable inDF.

Output

The output dataframe is passed back by registering it as a temporary table

Type

pyspark

Class

fire.nodes.etl.NodePySpark

Fields

RunHIVEQL

This node runs the given SQL on the incoming DataFrame

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node runs the given SQL on the incoming DataFrame to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeRunHiveQL

Fields

	Name

	Title

	Description

	hql

	HiveQL - HIVE Query Language

	HiveQL

10-Visualization

	GraphRegionGeo
	Type

	Class

	Fields

	PrintNRows
	Type

	Class

	Fields

	GraphValues
	Type

	Class

	Fields

	GraphGroupByColumn
	Type

	Class

	Fields

	Sample PrintNRows
	Type

	Class

	Fields

GraphRegionGeo

This node displays values on a Map

Type

transform

Class

fire.nodes.graph.NodeGraphRegionGeo

Fields

PrintNRows

Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output

Type

transform

Class

fire.nodes.util.NodePrintFirstNRows

Fields

GraphValues

Type

transform

Class

fire.nodes.graph.NodeGraphValues

Fields

GraphGroupByColumn

Groups the data by the given column and plots the number of records in each group

Type

transform

Class

fire.nodes.graph.NodeGraphGroupByColumn

Fields

Sample PrintNRows

Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output

Type

transform

Class

fire.nodes.util.NodeSamplePrintFirstNRows

Fields

19-Deprecated

	StringToDate
	Type

	Class

	Fields

	Examples

StringToDate

This node converts a string column to date using the given date/time format

Type

transform

Class

fire.nodes.etl.NodeStringToDate

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	Input Column Name

	inputColFormat

	Input Column Format

	Input Column Format. eg: yyyy-MM-dd yyyy-MM-dd HH:mm:ss

	outputColName

	Output Column Name

	Output Column Name

	outputColType

	Output Column Type

	Output Column Type

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

	OUTPUT COLUMN NAME: - If user inputs an existing column name, it overrides the column

	otherwise it will add a new column.

15-Streaming

	StreamingSocketTextStream
	Input

	Output

	Type

	Class

	Fields

	Details

	Key Fields

	Examples

	StreamingKafka
	Input

	Output

	Type

	Class

	Fields

	StreamingTextFileStream
	Input

	Output

	Type

	Class

	Fields

StreamingSocketTextStream

Reads in streaming text from a socket

Input

It does not take any DataFrame as input

Output

It creates DataFrame from reading data from a socket. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.streaming.NodeStreamingSocketTextStream

Fields

	Name

	Title

	Description

	batchDuration

	Batch Duration in Seconds

	Batch Duration in Seconds

	hostname

	Hostname

	Host to connect to for listening

	port

	Port

	Port to connect to

Details

This Processor reads in messages from a Socket

Key Fields

Below are the key fields of this Processor.

	hostname: this is the name of the host from where to read in the messages

	port: this is the port number from where to read in the messages

Examples

Below is an example of the fields:

	hostname: localhost

	port: 8099

StreamingKafka

Reads in streaming text from topics in Apache Kafka

Input

It does not take any DataFrame as input

Output

It reads events from Kafka and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.streaming.NodeStreamingKafka

Fields

	Name

	Title

	Description

	batchDuration

	Batch Duration in Seconds

	Batch Duration in Seconds

	brokers

	Kafka Brokers

	Kafka Brokers

	group

	Consumer Group

	Consumer Group

	topics

	Kafka Topics

	List of Topics separated by , (comma)

	autoOffsetReset

	auto.offset.reset

	Auto Offset Reset

	enableAutoCommit

	enable.auto.commit

	Enable Auto Commit

	kafkaParamsKeys

	Params Key/Value Pairs

	More Config Values

	kafkaParamsValues

	Parms Key/Value Pairs

	More Config Values

StreamingTextFileStream

It monitors a specified directory for new files. It keeps reading in any new files created in the directory.

Input

It does not take any DataFrame as input

Output

It reads the new files and creates DataFrame from the content of the text files. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.streaming.NodeStreamingTextFileStream

Fields

	Name

	Title

	Description

	path

	Path

	Directory from where to pick up files from

	batchDuration

	Batch Duration in Seconds

	Batch Duration in Seconds

	outputCol

	Output Column

	Output Column

15-StructuredStreaming

	StructuredStreamingCSV
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingHiveSink2
	Type

	Class

	Fields

	StructuredStreamingFileSink
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingSocket
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingHiveSink
	Type

	Class

	Fields

	StructuredStreamingKinesis
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingKafka
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingConsoleSink
	Input

	Output

	Type

	Class

	Fields

StructuredStreamingCSV

It monitors a specified directory for new files. It keeps reading in any new files created in the directory.

Input

It does not take any DataFrame as input

Output

It reads the new files and creates DataFrame from the content of the text files. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingCSV

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	separator

	Separator

	CSV Separator

	outputColNames

	Column Names for the CSV

	Output Column Names

	outputColTypes

	Column Types for the CSV

	Output Column Types

	outputColFormats

	Column Formats for the CSV

	Output Column Formats

StructuredStreamingHiveSink2

Saves the streaming data into an Apache HIVE Table

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingHiveSink2

Fields

	Name

	Title

	Description

	databaseName

	HIVE Database

	Name of the HIVE Database

	tableName

	HIVE Table

	Name of the HIVE table

StructuredStreamingFileSink

It writes the DataFrame to files with Structured Streaming

Input

It takes in DataFrame as input

Output

It writes the incoming DataFrame to files.

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingFileSink

Fields

	Name

	Title

	Description

	path

	Path

	Path where to write the files

	outputMode

	Output Mode

	Output Mode for saving to Files

	checkpointLocation

	Checkpoint Location

	Checkpoint Location on HDFS compatible file system for Streaming

	format

	Format

	File Format

	partitionBy

	Partition By Columns

	Partition By Columns separated by space (can be empty in which case partitionBy would not be applied)

StructuredStreamingSocket

Reads in streaming text from a socket

Input

It does not take any DataFrame as input

Output

It reads events a socket and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingSocket

Fields

	Name

	Title

	Description

	host

	Hostname

	Host to connect to for listening

	port

	Port

	Port to connect to

StructuredStreamingHiveSink

Saves the streaming data into a HIVE Table

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingHiveSink

Fields

	Name

	Title

	Description

	databaseName

	HIVE Database

	Name of the HIVE Database

	tableName

	HIVE Table

	Name of the HIVE table

StructuredStreamingKinesis

Reads in streaming text from Kinesis stream

Input

It does not take any DataFrame as input

Output

It reads events from Kinesis and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingKinesis

Fields

	Name

	Title

	Description

	streamName

	Stream Name

	Kinesis Stream Name

	endpointUrl

	Endpoint Url

	Kinesis Endpoint Url

	editorData

	Editor Data

	Data to be used for testing in the Workflow Editor

StructuredStreamingKafka

Reads in streaming text from topics in Apache Kafka

Input

It does not take any DataFrame as input

Output

It reads events from Kafka and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingKafka

Fields

	Name

	Title

	Description

	batchDuration

	Batch Duration in Seconds

	Batch Duration in Seconds

	brokers

	Kafka Brokers

	Kafka Brokers

	group

	Consumer Group

	Consumer Group

	topics

	Kafka Topics

	List of Topics separated by , (comma)

	autoOffsetReset

	auto.offset.reset

	Auto Offset Reset

	enableAutoCommit

	enable.auto.commit

	Enable Auto Commit

	kafkaParamsKeys

	Params Key/Value Pairs

	More Config Values

	kafkaParamsValues

	Parms Key/Value Pairs

	More Config Values

StructuredStreamingConsoleSink

It output the DataFrame to the console

Input

It takes in DataFrame as input

Output

It writes the incoming DataFrame to the console.

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingConsoleSink

Fields

	Name

	Title

	Description

	outputMode

	Output Mode

	Output Mode for saving to Files

14-DL

	KerasModelFit
	Type

	Class

	Fields

	KerasPredict
	Type

	Class

	Fields

	KerasModelCompile
	Type

	Class

	Fields

	DenseLayer
	Type

	Class

	Fields

	KerasModelSequential
	Type

	Class

	Fields

KerasModelFit

Type

ml-estimator

Class

fire.nodes.dl.NodeModelFit

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	batch_size

	BatchSize

	Default value is None i.e -1

	epochs

	Epochs

	

	verbose

	Verbose

	

	callbacks

	Callbacks

	Default value is None i.e -1

	validation_split

	ValidationSplit

	

	validation_data

	ValidationData

	Default value is None i.e -1

	shuffle

	Shuffle

	

	class_weight

	ClassWeight

	Default value is None i.e -1

	sample_weight

	SampleWeight

	Default value is None i.e -1

	initial_epoch

	InitialEpoch

	

	steps_per_epoch

	StepsPerEpoch

	Default value is None i.e -1

	validation_steps

	ValidationSteps

	Default value is None i.e -1

	validation_freq

	ValidationFreq

	

	max_queue_size

	MaxQueueSize

	

	workers

	Workers

	

	use_multiprocessing

	UseMultiprocessing

	

KerasPredict

Type

ml-predict

Class

fire.nodes.dl.NodePredict

Fields

	Name

	Title

	Description

	targetCol

	Target Column

	The label column for model fitting

	batch_size

	BatchSize

	Default value is None i.e -1

	verbose

	Verbose

	

	steps

	Steps

	Default value is None i.e -1

	callbacks

	Callbacks

	Default value is None i.e -1

	max_queue_size

	ValidationFreq

	

	workers

	Workers

	

	use_multiprocessing

	UseMultiprocessing

	

KerasModelCompile

Type

transform

Class

fire.nodes.dl.NodeModelCompile

Fields

	Name

	Title

	Description

	optimizer

	Optimizer

	

	loss

	Loss

	

	metrics

	Metrics

	

	loss_weights

	LossWeights

	

	sample_weight_mode

	SampleWeightMode

	

	weighted_metrics

	WeightedMetrics

	

	target_tensors

	TargetTensors

	

DenseLayer

Type

transform

Class

fire.nodes.dl.NodeDense

Fields

	Name

	Title

	Description

	units

	Units

	

	activation

	Activation

	

	use_bias

	Use Bias

	

	kernel_initializer

	Kernel Initializer

	

	bias_initializer

	Bias Initializer

	

	kernel_regularizer

	Kernel Regularizer

	

	bias_regularizer

	Bias Regularizer

	

	activity_regularizer

	Activity Regularizer

	

	kernel_constraint

	Kernel Constraint

	

	bias_constraint

	Bias Constraint

	

KerasModelSequential

Type

transform

Class

fire.nodes.dl.NodeModelSequential

Fields

	Name

	Title

	Description

	layers

	Layers

	

07-JoinUnion

	UnionAll
	Input

	Output

	Type

	Class

	Fields

	GeoJoin
	Input

	Type

	Class

	Fields

	JoinOnCommonColumns
	Input

	Output

	Type

	Class

	Fields

	JoinOnColumns
	Type

	Class

	Fields

	JoinUsingSQL
	Input

	Output

	Type

	Class

	Fields

	UnionDistinct
	Input

	Output

	Type

	Class

	Fields

	JoinOnCommonColumn
	Input

	Output

	Type

	Class

	Fields

UnionAll

This node creates a new DataFrame by merging all the rows without removing the duplicates

Input

It accepts a DataFrame as input from the previous Node

Output

This node does union of all the rows without removing the duplicates

Type

join

Class

fire.nodes.etl.NodeUnionAll

Fields

GeoJoin

This node joins the incoming dataframes

Input

This node takes in 2 DataFrames as input and produces one DataFrame as output

Type

join

Class

fire.nodes.etl.NodeGeoJoin

Fields

	Name

	Title

	Description

	latitudeCol

	Latitude Column

	Latitude Column from first DataFrame

	longitudeCol

	Longitude Column

	Longitude Column from first DataFrame

	polygonCol

	Polygon Column

	Polygon Column from second DataFrame

JoinOnCommonColumns

This node joins the incoming dataframes on 1 or more columns

Input

It takes in 2 DataFrames as input and produces one DataFrame as output by joining on the specified columns

Output

The output DataFrame produced as a result of joining the incoming DataFrames on the specified columns

Type

join

Class

fire.nodes.etl.NodeJoinUsingColumns

Fields

	Name

	Title

	Description

	joinCols

	Common Join Columns

	Space separated list of columns on which to join

	joinType

	Join Type

	Type of Join

	outputColNames

	Output Column Names

	Name of the Output Columns

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

	whereClause

	Where Clause

	where condition after join function

JoinOnColumns

Type

join2inputs

Class

fire.nodes.etl.JoinOnColumns

Fields

	Name

	Title

	Description

	joinType

	Join Type

	Type of Join

	leftTableJoinColumn

	LeftTableJoinColumn

	

	rightTableJoinColumn

	RightTableJoinColumn

	

JoinUsingSQL

This node registers the incoming DataFrames as temporary tables and executes the SQL provided

Input

It takes in 2 DataFrames as input and produces one DataFrame as output by executing the provided SQL.

Output

The DataFrame created as a result of executing the join SQL

Type

join

Class

fire.nodes.etl.NodeJoinUsingSQL

Fields

UnionDistinct

This node creates a new DataFrame by performing a DISTINCT on the result set, eliminating any duplicate rows

Input

It takes in multiple DataFrames as input

Output

This node does union of all the rows from the incoming DataFrames to generate the output DataFrame

Type

join

Class

fire.nodes.etl.NodeUnionDistinct

Fields

JoinOnCommonColumn

This node joins the incoming dataframes on a joinCol

Input

This node takes in 2 DataFrames as input and produces one DataFrame as output

Output

The output DataFrame is the result of joining the 2 incoming DataFrames on the join column

Type

join

Class

fire.nodes.etl.NodeJoinUsingColumn

Fields

	Name

	Title

	Description

	joinCol

	Common Join Column

	column on which to join

Release Notes

	Upcoming Features
	Installer

	Aug 2020
	New Features

	UI Improvements

	May 2020
	New Features

	UI Improvements

	April 2020
	New Features

	UI Improvements

	March 2020
	New Features

	UI Improvements

	February 2020
	New Features

	UI Improvment

	January 2020
	New Features

	September 2019
	New Processors Added For Scala Engine

	New Processors Added For Pyspark Engine

	Improvement of RESTAPI

	New Features

	Upgrades for Security Vulnerabilties

	UI Improvement

	August 2019
	New Processors Added For Scala Engine

	New Processors Added For Pyspark Engine

	UI Improvements

	July 2019
	Integration of H2O

	Improvements in UI

	Improvements to HDFS Browser

	Improvements in Home Dashboard Page

	Added New Features

	Upgradation of Running Server on Ports

	June 2019
	Improvements in UI

	Improvements to HDFS Browser

	Support Of Authentication Using Token

	Improvements in Dataset

	Running Applications Locally

	Node Updates

	May 2019
	PySpark Engine

	New Processors

	Improvements to HDFS Browser

	Applications

	Datasets

	Workflow Editor

	April 2019
	New Processors Added For Scala Engine

	New Processors Added For Pyspark Engine

	Improvement of RESTAPI

	New Features

	Upgrades for Security Vulnerabilties

	UI Improvement

	February 2019
	Correlation Node Output

	Scheduled Workflow Edit

	Multiple users in a Group

	SaveMongoDB Node

	Interactive Dashboard Improvements

	January 2019
	Interactive Dashboards

	Workflow Wizard

	Pipelines

	Charts Improvements

	Processor Improvements

	Support for Uploading Large Files

	November 2018
	Support for Applications

	Structured Streaming

	3.1.0 Release Notes
	Contents of this release

	2.1.0 Release Notes
	Contents of this release

	1.4.0 Release Notes
	Contents of this release

	1.3.0 Release Notes
	Contents of this release

Upcoming Features

Below are the upcoming features in Fire Insights.

Installer

A one-click installer and update for Fire Insights.

Users would be able to install and update Fire Insights on their laptops with one click.

Aug 2020

New Features

	Time Series Modeling with Prophet

	Time Series Modeling with Arima

	Building Custom Nodes in Python

UI Improvements

	Upgraded look and feel

May 2020

New Features

	Added viewing of Fire Insights logs under Administration Menu

	Added more details to Data Profiling

	Added file upload and delete capabilities in DBFS browser

	Added ability to create datasets for data on AWS S3.

	Added configurations for AWS Home Directory to restrict access of other bucket or folder

	Added interactive dashboards

	Added ability to view workflows by type : Normal, Data Profiling, Dataset Cleaning

UI Improvements

	Each workflow list page now displays up to 50 workflows

April 2020

New Features

	Added browsing of AWS S3 file system under Data Browser

	Added uploading files to S3

	Added creating folder on S3

	Added deleting files on S3

	Added reporting for Total Users, Groups, Projects, Workflows & Workflows Executions

UI Improvements

	Autocomplete feature added to SQL editor in workflows

March 2020

New Features

	Integration with Databricks

	Added Browsing Databricks DB, Databricks Cluster & DBFS

	Added Scheduling in Standalone Mode

	Compatible with Amazon Aurora Database

UI Improvements

	Improvement of Metrics which include stage information

	Improvement in JOIN USING SQL Processors

February 2020

New Features

	Job Metrics Integration with improvements.

	SUPERUSER to have more rights when elevated access is enabled.

	If user is inactive, he is unable to login.

	Added Runtime Statistics.

	Added Compare Model.

UI Improvment

	Improvement to Connection page.

January 2020

New Features

	Integrated with yarn which enable us to see detail information of job submitted to cluster

	Integrated with Job Metrics

	Added plugins for GoogleRestApiKey in Configurations

	Added Geo chart: Country & Geo chart: Lat, Lon features in Interactive Dahboard

	Integrated with Model List and Summary Page for viewing detail information about the model

	Added Reload Sample Application Features

September 2019

New Processors Added For Scala Engine

	MultiWindowAnalytics

	MultiWindowRanking

New Processors Added For Pyspark Engine

	SaveAvro

	SaveJSON

Improvement of RESTAPI

New Features

	Integrated File Watcher with AWS

	Database Cleanup for workflow execution & workflow execution results

	Export of all users implemented

	Added search help with search option to Quickstart Guide, Tutorials & FAQ

Upgrades for Security Vulnerabilties

	All the dependencies have been upgraded to handle security vulnerabilities.

UI Improvement

	Improvement of WorkflowEeditor Page to make it easy to add the workflow parameters.

August 2019

New Processors Added For Scala Engine

	WindowAnalytics

	WindowRanking

	H2OGLRM

	H2OWord2Vec

New Processors Added For Pyspark Engine

	ZipWithIndex

	ReadAvro

	ReadJSON

	ReadParquet

UI Improvements

	Drag and drop function for node in workflow editor

	Improvement of workflow editor page look & feel.

July 2019

Integration of H2O

	The following New H2O Processors have been added :

	H2ODRF

	H2OGBM

	H2OGLM

	H2OIsolationForest

	H2OKMeans

	H2OModelLoad

	H2OModelSave

	H2OMojoLoad

	H2OMojoSave

	H2ONaiveBayes

	H2ONeuralNetwork

	H2OPCA

	H2OScore

Improvements in UI

	Login Page of Fire Insights has been upgraded.

	Scatter Plot look and feel has been upgraded.

Improvements to HDFS Browser

	Ability to edit files and directories.

Improvements in Home Dashboard Page

Added New Features

	Added Search Box to Search Workflow, Node, Dataset & Dashboard available in an application.

	Added Self-Registration to create a user directly from Login page.

Upgradation of Running Server on Ports

	Fire Insights now enable us to run Fire & Pspark server on different ports.

June 2019

The following features have been released in June 2019.

Improvements in UI

	Displaying text in Workflow Execution Page with more details visible.

	CSV and other read file nodes, now display the name of the file.

	When cloning a node in the editor, the cloned node is created close to the original node.

Improvements to HDFS Browser

	Fire Insights now allows moving multiple files from one directory to another.

Support Of Authentication Using Token

	Fire now supports two methods Of getting tokens to access Fire

Grant Types – Password.

Grant Types – Authorization code.

Improvements in Dataset

	Look and feel of the edit Dataset page has been upgraded.

Running Applications Locally

	Workflows when running locally are now executed as separate Java or Python processes.

Node Updates

	JoinUsingSQL now allows joining multiple datasets at a time.

May 2019

The following features have been released in May 2019.

PySpark Engine

	New Engine for running PySpark

New Processors

Outlier Detection

	New Node for Outlier Detection

Improvements to HDFS Browser

	Displaying user permission for each file/directory

	Displaying an icon indicating whether it is file or directory

	Better display of error messages

Applications

	Datasets tab is the first tab now

Datasets

	Better display of the Create/Edit dataset page

	Do not display JDBC passwords

Workflow Editor

	Ability to create DataSet Nodes by browsing the list of datasets

	HIVE DB Browser on the LHS

	Better display of the processors

	Fix for tabs in dialogs not showing up (eg. in Logistic Regression Processor)

April 2019

New Processors Added For Scala Engine

	MultiWindowAnalytics

	MultiWindowRanking

New Processors Added For Pyspark Engine

	SaveAvro

	SaveJSON

Improvement of RESTAPI

New Features

	Integrated File Watcher with AWS

	Database Cleanup for workflow execution & workflow execution results

	Export of all users

	Added search help with search option to quickstart guide, tutorials & FAQ

Upgrades for Security Vulnerabilties

	All the dependencies have been upgraded to handle security vulnerabilities.

UI Improvement

	Improvement of workflow editor page to make it easy to add the workflow parameters.

February 2019

The following features have been released in Feb 2019.

Correlation Node Output

In Heatmap the colors are not repeated.

Scheduled Workflow Edit

Fire now enables editing of already scheduled workflows for executions.

Multiple users in a Group

Fire now enables you to add multiple users to a group.

SaveMongoDB Node

Fire now enables you to save your data to MongoDB using this node.

Interactive Dashboard Improvements

	Allows 2 items or more in y-axis in Histogram Chart.

	When there are 2 items on x-axis, only one item is allowed on the y-axis.

January 2019

The following features have been released in Jan 2019.

Interactive Dashboards

Fire now enables you to create Interactive Dashboards. Interactive Dashboards pull data from JDBC sources.

Workflow Wizard

Workflow Wizard enables you to quickly create workflows of various kinds. These could be data cleaning, reporting, spam detection, churn prediction etc.

Pipelines

Fire now supports Pipelines. Pipelines allow creating a DAG of workflows. In the future it would allow adding more types of nodes to the DAG.

Charts Improvements

	Ability to display more than 1 heatmap in a workflow

	Display of X-values and X-axis in the Charts

Processor Improvements

	In RowFilter Processor, the size of conditional expression textfield has been increased.

Support for Uploading Large Files

Fire now supports uploading very large files.

November 2018

The following features have been released in Nov 2018.

Support for Applications

You can now create Applications in Fire. Applications can contain:

	Datasets

	Workflows

	Dashboards

	Sharing information

This allows you to easily create complex Big Data and ML Applications and work in groups.

Structured Streaming

Fire now supports Structured Streaming. It provides a number of Processors for Structured Streaming. These include Processors for reading from Kafka, reading from files etc. There are also a number of Processors for writing to files etc.

3.1.0 Release Notes

	Release Date: 09/01/2018

	Download TGZ name: sparkflows-fire-3.1.0.tgz

	TGZ Size: 505 MB

Contents of this release

	
	New Processors Added

	
	Decision Node Processor

	JSON Parser Processor

	SortBy Processor

	Empty Dataset Processor

	Multi Validation Processor

	String Function Multiple Processor

	Math Function Multiple Processor

	Case When Processor

	Remove Duplicate Processor

	Support for uploading files to HDFS

	Support for LDAP

	
	Support for running the workflows in debug mode.

	
	In debug mode, the number of records processed at each Node are printed.

	SQL executed is printed where relevant

	
	Various Workflow Editor Upgrades

	
	Ability to rename the Nodes

	Richer support in JDBC Processor for interactive execution

	Save Warning when moving away from the Workflow Editor

	Rich widget support for Multi-Validations Processor

	Support for Caching Datasets in any Processor

	Support for Workflow Cloning

	Richer support in Dashboard Editor for drag and drop of Processors

2.1.0 Release Notes

	Release Date: 04/01/2018

	Download TGZ name: sparkflows-fire-2.1.0.tgz

	TGZ Size: 508 MB

Contents of this release

	Separation of Workflow Server from Workflow Engine

	Support for HDFS File Upload

	
	New Processors

	
	HBase Read Processor

	HBase Write Processor

	Split by Multiple Expressions Processor

	Fixes to Node Correlation

	Support for Rich REST API’s

1.4.0 Release Notes

	Release Date: 11/29/2017

	Download TGZ name: sparkflows-fire-1.4.3.tgz

	TGZ Size: 485 MB

Contents of this release

	Scheduling Workflows

	Support for ORC files

	Support for ElasticSearch

	Running in YARN Cluster Mode

	Better browsing experience

	Support for more widget types

	Fixes to Node Correlation Matrix

	Elastic Search Integration

	Support for OpenNLP

1.3.0 Release Notes

	Release Date: 1/8/2017

	Download TGZ name: sparkflows-fire-1.3.0.tgz

	TGZ Size: 485 MB

Contents of this release

	Interactive Workflow Execution

	Streaming Workflow Engine

	Saving & Loading Models

	Support for Jython Nodes

	Many new Machine Learning Nodes added

	Many User Interface Improvements

REST API Authentication

Sparkflows provides REST API for interacting with it.

Swagger is also enabled and is available at http://<machine-name>:8080/swagger-ui.html

To authenticate and access Fire Insights REST APIs, you can use personal access tokens or passwords. We strongly recommend that you use tokens. Like passwords, tokens should be treated with care. Unlike passwords, tokens expire and can be revoked.

Tokens can be generated using Postman.

You can also log in with your username/password, get a session cookie, store it into a file and use it in subsequent requests.

	Acquire Session Cookie Using CURL

	Acquire Session Cookie in Python
	Get List of Processors

	Acquire Token Using CURL

	Acquire Token using Postman and Grant Type - Password
	Overview of Grant Type – Password

	Form the Post Request

	Click on Authorization tab and select Type - Basic Auth

	Example

	Now use access_token from previous step to access the REST API

	Acquire token using Postman - Authorization code
	Get the access token

	Click on Authorization tab

	Click on Request Token

	Fill the username and password and click on signIn

	OAuth Approval

	Click on Use token

	Using tokens for accessing REST API

	Acquire Token in Python - Grant Type Password
	Get Processor Count

	Infer Hadoop Cluster Configurations

Acquire Session Cookie Using CURL

When invoking the REST APIs of Fire Insights with curl, the first step is to log in and save the incoming cookie into a text file. This file would then be used in making subsequent REST calls via curl.

Save the incoming cookies using the -c option of curl into a file.

In the below example, the Fire Insights web server is running on the local machine at : localhost:8080

You can replace it with your machine name and port.

CURL:

curl -i -X POST -d username=admin -d password=admin -c /tmp/cookies.txt localhost:8080/login

In the above:

	username = admin

	password = admin

	Incoming cookie gets saved into : /tmp/cookies.txt

	REST API endpoint : localhost:8080/login

Acquire Session Cookie in Python

Fire Insights REST API’s can be accessed with Python. Session Cookie can be acquired using username and password and used in the subsequent calls.

Get List of Processors

The below code in Python logs in the user and acquires the session cookie via the Fire Insights REST API.

It then gets the list of Processors in Fire Insights using the REST API and prints them.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	#!/usr/bin/python

This python script logs into an instance of sparkflows, and then gets the list of Processors/Operators supported

-*- coding: utf-8 -*-
import json
import requests

payload = {'username':'admin', 'password':'admin'}

login url
urllogin = 'http://localhost:8080/login'

get list of processors url
urlprocessors = 'http://localhost:8080/nodeList'

with requests.session() as s:

 # log into sparkflows
 r = s.post(urllogin, data=payload)

 # get list of processors
 resp = s.get(urlprocessors)

 parsed_resp = json.loads(resp.text)

 for i in parsed_resp:
 print (i['name'])

Acquire Token Using CURL

Tokens can be acquired from Fire Insights using curl. They would then be used in making subsequent curl requests.

This page work is in progress…

Acquire Token using Postman and Grant Type - Password

This document describes the steps to obtain and use OAuth 2.0 access tokens using Postman.

Overview of Grant Type – Password

The Password grant is used when the application presents a traditional username and password login form to collect the user’s credentials and makes a POST request to the server to exchange the password for an access token. The POST requests that the application made looks like the example below.

Form the Post Request

The POST Request method requests that a web server accepts the data enclosed in the body of the request message, most likely for storing it

Below are the Relevant Request

	Title

	URL

	POST

	http://hostname:port/oauth/token?grant_type=password&username=<username>&password=<password>

Update the username and password in URL and use as request header.

Click on Authorization tab and select Type - Basic Auth

Basic Auth is an authorization type that requires a verified username and password to access a data resource.

Use default Username sparkflows and Password secret for client authentication. Click on Send to authorize the user and get the access token.

Example

[image: Token]

Now use access_token from previous step to access the REST API

An Access Token is a credential that can be used by an application to access an API. Below is an example to invoke the nodeList REST API of Fire Insights.

[image: Token]

Acquire token using Postman - Authorization code

The Authorization Code grant type is used to exchange an authorization code for an access token.

Get the access token

The app can obtain an access token that provides temporary, secure access to it. Below are steps involved to Request an Access_token

Click on Authorization tab

	Select Type OAuth 2.0

[image: Token]

Click on Request Token

It will redirect to sparkflows login URL Page.

Fill the username and password and click on signIn

[image: Token]

It will then display the OAuth Approval page.

OAuth Approval

OAuth is an authentication protocol that allows you to approve one application interacting with another on your behalf without giving away your password. Below is the Screenshot for updating the Oauth approval.

[image: Token]

Click on Use token

A security token (sometimes called an authentication token) is a small hardware device that the owner carries to authorize access to a network service.

[image: Token]

Using tokens for accessing REST API

Using above token we can access the REST API.

[image: Token]

Acquire Token in Python - Grant Type Password

Below are examples of Python code for accessing the Fire REST API using Python.

Get Processor Count

The below code in Python does the following:

	Acquires the token using Grant Type Password

	Invokes the Fire Insights REST API to get the number of processors list available in Fire Insights.

#!/usr/bin/python

import requests

import json

import getpass

token_url = "http://hostname:8080/oauth/token"

processor_count_api_url = "http://hostname:8080/getNodeCount" # processor list count api of sparkflows

#Step A - resource owner supplies credentials
#Resource owner (enduser) credentials

RO_user = 'admin'
RO_password = 'admin'

#client (application) credentials
client_id = 'sparkflows'
client_secret = 'secret'

#step B, C - single call with resource owner credentials in the body and client credentials as the basic auth header will return #access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_password}

access_token_response = requests.post(token_url, data=data, verify=False, allow_redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

Step C - now we can use the access_token to make another rest api call to get the processor count

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

api_call_response = requests.get(processor_count_api_url, headers=api_call_headers, verify=False)

print(api_call_response.text)

After running above REST API code in Python, we get the below results.

[image: REST API]

Infer Hadoop Cluster Configurations

The below code in Python invokes the Fire Insights REST API to infer Hadoop cluster configurations. It then saves the infer cluster Hadoop configurations as updated values.

#!/usr/bin/python

import requests

import json

token_url = "http://hostname:8080/oauth/token"

infer_configuration_api_url = "http://hostname:8080/api/v1/configurations/infer"

save_configuration_api_url = "http://hostname:8080/api/v1/configurations"

#Step A - resource owner supplies credentials
#Resource owner (enduser) credentials

RO_user = 'admin' #input your own username
RO_password = 'admin' #input your own password

#client (application) credentials

client_id = 'sparkflows'
client_secret = 'secret'

#step B, C - single call with resource owner credentials in the body and client credentials as the basic auth header will return #access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_password}

access_token_response = requests.post(token_url, data=data, verify=False, allow_redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

#Step- now use the access_token to call infer configuration api and its save api.

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

#infer the hadoop configuration

infer_configuration_api_response = requests.get(infer_configuration_api_url, headers=api_call_headers, verify=False)
print(" infer configuration response : "+ infer_configuration_api_response.text)

#save the hadoop configuration

save_configuration_api_response = requests.post(save_configuration_api_url,json=infer_configuration_api_response.json(), headers=api_call_headers, verify=False)

print(" configuration after save : "+save_configuration_api_response.text)

After running above REST API code using Python, Will get the results as below

[image: REST API]

REST API Examples using Python

Sparkflows provides REST API for interacting with it.

Below are examples using tokens. The first step is to log in with your username and password and acquire the token.

Swagger is also enabled and is available at http://<machine-name>:8080/swagger-ui.html

	Accessing REST API using Python & Session
	Get List of Processors

	Create a New Workflow

	Accessing REST API using Python & Tokens
	Get Processor Count

	Infer Hadoop Cluster Configurations

Accessing REST API using Python & Session

Fire Insights REST APIs can be accessed with Python. This page provides 2 examples of accessing the REST API’s with Python.

Get List of Processors

The below code in Python gets the list of Processors in Fire Insights using the REST API and prints them.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	#!/usr/bin/python

This python script logs into an instance of sparkflows, and then gets the list of Processors/Operators supported

-*- coding: utf-8 -*-
import json
import requests

payload = {'username':'admin', 'password':'admin'}

login url
urllogin = 'http://localhost:8080/login'

get list of processors url
urlprocessors = 'http://localhost:8080/nodeList'

with requests.session() as s:

 # log into sparkflows
 r = s.post(urllogin, data=payload)

 # get list of processors
 resp = s.get(urlprocessors)

 parsed_resp = json.loads(resp.text)

 for i in parsed_resp:
 print (i['name'])

Create a New Workflow

The Workflow JSON is saved in a file called workflow.json.

The below code in Python creates a new Workflow in the Project with id 1.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	#!/usr/bin/python

This python script logs into an instance of sparkflows, and then gets the list of Processors/Operators supported

-*- coding: utf-8 -*-
import json
import requests

payload = {'username':'admin', 'password':'admin'}

login url
urllogin = 'http://localhost:8080/login'

save workflow url
urlsaveworkflow = 'http://localhost:8080/saveWorkflow'

read workflow json
wf = open("workflow.json","r", encoding='utf8')
workflow = wf.read()

define other parameters
analysisFlowId = "null"
projectId = "1"
engine = "scala"

with requests.session() as s:

 # log into sparkflows
 s.get(urllogin)

 r = s.post(urllogin, data=payload)

 # save workflow
 headers = {'Content-type': 'application/json', 'Accept': 'text/plain', 'analysisFlowId': analysisFlowId, 'projectId': projectId, 'engine':engine }
 resp = s.post(urlsaveworkflow, data=workflow, headers=headers)

 print(resp)

Accessing REST API using Python & Tokens

Below are examples of Python code for accessing the Fire REST API using Python.

Get Processor Count

The below code in Python invokes the Fire Insights REST API to calculate number of processors list available in Fire Insight.

#!/usr/bin/python

import requests

import json

import getpass

token_url = "http://localhost:8080/oauth/token"

processor_count_api_url = "http://localhost:8080/getNodeCount" # processor list count api of sparkflows

#Step A - resource owner supplies credentials
#Resource owner (enduser) credentials

RO_user = 'admin'
RO_password = 'admin'

#client (application) credentials
client_id = 'sparkflows'
client_secret = 'secret'

#step B, C - single call with resource owner credentials in the body and client credentials as the basic auth header will return #access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_password}

access_token_response = requests.post(token_url, data=data, verify=False, allow_redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

Step C - now we can use the access_token to make as many calls as we want.

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

api_call_response = requests.get(processor_count_api_url, headers=api_call_headers, verify=False)

print(api_call_response.text)

After running above REST API code using Python, will get the results as below:

[image: REST API]

Infer Hadoop Cluster Configurations

The below code in Python invokes the Fire Insights REST API to infer Hadoop cluster configurations. It then saves the infer cluster Hadoop configurations as updated values.

#!/usr/bin/python

import requests

import json

token_url = "http://localhost:8080/oauth/token"

infer_configuration_api_url = "http://localhost:8080/api/v1/configurations/infer"

save_configuration_api_url = "http://localhost:8080/api/v1/configurations"

#Step A - resource owner supplies credentials
#Resource owner (enduser) credentials

RO_user = 'admin' #input your own username
RO_password = 'admin' #input your own password

#client (application) credentials

client_id = 'sparkflows'
client_secret = 'secret'

#step B, C - single call with resource owner credentials in the body and client credentials as the basic auth header will return #access_token

data = {'grant_type': 'password','username': RO_user, 'password': RO_password}

access_token_response = requests.post(token_url, data=data, verify=False, allow_redirects=False, auth=(client_id, client_secret))

print(access_token_response.headers)
print(access_token_response.text)

tokens = json.loads(access_token_response.text)
print("access token: " + tokens['access_token'])

#Step- now use the access_token to call infer configuration api and its save api.

api_call_headers = {'Authorization': 'Bearer ' + tokens['access_token']}

print(api_call_headers)

#infer the hadoop configuration

infer_configuration_api_response = requests.get(infer_configuration_api_url, headers=api_call_headers, verify=False)
print(" infer configuration response : "+ infer_configuration_api_response.text)

#save the hadoop configuration

save_configuration_api_response = requests.post(save_configuration_api_url,json=infer_configuration_api_response.json(), headers=api_call_headers, verify=False)

print(" configuration after save : "+save_configuration_api_response.text)

After running above REST API code using Python, will get the results as below

[image: REST API]

REST API Examples using Java

Fire Insighs provides REST API for interacting with it.

Below are examples using tokens. The first step is to log in with your username and password and acquire the token.

Swagger is also enabled and is available at http://<machine-name>:8080/swagger-ui.html

REST API Examples using curl

This topic contains a range of examples that demonstrate how to use the Fire Insights API using curl.

Acquire Session Cookie Using Curl

When invoking the REST APIs of Fire Insights with curl, the first step is to log in and save the incoming cookie into a text file. This file would then be used in making subsequent REST calls via curl.

Save the incoming cookies using the -c option of curl into a file.

In the below examples, the Fire Insights web server is running on the local machine at : localhost:8080

You can replace it with your machine name and port.

Login and save the session cookie into /tmp/cookies.txt:

curl -i -X POST -d username=admin -d password=admin -c /tmp/cookies.txt localhost:8080/login

In the above:

	username = admin

	password = admin

	Incoming cookie gets saved into : /tmp/cookies.txt

	REST API endpoint : localhost:8080/login

There are various categories of REST API’s available:

	Processors REST API’s
	Overview

	GET Processors List

	GET Node Count

	GET Processors list for Engine

	GET Processor Details by Name

	Node Rules

	Datasets REST API
	Overview

	GET List of Datasets by Application

	Create / Update Dataset

	Delete Dataset

	Get Dataset by Id

	Get Dataset Count

	Get sample data

	Returns schema of the files in the given path using the given delimiter

	Get Latest Five Datasets

	Get the list of files/directories in the given path

	Workflow REST API
	Create Workflow

	Execute Workflow

	Update Workflow

	Get workflow by Id

	Delete Workflow

	Get Latest WorkFlows

	Get Workflow Count

	Get Workflow Versions

	Workflow Execution REST API
	Overview

	List all the Executions

	List Executions of a Workflow

	GET Status of Workflow Execution

	Stop the Execution of workflow

	Kill the Execution of workflow

	Delete Workflow Executions by days

	Get Executed Task Count

	Get Latest Executions

	Dashboard REST API
	Overview

	Get List of Dashboards for the user

	Create New Dashboard / Save Dashboard

	Get Dashboard by Id

	Get dashboard results

	update dashboard

	Delete Dashboard

	HDFS REST API
	Overview

	Get List of Files in Directory

	Create HDFS directory

	Get list of files in HDFS in the specified directory

	Get list of all the files on hdfs in the users home directory in sorted order

	Upload file

	Deletes a file from HDFS

	Download HDFS file

	Rename HDFS File

	Get first X bytes of content of a file

	HIVE REST API
	Overview

	Get all Hive Databases

	Get Table for a given Database

	Get all Hive Databases

	Scheduler REST API
	Overview

	Get list of all Workflows Scheduled

	Schedule new Workflow

	Delete Scheduled Workflow

Processors REST API’s

Overview

The Processors REST APIs, allow you to get the list of available Processors and details regarding each Processor.

Below are the various Processor APIs available in Fire Insights.

They should be executed after you have logged into Fire Insights. Use the -b option to use the cookies previously saved.

GET Processors List

Gets the list of processors available.

An example request for getting list of processors:

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/nodes' -b /tmp/cookies.txt

An example response:

 [
{
 "id": "3",
 "path": "/01-Connectors/",
 "name": "ReadCassandra",
 "iconImage": null,
 "description": "This node reads data from Apache Cassandra",
 "details": "",
 "examples": "",
 "type": "dataset",
 "nodeClass": "fire.nodes.cassandra.NodeReadCassandra",
 "x": null,
 "y": null,
 "fields": [
 {
 "name": "storageLevel",
 "value": "DEFAULT",
 "widget": "array",
 "title": "Output Storage Level",
 "description": "Storage Level of the Output Datasets of this Node",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "DEFAULT",
 "NONE",
 "DISK_ONLY",
 "DISK_ONLY_2",
 "MEMORY_ONLY",
 "MEMORY_ONLY_2",
 "MEMORY_ONLY_SER",
 "MEMORY_ONLY_SER_2",
 "MEMORY_AND_DISK",
 "MEMORY_AND_DISK_2",
 "MEMORY_AND_DISK_SER",
 "MEMORY_AND_DISK_SER_2",
 "OFF_HEAP"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "table",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Table",
 "description": "Cassandra Table from which to read the data",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "keyspace",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Keyspace",
 "description": "Cassandra Keyspace",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "cluster",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Cluster",
 "description": "The group of the Cluster Level ",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 }
],
 "engine": "scala"
 },

GET Node Count

Gets the count of the processors.

An example request for getting count of the processors:

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/nodes/count' -b /tmp/cookies.txt

An example response:

266

GET Processors list for Engine

Gets the list of processors for the specified engine(scala or pyspark or empty-field for all).

An example request for getting list of processors for scala

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/nodes?engine=scala' -b /tmp/cookies.txt

An example response:

 [
{
 "id": "3",
 "path": "/01-Connectors/",
 "name": "ReadCassandra",
 "iconImage": null,
 "description": "This node reads data from Apache Cassandra",
 "details": "",
 "examples": "",
 "type": "dataset",
 "nodeClass": "fire.nodes.cassandra.NodeReadCassandra",
 "x": null,
 "y": null,
 "fields": [
 {
 "name": "storageLevel",
 "value": "DEFAULT",
 "widget": "array",
 "title": "Output Storage Level",
 "description": "Storage Level of the Output Datasets of this Node",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "DEFAULT",
 "NONE",
 "DISK_ONLY",
 "DISK_ONLY_2",
 "MEMORY_ONLY",
 "MEMORY_ONLY_2",
 "MEMORY_ONLY_SER",
 "MEMORY_ONLY_SER_2",
 "MEMORY_AND_DISK",
 "MEMORY_AND_DISK_2",
 "MEMORY_AND_DISK_SER",
 "MEMORY_AND_DISK_SER_2",
 "OFF_HEAP"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "table",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Table",
 "description": "Cassandra Table from which to read the data",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "keyspace",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Keyspace",
 "description": "Cassandra Keyspace",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "cluster",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Cluster",
 "description": "The group of the Cluster Level ",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 }
],
 "engine": "scala"
},

GET Processor Details by Name

Gets Processor Details by Name

An example request for getting Processor Details by Name:

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/nodes/names/ReadCSV' -b /tmp/cookies.txt

An example response:

 {
 "id": "17",
 "path": "/02-ReadStructured/",
 "name": "ReadCSV",
 "iconImage": null,
 "description": "It reads in CSV files and creates a DataFrame from it",
 "details": "",
 "examples": "",
 "type": "dataset",
 "nodeClass": "fire.nodes.dataset.NodeDatasetCSV",
 "x": null,
 "y": null,
 "fields": [
 {
 "name": "storageLevel",
 "value": "DEFAULT",
 "widget": "array",
 "title": "Output Storage Level",
 "description": "Storage Level of the Output Datasets of this Node",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "DEFAULT",
 "NONE",
 "DISK_ONLY",
 "DISK_ONLY_2",
 "MEMORY_ONLY",
 "MEMORY_ONLY_2",
 "MEMORY_ONLY_SER",
 "MEMORY_ONLY_SER_2",
 "MEMORY_AND_DISK",
 "MEMORY_AND_DISK_2",
 "MEMORY_AND_DISK_SER",
 "MEMORY_AND_DISK_SER_2",
 "OFF_HEAP"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "path",
 "value": "",
 "widget": "textfield",
 "title": "Path",
 "description": "Path of the Text file/directory",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "separator",
 "value": ",",
 "widget": "textfield",
 "title": "Separator",
 "description": "CSV Separator",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "header",
 "value": "false",
 "widget": "array",
 "title": "Header",
 "description": "Does the file have a header row",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "true",
 "false"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "dropMalformed",
 "value": "false",
 "widget": "array",
 "title": "Drop Malformed",
 "description": "Whether to drop Malformed records or error",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "true",
 "false"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "outputColNames",
 "value": "[]",
 "widget": "schema_col_names",
 "title": "Column Names for the CSV",
 "description": "New Output Columns of the SQL",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "outputColTypes",
 "value": "[]",
 "widget": "schema_col_types",
 "title": "Column Types for the CSV",
 "description": "Data Type of the Output Columns",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "outputColFormats",
 "value": "[]",
 "widget": "schema_col_formats",
 "title": "Column Formats for the CSV",
 "description": "Format of the Output Columns",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 }
],
 "engine": "all"
}

Node Rules

Gets the node rules used in the workflow editor.

An example request for getting the node rules:

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/node-rules' -b /tmp/cookies.txt

An example response:

 [
{
 "nodeType": "dataset",
 "possibleSources": [
 "shellcommand"
],
 "minNumOfInputs": 0,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#F0F1F9",
 "nodeIcon": "fa-th-list",
 "nodeShape": "rectangle"
},
{
 "nodeType": "shellcommand",
 "possibleSources": [
 "dataset",
 "scala",
 "pyspark",
 "transform",
 "join",
 "ml-transformer",
 "ml-predict",
 "sparkstreaming"
],
 "minNumOfInputs": 0,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#F0F1F9",
 "nodeIcon": "fa-th-list",
 "nodeShape": "rectangle"
},
{
 "nodeType": "sparkstreaming",
 "possibleSources": [],
 "minNumOfInputs": 0,
 "maxNumOfInputs": 0,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#FFEB94",
 "nodeIcon": "fa-external-link",
 "nodeShape": "rectangle"
},
{
 "nodeType": "transform",
 "possibleSources": [
 "dataset",
 "scala",
 "pyspark",
 "transform",
 "join",
 "ml-transformer",
 "ml-predict",
 "sparkstreaming",
 "shellcommand"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#AFD4F0",
 "nodeIcon": "fa-tumblr-square",
 "nodeShape": "rectangle"
},
{
 "nodeType": "scala",
 "possibleSources": [
 "dataset",
 "transform",
 "join",
 "ml-transformer",
 "ml-predict",
 "sparkstreaming",
 "shellcommand"
],
 "minNumOfInputs": 0,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#AFD4F0",
 "nodeIcon": "fa-tumblr-square",
 "nodeShape": "rectangle"
},
{
 "nodeType": "pyspark",
 "possibleSources": [
 "dataset",
 "transform",
 "join",
 "ml-transformer",
 "ml-predict",
 "sparkstreaming",
 "shellcommand"
],
 "minNumOfInputs": 0,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#AFD4F0",
 "nodeIcon": "fa-tumblr-square",
 "nodeShape": "rectangle"
},
{
 "nodeType": "join",
 "possibleSources": [
 "dataset",
 "transform",
 "join",
 "shellcommand",
 "sparkstreaming"
],
 "minNumOfInputs": 2,
 "maxNumOfInputs": 8,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#D4A190",
 "nodeIcon": "fa-stumbleupon",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-transformer",
 "possibleSources": [
 "dataset",
 "transform",
 "ml-transformer",
 "join",
 "shellcommand"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": "2",
 "sourceRestrictions": [],
 "backgroundColor": "#dfe166",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-estimator",
 "possibleSources": [
 "dataset",
 "transform",
 "ml-transformer",
 "join",
 "shellcommand"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": "2",
 "sourceRestrictions": [],
 "backgroundColor": "#F7EFE2",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-predict",
 "possibleSources": [
 "dataset",
 "transform",
 "join",
 "ml-estimator",
 "ml-transformer",
 "ml-pipeline",
 "ml-crossvalidator",
 "ml-modelload"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 2,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#D7CFC2",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-evaluator",
 "possibleSources": [
 "ml-predict",
 "ml-estimator",
 "ml-pipeline"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": "1",
 "sourceRestrictions": [],
 "backgroundColor": "#ff9900",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-pipeline",
 "possibleSources": [
 "ml-estimator",
 "ml-transformer"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": "1",
 "sourceRestrictions": [],
 "backgroundColor": "#1FFF62",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-crossvalidator",
 "possibleSources": [
 "ml-evaluator"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#F9FC81",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-trainvalidationsplit",
 "possibleSources": [
 "ml-evaluator"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#B681FC",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-modelsave",
 "possibleSources": [
 "ml-estimator",
 "ml-pipeline",
 "ml-crossvalidator",
 "ml-trainvalidationsplit"
],
 "minNumOfInputs": 1,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": "1",
 "sourceRestrictions": [],
 "backgroundColor": "#FCB881",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "ml-modelload",
 "possibleSources": [
 "dataset",
 "transform",
 "join",
 "ml-estimator",
 "ml-transformer",
 "ml-pipeline",
 "ml-crossvalidator",
 "ml-modelsave"
],
 "minNumOfInputs": 0,
 "maxNumOfInputs": 1,
 "maxNumOfOutputs": "1",
 "sourceRestrictions": [],
 "backgroundColor": "#FCB881",
 "nodeIcon": "fa-qrcode",
 "nodeShape": "rectangle"
},
{
 "nodeType": "doc",
 "possibleSources": [
 "doc"
],
 "minNumOfInputs": 0,
 "maxNumOfInputs": 0,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#FFFF88",
 "nodeIcon": "fa-file-text",
 "nodeShape": "rectangle"
},
{
 "nodeType": "sticky",
 "possibleSources": [],
 "minNumOfInputs": 0,
 "maxNumOfInputs": 0,
 "maxNumOfOutputs": null,
 "sourceRestrictions": [],
 "backgroundColor": "#FFFF88",
 "nodeIcon": "fa-file-text",
 "nodeShape": "rectangle"
},

Datasets REST API

Overview

The Dataset REST APIs, allow you to manage the Datasets.

Below are the various Dataset APIs available in Fire Insights, They should be executed after you have logged into Fire Insights.

GET List of Datasets by Application

Returns the list of Datasets for the logged in user for a given application id:

curl -X GET --header 'Accept: application/json' --header 'api_key: cookies' 'http://localhost:8080/api/v1/datasets?sortPara=dsc&projectId=1'

Create / Update Dataset

If id value is not passed, new dataset will be created:

JSON

{
 "id": 13,
 "version": 0,
 "name": "spam",
 "header": true,
 "path": "data\/spam.csv",
 "delimiter": ",",
 "schemaModel": {
 "schemaColList": [
 {
 "colName": "label",
 "colType": "DOUBLE",
 "colFormat": "",
 "colMLType": "NUMERIC"
 },
 {
 "colName": "message",
 "colType": "STRING",
 "colFormat": "",
 "colMLType": "TEXT"
 },
 {
 "colName": "id",
 "colType": "DOUBLE",
 "colFormat": "",
 "colMLType": "NUMERIC"
 }
]
 }
}

Curl

curl-X POST --header 'Content-Type: application/json' --header 'Accept: /' -d '{"id":13,"version":0,"name":"spam","header":true,"path":"data/spam.csv","delimiter":",","schemaModel":{"schemaColList":[{"colName":"label","colType":"DOUBLE","colFormat":"","colMLType":"NUMERIC"},{"colName":"message","colType":"STRING","colFormat":"","colMLType":"TEXT"},{"colName":"id","colType":"DOUBLE","colFormat":"","colMLType":"NUMERIC"}]}}' localhost:8080/dataset/save -b /tmp/cookies.txt

Delete Dataset

	“datasetId”: “98”

	“projectId”: “33”

An example request for Deleting dataset:

curl -X DELETE --header 'Accept: text/plain' 'http://localhost:8080/api/v1/datasets/98?projectId=33'

An example response:

Dataset with id 98 deleted successfully

Get Dataset by Id

	“datasetId”: “65”

	“projectId”: “33”

An example request for Getting dataset by Id:

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/datasets/65?projectId=33'

An example response:

{
 "id": 65,
 "userId": 33,
 "uuid": "1e13ec2a-4094-405e-a6e7-ffed3bd027f7",
 "version": 0,
 "name": "Test-dataset",
 "category": null,
 "description": "Test",
 "header": true,
 "readOptions": null,
 "path": "/user/sparkflows/Clickthru.csv",
 "delimiter": ",",
 "datasetType": "CSV",
 "filterLinesContaining": null,
 "datasetSchema": "{colNames:[\"Timestamp\",\"UserId\",\"IP Address\",\"Product Id\"],colTypes:[\"STRING\",\"INTEGER\",\"STRING\",\"INTEGER\"],colFormats:[\"\",\"\",\"\",\"\"],colMLTypes:[\"TEXT\",\"NUMERIC\",\"TEXT\",\"NUMERIC\"]}",
 "dateCreated": 1566880637842,
 "dateLastUpdated": 1566880637846,
 "permission": null,
 "readOptionsModel": null,
 "schemaModel": {
 "schemaColList": [
 {
 "colName": "Timestamp",
 "colType": "STRING",
 "colFormat": "",
 "colMLType": "TEXT"
 },
 {
 "colName": "UserId",
 "colType": "INTEGER",
 "colFormat": "",
 "colMLType": "NUMERIC"
 },
 {
 "colName": "IP Address",
 "colType": "STRING",
 "colFormat": "",
 "colMLType": "TEXT"
 },
 {
 "colName": "Product Id",
 "colType": "INTEGER",
 "colFormat": "",
 "colMLType": "NUMERIC"
 }
]
 },
 "sampleData": {
 "headers": [
 "Timestamp",
 "UserId",
 "IP Address",
 " Product Id"
],
 "cells": [
 [
 "9:03 AM",
 "275",
 "207.51.113.192",
 "1"
],
 [
 "12:57 AM",
 "586",
 "62.34.98.94",
 "2"
],
 [
 "2:45 AM",
 "508",
 "20.237.172.182",
 "3"
],
 [
 "2:13 PM",
 "378",
 "69.215.255.150",
 "4"
],
 [
 "9:27 AM",
 "965",
 "56.101.183.251",
 "5"
],
 [
 "8:18 AM",
 "263",
 "9.151.97.180",
 "6"
],
 [
 "9:40 AM",
 "670",
 "101.195.1.186",
 "7"
],
 [
 "7:14 AM",
 "447",
 "232.29.216.95",
 "8"
],
 [
 "12:57 AM",
 "33",
 "85.119.50.62",
 "9"
],
 [
 "12:56 AM",
 "589",
 "185.132.243.178",
 "10"
],
 [
 "11:04 PM",
 "22",
 "120.212.232.218",
 "11"
],
 [
 "8:29 PM",
 "504",
 "226.70.25.117",
 "12"
],
 [
 "5:18 PM",
 "228",
 "213.53.100.18",
 "13"
],
 [
 "2:56 PM",
 "536",
 "60.65.25.167",
 "14"
],
 [
 "3:57 AM",
 "46",
 "149.156.17.120",
 "15"
],
 [
 "8:05 AM",
 "812",
 "23.213.182.107",
 "16"
],
 [
 "12:02 PM",
 "980",
 "93.20.165.16",
 "17"
],
 [
 "12:53 PM",
 "915",
 "24.180.112.147",
 "18"
],
 [
 "11:32 AM",
 "814",
 "110.81.139.11",
 "19"
],
 [
 "11:01 PM",
 "429",
 "115.123.246.193",
 "20"
]
]
 },
"json": "{\"id\":65,\"userId\":33,\"uuid\":\"1e13ec2a-4094-405e-a6e7-ffed3bd027f7\",\"version\":0,\"name\":\"Test-dataset\",\"description\":\"Test\",\"header\":true,\"path\":\"/user/sparkflows/Clickthru.csv\",\"delimiter\":\",\",\"datasetType\":\"CSV\",\"datasetSchema\":\"{colNames:[\\\"Timestamp\\\",\\\"UserId\\\",\\\"IP Address\\\",\\\"Product Id\\\"],colTypes:[\\\"STRING\\\",\\\"INTEGER\\\",\\\"STRING\\\",\\\"INTEGER\\\"],colFormats:[\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\"],colMLTypes:[\\\"TEXT\\\",\\\"NUMERIC\\\",\\\"TEXT\\\",\\\"NUMERIC\\\"]}\",\"dateCreated\":\"Aug 27, 2019 4:37:17 AM\",\"dateLastUpdated\":\"Aug 27, 2019 4:37:17 AM\",\"schemaModel\":{\"schemaColList\":[{\"colName\":\"Timestamp\",\"colType\":\"STRING\",\"colFormat\":\"\",\"colMLType\":\"TEXT\"},{\"colName\":\"UserId\",\"colType\":\"INTEGER\",\"colFormat\":\"\",\"colMLType\":\"NUMERIC\"},{\"colName\":\"IP Address\",\"colType\":\"STRING\",\"colFormat\":\"\",\"colMLType\":\"TEXT\"},{\"colName\":\"Product Id\",\"colType\":\"INTEGER\",\"colFormat\":\"\",\"colMLType\":\"NUMERIC\"}]},\"projectId\":33}",
"projectId": 33
 },

Get Dataset Count

Returns the count of datasets available:

curl -X GET --header 'Accept: application/json' --header 'api_key: cookies' 'http://localhost:8080/api/v1/datasets/count'

Get sample data

Delimiter and header are optional values

	path: data/spam.csv

	schema: {“colNames”:[“0.0”,”this is not a spam”,”3.0”],”colTypes”:[“DOUBLE”,”STRING”,”DOUBLE”],”colFormats”:[“”,””,””],”colMLTypes”:[“NUMERIC”,”TEXT”,”NUMERIC”]}

CURL:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --header 'api_key: cookies' -d
'{"colNames":["0.0","this is not a spam","3.0"],"colTypes":["DOUBLE","STRING","DOUBLE"],"colFormats":["","",""],"colMLTypes":["NUMERIC","TEXT","NUMERIC"]}' http://localhost:8080/api/v1/datasets/sample-data

Returns schema of the files in the given path using the given delimiter

	delimiter and header are optional values

	path:data/spam.csv

	schema: {“colNames”:[“0.0”,”this is not a spam”,”3.0”],”colTypes”:[“DOUBLE”,”STRING”,”DOUBLE”],”colFormats”:[“”,””,””],”colMLTypes”:[“NUMERIC”,”TEXT”,”NUMERIC”]}

CURL:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --header 'api_key: cookies' -d
'{"colNames":["0.0","this is not a spam","3.0"],"colTypes":["DOUBLE","STRING","DOUBLE"],"colFormats":["","",""],"colMLTypes":["NUMERIC","TEXT","NUMERIC"]}' http://localhost:8080/api/v1/datasets/schema

Get Latest Five Datasets

Returns the latest updated datasets:

curl -X GET --header 'Accept: application/json' --header 'api_key: cookies' 'http://localhost:8080/api/v1/datasets/latest'

Get the list of files/directories in the given path

	path:data/transaction.csv

CURL:

curl -X GET --header 'Content-Type: application/json' --header 'Accept: application/json' -d 'data/transaction.csv' 'http://localhost:8080/filesInPathJSON -b /tmp/cookies.txt'

Workflow REST API

The Workflow REST API’s, allow you to interact with the Workflows.

Below are the various Workflow API’s available in Fire Insights. They should be executed after you have logged into Fire Insights.

Create Workflow

Create a new Workflow.

An example request for creating workflow:

 curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{
"analysisflowId": 1,
"comment": "string",
"projectId": 33,
"workflow": {
 "category": "string",
 "dataSetDetails": [
 {
 "datasetSchema": "string",
 "datasetType": "CSV",
 "delimiter": "string",
 "description": "string",
 "filterLinesContaining": "string",
 "header": true,
 "id": 0,
 "name": "string",
 "path": "string",
 "readOptions": "string",
 "uuid": "string",
 "version": 0
 }
],
 "description": "string",
 "edges": [
 {
 "id": 0,
 "source": "string",
 "target": "string"
 }
],
 "engine": "string",
 "h2OWorkflow": true,
 "name": "string",
 "nodes": [
 {
 "description": "string",
 "details": "string",
 "engine": "string",
 "examples": "string",
 "fields": [
 {
 "datatypes": [
 "string"
],
 "description": "string",
 "disableRefresh": true,
 "display": true,
 "editable": true,
 "name": "string",
 "optionsArray": [
 "string"
],
 "optionsMap": {},
 "required": true,
 "title": "string",
 "value": "string",
 "widget": "string"
 }
],
 "iconImage": "string",
 "id": "string",
 "name": "string",
 "nodeClass": "string",
 "path": "string",
 "type": "string",
 "x": "string",
 "y": "string"
 }
],
 "parameters": "string",
 "uuid": "string"
}
}' 'http://hostname:port/api/v1/workflows' -b /tmp/cookies.txt

An example response:

193

Execute Workflow

Execute specified Workflow.

An example request for Executing specified workflow:

 curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{
"emailOnFailure": "string",
"emailOnSuccess": "string",
"libJars": "string",
"programParameters": "string",
"sparkConfig": "string",
"workflowId": 1
}' 'http://hostname:port/api/v1/workflow/execute' -b /tmp/cookies.txt

An example response:

162

Update Workflow

Update specified Workflow.

An example request for updating workflow:

 curl -X PUT --header 'Content-Type: application/json' --header 'Accept: application/json' -d '{
"analysisflowId": 1,
"comment": "string",
"projectId": 33,
"workflow": {
 "category": "string",
 "dataSetDetails": [
 {
 "datasetSchema": "string",
 "datasetType": "CSV",
 "delimiter": "string",
 "description": "string",
 "filterLinesContaining": "string",
 "header": true,
 "id": 0,
 "name": "string",
 "path": "string",
 "readOptions": "string",
 "uuid": "string",
 "version": 0
 }
],
 "description": "string",
 "edges": [
 {
 "id": 0,
 "source": "string",
 "target": "string"
 }
],
 "engine": "string",
 "h2OWorkflow": true,
 "name": "string",
 "nodes": [
 {
 "description": "string",
 "details": "string",
 "engine": "string",
 "examples": "string",
 "fields": [
 {
 "datatypes": [
 "string"
],
 "description": "string",
 "disableRefresh": true,
 "display": true,
 "editable": true,
 "name": "string",
 "optionsArray": [
 "string"
],
 "optionsMap": {},
 "required": true,
 "title": "string",
 "value": "string",
 "widget": "string"
 }
],
 "iconImage": "string",
 "id": "string",
 "name": "string",
 "nodeClass": "string",
 "path": "string",
 "type": "string",
 "x": "string",
 "y": "string"
 }
],
 "parameters": "string",
 "uuid": "string"
}
}' 'http://hostname:port/api/v1/workflows' -b /tmp/cookies.txt

An example response:

131

Get workflow by Id

Gets the workflow with the specified id.

	id: 1

An example request for getting workflow by id:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflows/id/1' -b /tmp/cookies.txt

An example response:

 {
"id": 1,
"userId": 1,
"uuid": "3a3dfa34-bbd7-4c05-8745-55628d90cbf6",
"name": "Analyze Flights Delay",
"category": "Analytics",
"content": "{\"name\":\"Analyze Flights Delay\",\"uuid\":\"3a3dfa34-bbd7-4c05-8745-55628d90cbf6\",\"category\":\"Analytics\",\"description\":\"Find Flights which are delayed by more than 40 minutes.\",\"nodes\":[{\"id\":\"1\",\"name\":\"DatasetStructured\",\"description\":\"This Node creates a DataFrame by reading data from HDFS, HIVE etc. The dataset has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.\",\"details\":\"This Node creates a DataFrame by reading data from HDFS, HIVE etc.\\u003cbr\\u003e\\n\\u003cbr\\u003e\\nThe data has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.\\u003cbr\\u003e\",\"examples\":\"\",\"type\":\"dataset\",\"nodeClass\":\"fire.nodes.dataset.NodeDatasetStructured\",\"x\":\"38.9492px\",\"y\":\"275.613px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"dataset\",\"value\":\"2ff32692-9b3c-49de-91a7-401daf2590c1\",\"widget\":\"dataset\",\"title\":\"Dataset\",\"description\":\"Selected Dataset\",\"required\":true,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"2\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output\",\"details\":\"\",\"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"38.4336px\",\"y\":\"59.1094px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"title\",\"value\":\"Row Values\",\"widget\":\"textfield\",\"title\":\"Title\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"3\",\"name\":\"CastColumnType\",\"description\":\"This node creates a new DataFrame by casting input columns with a new data type\",\"details\":\"\",\"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\"313.223px\",\"y\":\"61.8633px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"inputCols\",\"value\":\"[\\\"CRS_DEP_TIME\\\",\\\"CRS_ARR_TIME\\\",\\\"CRS_ELAPSED_TIME\\\"]\",\"widget\":\"variables\",\"title\":\"Columns\",\"description\":\"Columns to be cast to new data type\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColType\",\"value\":\"DOUBLE\",\"widget\":\"array\",\"title\":\"New Data Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DECIMAL\",\"DOUBLE\",\"FLOAT\",\"INTEGER\",\"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"replaceExistingCols\",\"value\":\"true\",\"widget\":\"array\",\"title\":\"Replace Existing Cols\",\"description\":\"Whether to replace existing columns or create new ones\",\"optionsArray\":[\"true\",\"false\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"4\",\"name\":\"CastColumnType\",\"description\":\"This node creates a new DataFrame by casting input columns with a new data type\",\"details\":\"\",\"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\"322.949px\",\"y\":\"275.633px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"inputCols\",\"value\":\"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_WEEK\\\"]\",\"widget\":\"variables\",\"title\":\"Columns\",\"description\":\"Columns to be cast to new data type\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColType\",\"value\":\"STRING\",\"widget\":\"array\",\"title\":\"New Data Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DECIMAL\",\"DOUBLE\",\"FLOAT\",\"INTEGER\",\"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"replaceExistingCols\",\"value\":\"true\",\"widget\":\"array\",\"title\":\"Replace Existing Cols\",\"description\":\"Whether to replace existing columns or create new ones\",\"optionsArray\":[\"true\",\"false\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"5\",\"name\":\"StringIndexer\",\"description\":\"StringIndexer encodes a string column of labels to a column of label indices\",\"details\":\"\",\"examples\":\"\",\"type\":\"ml-transformer\",\"nodeClass\":\"fire.nodes.ml.NodeStringIndexer\",\"x\":\"630.238px\",\"y\":\"272.879px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"handleInvalid\",\"value\":\"skip\",\"widget\":\"array\",\"title\":\"Handle Invalid\",\"description\":\"Invalid entries to be skipped or thrown error\",\"optionsArray\":[\"skip\",\"error\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"inputCols\",\"value\":\"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_WEEK\\\",\\\"CARRIER\\\",\\\"TAIL_NUM\\\",\\\"FL_NUM\\\",\\\"ORIGIN_AIRPORT_ID\\\",\\\"ORIGIN\\\",\\\"DEST_AIRPORT_ID\\\",\\\"DEST\\\",\\\"CRS_DEP_TIME\\\",\\\"DEP_TIME\\\",\\\"DEP_DELAY_NEW\\\",\\\"CRS_ARR_TIME\\\",\\\"ARR_TIME\\\",\\\"ARR_DELAY_NEW\\\",\\\"CRS_ELAPSED_TIME\\\",\\\"DISTANCE\\\"]\",\"widget\":\"variables_map\",\"title\":\"Input Columns\",\"description\":\"Column containing labels\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputCols\",\"value\":\"[\\\"DAY_OF_MONTH_INDEX\\\",\\\"DAY_OF_WEEK_INDEX\\\",\\\"CARRIER_INDEX\\\",\\\"\\\",\\\"\\\",\\\"ORIGIN_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\"DEST_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\"]\",\"widget\":\"variables_map_edit\",\"title\":\"Output Columns\",\"description\":\"Output columns\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"6\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output\",\"details\":\"\",\"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"626.492px\",\"y\":\"63.1289px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"title\",\"value\":\"Row Values\",\"widget\":\"textfield\",\"title\":\"Title\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"7\",\"name\":\"SQL\",\"description\":\"This node runs the given SQL on the incoming DataFrame\",\"details\":\"\",\"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeSQL\",\"x\":\"954.219px\",\"y\":\"59.8711px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"tempTable\",\"value\":\"fire_temp_table\",\"widget\":\"textfield\",\"title\":\"Temp Table\",\"description\":\"Temp Table Name to be used\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"sql\",\"value\":\"select fire_temp_table.* , case when fire_temp_table.DEP_DELAY_NEW \\u003e 40 then 1.0 else 0.0 END as label from fire_temp_table\",\"widget\":\"textarea_medium\",\"title\":\"SQL\",\"description\":\"SQL to be run\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"schema\",\"value\":\"\",\"widget\":\"tab\",\"title\":\"Schema\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColNames\",\"value\":\"[]\",\"widget\":\"schema_col_names\",\"title\":\"Output Column Names\",\"description\":\"Name of the Output Columns\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColTypes\",\"value\":\"[]\",\"widget\":\"schema_col_types\",\"title\":\"Output Column Types\",\"description\":\"Data Type of the Output Columns\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColFormats\",\"value\":\"[]\",\"widget\":\"schema_col_formats\",\"title\":\"Output Column Formats\",\"description\":\"Format of the Output Columns\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"},{\"id\":\"8\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output\",\"details\":\"\",\"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"927.477px\",\"y\":\"291.137px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"title\",\"value\":\"Row Values\",\"widget\":\"textfield\",\"title\":\"Title\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"scala\"}],\"edges\":[{\"source\":\"1\",\"target\":\"2\",\"id\":1},{\"source\":\"2\",\"target\":\"3\",\"id\":2},{\"source\":\"3\",\"target\":\"4\",\"id\":3},{\"source\":\"4\",\"target\":\"5\",\"id\":4},{\"source\":\"5\",\"target\":\"6\",\"id\":5},{\"source\":\"6\",\"target\":\"7\",\"id\":6},{\"source\":\"7\",\"target\":\"8\",\"id\":7}],\"dataSetDetails\":[],\"engine\":\"scala\"}",
"description": "Find Flights which are delayed by more than 40 minutes.",
"version": 1,
"dateCreated": 1566551544583,
"dateLastUpdated": 1566551544583,
"lockedByUserId": null,
"permission": null,
"workflow": {
 "name": "Analyze Flights Delay",
 "uuid": "3a3dfa34-bbd7-4c05-8745-55628d90cbf6",
 "category": "Analytics",
 "description": "Find Flights which are delayed by more than 40 minutes.",
 "parameters": null,
 "nodes": [
 {
 "id": "1",
 "path": null,
 "name": "DatasetStructured",
 "iconImage": null,
 "description": "This Node creates a DataFrame by reading data from HDFS, HIVE etc. The dataset has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.",
 "details": "This Node creates a DataFrame by reading data from HDFS, HIVE etc.
\n
\nThe data has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.
",
 "examples": "",
 "type": "dataset",
 "nodeClass": "fire.nodes.dataset.NodeDatasetStructured",
 "x": "38.9492px",
 "y": "275.613px",
 "fields": [
 {
 "name": "storageLevel",
 "value": "DEFAULT",
 "widget": "array",
 "title": "Output Storage Level",
 "description": "Storage Level of the Output Datasets of this Node",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "DEFAULT",
 "NONE",
 "DISK_ONLY",
 "DISK_ONLY_2",
 "MEMORY_ONLY",
 "MEMORY_ONLY_2",
 "MEMORY_ONLY_SER",
 "MEMORY_ONLY_SER_2",
 "MEMORY_AND_DISK",
 "MEMORY_AND_DISK_2",
 "MEMORY_AND_DISK_SER",
 "MEMORY_AND_DISK_SER_2",
 "OFF_HEAP"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "dataset",
 "value": "2ff32692-9b3c-49de-91a7-401daf2590c1",
 "widget": "dataset",
 "title": "Dataset",
 "description": "Selected Dataset",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
 }
],
 "engine": "scala"
 },

Delete Workflow

Deletes a workflow with the given workflowId.

	workflowId: 1955

An example request for deleting workflow:

curl -X DELETE --header 'Accept: application/json' 'http://localhost:8080/api/v1/workflows/id/1955' -b /tmp/cookies.txt

An example response:

Workflow deleted successfully.

Get Latest WorkFlows

Gets the latest workFlows available in the given application:

An example request for getting Latest WorkFlows availble in application:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflows/latest' -b /tmp/cookies.txt

An example response:

{
"id": 1954,
"userId": 3,
"uuid": "0e119cf1-2833-4c62-8466-21853fc1fb21",
"name": "aaaaawqw",
"category": "-",
"content": "{\"name\":\"aaaaawqw\",\"uuid\":\"0e119cf1-2833-4c62-8466-21853fc1fb21\",\"category\":\"-\",\"description\":\"1111\",\"parameters\":\"2222@1111\",\"nodes\":[{\"id\":\"1\",\"name\":\"ReadCSV\",\"description\":\"It reads in CSV files and creates a DataFrame from it\",\"details\":\"\",\"examples\":\"\",\"type\":\"dataset\",\"nodeClass\":\"fire.nodes.dataset.NodeDatasetCSV\",\"x\":\"243.5px\",\"y\":\"206px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"path\",\"value\":\"/user/sparkflows/Clickthru.csv\",\"widget\":\"textfield\",\"title\":\"Path\",\"description\":\"Path of the Text file/directory\",\"required\":true,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"separator\",\"value\":\",\",\"widget\":\"textfield\",\"title\":\"Separator\",\"description\":\"CSV Separator\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"header\",\"value\":\"true\",\"widget\":\"array\",\"title\":\"Header\",\"description\":\"Does the file have a header row\",\"optionsArray\":[\"true\",\"false\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"dropMalformed\",\"value\":\"false\",\"widget\":\"array\",\"title\":\"Drop Malformed\",\"description\":\"Whether to drop Malformed records or error\",\"optionsArray\":[\"true\",\"false\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColNames\",\"value\":\"[\\\"Timestamp\\\",\\\"UserId\\\",\\\"IP Address\\\",\\\" Product Id\\\"]\",\"widget\":\"schema_col_names\",\"title\":\"Column Names for the CSV\",\"description\":\"New Output Columns of the SQL\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColTypes\",\"value\":\"[\\\"STRING\\\",\\\"INTEGER\\\",\\\"STRING\\\",\\\"INTEGER\\\"]\",\"widget\":\"schema_col_types\",\"title\":\"Column Types for the CSV\",\"description\":\"Data Type of the Output Columns\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColFormats\",\"value\":\"[\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\"]\",\"widget\":\"schema_col_formats\",\"title\":\"Column Formats for the CSV\",\"description\":\"Format of the Output Columns\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"all\"},{\"id\":\"2\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output\",\"details\":\"\",\"examples\":\"\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"424.83px\",\"y\":\"191.323px\",\"fields\":[{\"name\":\"storageLevel\",\"value\":\"DEFAULT\",\"widget\":\"array\",\"title\":\"Output Storage Level\",\"description\":\"Storage Level of the Output Datasets of this Node\",\"optionsArray\":[\"DEFAULT\",\"NONE\",\"DISK_ONLY\",\"DISK_ONLY_2\",\"MEMORY_ONLY\",\"MEMORY_ONLY_2\",\"MEMORY_ONLY_SER\",\"MEMORY_ONLY_SER_2\",\"MEMORY_AND_DISK\",\"MEMORY_AND_DISK_2\",\"MEMORY_AND_DISK_SER\",\"MEMORY_AND_DISK_SER_2\",\"OFF_HEAP\"],\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"title\",\"value\":\"Row Values\",\"widget\":\"textfield\",\"title\":\"Title\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false},{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}],\"engine\":\"all\"}],\"edges\":[{\"source\":\"1\",\"target\":\"2\",\"id\":1}],\"dataSetDetails\":[],\"engine\":\"scala\"}",
"description": "1111",
"version": 4,
"dateCreated": 1566395460079,
"dateLastUpdated": 1566395644690,
"lockedByUserId": null,
"permission": null,
"workflow": {
 "name": "aaaaawqw",
 "uuid": "0e119cf1-2833-4c62-8466-21853fc1fb21",
 "category": "-",
 "description": "1111",
 "parameters": "2222@1111",
 "nodes": [
 {
 "id": "1",
 "path": null,
 "name": "ReadCSV",
 "iconImage": null,
 "description": "It reads in CSV files and creates a DataFrame from it",
 "details": "",
 "examples": "",
 "type": "dataset",
 "nodeClass": "fire.nodes.dataset.NodeDatasetCSV",
 "x": "243.5px",
 "y": "206px",
 "fields": [
 {
 "name": "storageLevel",
 "value": "DEFAULT",
 "widget": "array",
 "title": "Output Storage Level",
 "description": "Storage Level of the Output Datasets of this Node",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "DEFAULT",
 "NONE",
 "DISK_ONLY",
 "DISK_ONLY_2",
 "MEMORY_ONLY",
 "MEMORY_ONLY_2",
 "MEMORY_ONLY_SER",
 "MEMORY_ONLY_SER_2",
 "MEMORY_AND_DISK",
 "MEMORY_AND_DISK_2",
 "MEMORY_AND_DISK_SER",
 "MEMORY_AND_DISK_SER_2",
 "OFF_HEAP"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "path",
 "value": "/user/sparkflows/Clickthru.csv",
 "widget": "textfield",
 "title": "Path",
 "description": "Path of the Text file/directory",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "separator",
 "value": ",",
 "widget": "textfield",
 "title": "Separator",
 "description": "CSV Separator",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "header",
 "value": "true",
 "widget": "array",
 "title": "Header",
 "description": "Does the file have a header row",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "true",
 "false"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "dropMalformed",
 "value": "false",
 "widget": "array",
 "title": "Drop Malformed",
 "description": "Whether to drop Malformed records or error",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "true",
 "false"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "outputColNames",
 "value": "[\"Timestamp\",\"UserId\",\"IP Address\",\" Product Id\"]",
 "widget": "schema_col_names",
 "title": "Column Names for the CSV",
 "description": "New Output Columns of the SQL",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "outputColTypes",
 "value": "[\"STRING\",\"INTEGER\",\"STRING\",\"INTEGER\"]",
 "widget": "schema_col_types",
 "title": "Column Types for the CSV",
 "description": "Data Type of the Output Columns",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 },
 {
 "name": "outputColFormats",
 "value": "[\"\",\"\",\"\",\"\"]",
 "widget": "schema_col_formats",
 "title": "Column Formats for the CSV",
 "description": "Format of the Output Columns",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
 }
],
 "engine": "all"
 },

Get Workflow Count

Gets the count of the workflows in the given application.

An example request for getting count of the Workflow:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflows/count' -b /tmp/cookies.txt

An example response:

92

Get Workflow Versions

Gets the versions of workflow.

	workflowId: 1

An example request for getting workflow by id:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflows/versions?workflowId=1' -b /tmp/cookies.txt

An example response:

 [
 {
 "id": 1,
 "analysisflowId": 1,
 "content": "{\"name\":\"Analyze Flights Delay\",\"uuid\":\"3a3dfa34-bbd7-4c05-8745-55628d90cbf6\",\"category\":\"Analytics\",\"description\":\"Find Flights which are delayed by more than 40 minutes.\",\"nodes\":[{\"id\":\"1\",\"name\":\"DatasetStructured\",\"type\":\"dataset\",\"nodeClass\":\"fire.nodes.dataset.NodeDatasetStructured\",\"x\":\"38.9492px\",\"y\":\"275.613px\",\"fields\":[{\"name\":\"dataset\",\"value\":\"2ff32692-9b3c-49de-91a7-401daf2590c1\",\"widget\":\"dataset\",\"title\":\"Dataset\",\"description\":\"Selected Dataset\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"2\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"38.4336px\",\"y\":\"59.1094px\",\"fields\":[{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"3\",\"name\":\"CastColumnType\",\"description\":\"This node creates a new DataFrame by casting input columns with a new data type\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\"313.223px\",\"y\":\"61.8633px\",\"fields\":[{\"name\":\"inputCols\",\"value\":\"[\\\"CRS_DEP_TIME\\\",\\\"CRS_ARR_TIME\\\",\\\"CRS_ELAPSED_TIME\\\"]\",\"widget\":\"variables\",\"title\":\"Columns\",\"description\":\"Columns to be cast to new data type\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColType\",\"value\":\"DOUBLE\",\"widget\":\"array\",\"title\":\"New Data Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DOUBLE\",\"FLOAT\",\"INTEGER\",\"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"4\",\"name\":\"CastColumnType\",\"description\":\"This node creates a new DataFrame by casting input columns with a new data type\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\"322.949px\",\"y\":\"275.633px\",\"fields\":[{\"name\":\"inputCols\",\"value\":\"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_WEEK\\\"]\",\"widget\":\"variables\",\"title\":\"Columns\",\"description\":\"Columns to be cast to new data type\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColType\",\"value\":\"STRING\",\"widget\":\"array\",\"title\":\"New Data Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DOUBLE\",\"FLOAT\",\"INTEGER\",\"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"5\",\"name\":\"StringIndexer\",\"description\":\"StringIndexer encodes a string column of labels to a column of label indices\",\"type\":\"ml-transformer\",\"nodeClass\":\"fire.nodes.ml.NodeStringIndexer\",\"x\":\"630.238px\",\"y\":\"272.879px\",\"fields\":[{\"name\":\"handleInvalid\",\"value\":\"skip\",\"widget\":\"array\",\"title\":\"Handle Invalid\",\"description\":\"Invalid entries to be skipped or thrown error\",\"optionsArray\":[\"skip\",\"error\"],\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"inputCols\",\"value\":\"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_WEEK\\\",\\\"CARRIER\\\",\\\"TAIL_NUM\\\",\\\"FL_NUM\\\",\\\"ORIGIN_AIRPORT_ID\\\",\\\"ORIGIN\\\",\\\"DEST_AIRPORT_ID\\\",\\\"DEST\\\",\\\"CRS_DEP_TIME\\\",\\\"DEP_TIME\\\",\\\"DEP_DELAY_NEW\\\",\\\"CRS_ARR_TIME\\\",\\\"ARR_TIME\\\",\\\"ARR_DELAY_NEW\\\",\\\"CRS_ELAPSED_TIME\\\",\\\"DISTANCE\\\"]\",\"widget\":\"variables_map\",\"title\":\"Input Columns\",\"description\":\"Column containing labels\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputCols\",\"value\":\"[\\\"DAY_OF_MONTH_INDEX\\\",\\\"DAY_OF_WEEK_INDEX\\\",\\\"CARRIER_INDEX\\\",\\\"\\\",\\\"\\\",\\\"ORIGIN_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\"DEST_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\"]\",\"widget\":\"variables_map_edit\",\"title\":\"Output Columns\",\"description\":\"Output columns\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"6\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"626.492px\",\"y\":\"63.1289px\",\"fields\":[{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"7\",\"name\":\"SQL\",\"description\":\"This node runs the given SQL on the incoming DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeSQL\",\"x\":\"954.219px\",\"y\":\"59.8711px\",\"fields\":[{\"name\":\"tempTable\",\"value\":\"fire_temp_table\",\"widget\":\"textfield\",\"title\":\"Temp Table\",\"description\":\"Temp Table Name to be used\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"sql\",\"value\":\"select fire_temp_table.* , case when fire_temp_table.DEP_DELAY_NEW \\u003e 40 then 1.0 else 0.0 END as label from fire_temp_table\",\"widget\":\"textarea_medium\",\"title\":\"SQL\",\"description\":\"SQL to be run\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColNames\",\"value\":\"[]\",\"widget\":\"schema_col_names\",\"title\":\"Output Column Names\",\"description\":\"Name of the Output Columns\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColTypes\",\"value\":\"[]\",\"widget\":\"schema_col_types\",\"title\":\"Output Column Types\",\"description\":\"Data Type of the Output Columns\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColFormats\",\"value\":\"[]\",\"widget\":\"schema_col_formats\",\"title\":\"Output Column Formats\",\"description\":\"Format of the Output Columns\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"8\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"927.477px\",\"y\":\"291.137px\",\"fields\":[{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]}],\"edges\":[{\"source\":\"1\",\"target\":\"2\",\"id\":1},{\"source\":\"2\",\"target\":\"3\",\"id\":2},{\"source\":\"3\",\"target\":\"4\",\"id\":3},{\"source\":\"4\",\"target\":\"5\",\"id\":4},{\"source\":\"5\",\"target\":\"6\",\"id\":5},{\"source\":\"6\",\"target\":\"7\",\"id\":6},{\"source\":\"7\",\"target\":\"8\",\"id\":7}],\"dataSetDetails\":[]}",
 "dateLastUpdated": 1566551544603,
 "userName": null,
 "userId": null,
 "userComment": null
}
],

Workflow Execution REST API

Overview

The Workflow Execution REST API’s, allow you to execute Workflows, get results etc.

Below are the various Workflow Execution API’s available in Fire Insights, They should be executed after you have logged into Fire Insights.

List all the Executions

List all the workflow executions.

An example request for List all the executions:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflow-executions?page=0&size=1000' -b /tmp/cookies.txt

An example response:

 [
 {
 "id": 135,
 "analysisFlowId": 161,
 "userId": 33,
 "projectId": 33,
 "analysisFlowScheduleId": null,
 "status": 2,
 "name": "Test_csv",
 "category": "-",
 "description": "Fired Manually",
 "logs": "/tmp/fire/workflowlogs/workflow-5342148677548385044.log",
 "fireJobId": "02aedbe5-0713-4172-9f7c-c63272f7cbd9",
 "applicationId": "application_1560754639341_5932",
 "uiWebUrl": "http://hostname:4042",
 "metrics": null,
 "startTime": 1566821007783,
 "endTime": 1566821024075,
 "emailOnSuccess": null,
 "emailOnFailure": null
},

List Executions of a Workflow

Return the list of Executions for given workflowId.

workflowId = 131:

An example request for List executions of a Workflow:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflow-executions/workflows/131' -b /tmp/cookies.txt

An example response:

 [
 {
 "id": 99,
 "analysisFlowId": 131,
 "userId": 33,
 "projectId": 33,
 "analysisFlowScheduleId": null,
 "status": 2,
 "name": "Test_workflow",
 "category": "-",
 "description": "Fired Manually",
 "logs": "/tmp/fire/workflowlogs/workflow-4439919411814145818.log",
 "fireJobId": "7b7b7dd5-b27b-419e-b853-794b5f53a5b8",
 "applicationId": "application_1560754639341_5929",
 "uiWebUrl": "http://hostname:4041",
 "metrics": null,
 "startTime": 1566795625424,
 "endTime": 1566795650970,
 "emailOnSuccess": null,
 "emailOnFailure": null
}
],

GET Status of Workflow Execution

Return status of workflow execution for given workflowId.

workflowId = 193:

An example request for status of workflow execution

curl -X GET --header 'Accept: text/plain' 'http://hostname:port/api/v1/workflow-executions/193/status'

An example response:

KILLED

Stop the Execution of workflow

Stops the execution of workflow with specified workflowExecutionId.

Workflow Execution Id = 100:

An example request for Stopping specified workflow:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/plain' 'http://hostname:port/api/v1/workflow-execution/100/stop'' -b /tmp/cookies.txt

An example response:

{"status":"ok","message":"Stopping Analysis Flow Execution"}

Kill the Execution of workflow

Kill the execution of workflow with specified workflowExecutionId.

Workflow Execution Id = 100:

An example request for Killing specified workflow:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/plain' 'http://hostname:port/api/v1/workflow-execution/100/kill' -b /tmp/cookies.txt

An example response:

Killed YARN application : yarn application -kill application_1560754639341_5930,Exit Value : 0

Delete Workflow Executions by days

Delete Workflow Executions by days

“days”: “7”:

An example request for deleting workflow executions by days:

curl -X DELETE --header 'Accept: text/plain' 'http://hostname:port/api/v1/workflow-executions/days/7' -b /tmp/cookies.txt

An Example response:

Workflow executions deleted successfully

Get Executed Task Count

Get Executed Task Count:

An example request for Getting Executed Task Count:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflow-executions/tasks/count' -b /tmp/cookies.txt

An example response:

92

Get Latest Executions

Get Latest Executions:

An Example request for Getting Latest Executions:

curl -X GET --header 'Accept: application/json' 'http://hostname:port/api/v1/workflow-executions/latest' -b /tmp/cookies.txt

An example response:

[
{
"id": 162,
"analysisFlowId": 131,
"userId": 33,
"projectId": 33,
"analysisFlowScheduleId": null,
"status": 2,
"name": "Test_workflow",
"category": "-",
"description": "Fired Manually",
"logs": "/tmp/fire/workflowlogs/workflow-3535160145732140945.log",
"fireJobId": "7b456feb-22fe-474e-a0c6-f31c40a1a9cd",
"applicationId": "application_1560754639341_5934",
"uiWebUrl": "http://hostname:4040",
"metrics": null,
"startTime": 1566834233892,
"endTime": 1566834262432,
"emailOnSuccess": null,
"emailOnFailure": null
},

Dashboard REST API

Overview

The Dashboards REST API’s, allow you to interact with the Dashboards.

Below are the various Dashboard API’s available in Sparkflows

They should be executed after you have logged into Sparkflows

Get List of Dashboards for the user

Returns the list of dashboards for the logged in user.

	Header: sortPara:asc/desc.

curl -i --header "Accept:application/json" -H "Content-Type:application/json" -H "sortPara:desc" -X GET -b /tmp/cookies.txt localhost:8080/dashboardsJSON

Create New Dashboard / Save Dashboard

Set dashboardId value null to create new dashboard:

curl - X POST --header 'Content-Type: application/json' --header 'Accept: text/plain' --header 'dashboardId: null' -d '{"category": "string", "description": "string","name": "string","sheets": [{"description": "string","idx": "string","items": [{"description": "string","id": 0,"name": "string","nodeId": "string","type": "string", "workflowId": "string","workflowName": "string","x": "string","y": "string"}],"name":"string","type": "string"}],"uuid": "string"}' 'http://localhost:8080/saveDashboard' -b /tmp/cookies.txt

Get Dashboard by Id

	id:1(Url Parameter)

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/dashboards?sortPara=dsc&projectId=1' -b /tmp/cookies.txt

Get dashboard results

	dashboardId:1

	sheetId:0

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/dashboards/results?dashboardId=1&sheetId=0' -b /tmp/cookies.txt

update dashboard

	dashboardContent: abcd,

	dashboardId: 1,

curl -X PUT --header 'Content-Type: application/json' --header 'Accept: */*' -d 'abcd' 'http://localhost:8080/api/v1/dashboards/1'

Delete Dashboard

	dashboardId: 1,

	projectId: 1,

curl -X DELETE --header 'Accept: text/plain' 'http://localhost:8080/api/v1/dashboards/1?projectId=1' -b /tmp/cookies.txt

HDFS REST API

Overview

The HDFS REST API’s, allow you to interact with the HDFS of the Hadoop Cluster Sparkflows is connected to.

Below are the various HDFS API’s available in Sparkflows

They should be executed after you have logged into Sparkflows

Get List of Files in Directory

Returns list of all the files on hdfs in the users home directory

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hdfs'

Create HDFS directory

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/plain' 'http://localhost:8080/api/v1/hdfs/dir/create'

Get list of files in HDFS in the specified directory

Returns list of files in HDFS in the specified directory(/user/sparkflows/)

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hdfs/dir/open?path=%2Fuser%2Fsparkflows%2F'

Get list of all the files on hdfs in the users home directory in sorted order

*sortPara: alphabetical

*path: /user/sparkflows/

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hdfs/files?sortPara=alphbetical&path=%2Fuser%2Fsparkflows%2F'

Upload file

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' 'http://localhost:8080/api/v1/hdfs/files/upload' -b /tmp/cookies.txt

Deletes a file from HDFS

*path: /user/sparkflows/Airline.csv

curl -X DELETE --header 'Accept: text/plain' 'http://localhost:8080/api/v1/hdfs/files/delete?path=%2Fuser%2Fsparkflows%2FAirline.csv'

Download HDFS file

*path: /user/sparkflows/Airline.csv

curl -X GET --header 'Accept: application/json' 'localhost:8080/api/v1/hdfs/files/download?path=%2Fuser%2Fsparkflows%2FAirline.csv'

Rename HDFS File

*sourceFilePath: /user/sparkflows/Airline.csv

*destinationFilePath: /user/sparkflows/airline.csv

curl -X GET --header 'Accept: text/plain' 'http://localhost:8080/api/v1/hdfs/files/rename?sourceFilePath=%2Fuser%2Fsparkflows%2FAirline.csv&destinationFilePath=%2Fuser%2Fsparkflows%2Fairline.csv'

Get first X bytes of content of a file

*path: /user/sparkflows/Airline.csv

curl -X GET --header 'Accept: text/plain' 'http://localhost:8080/api/v1/hdfs/files/open?path=%2Fuser%2Fsparkflows%2FAirline.csv'

HIVE REST API

Overview

The HIVE REST API’s, allow you to interact with the HIVE of the Hadoop Cluster Sparkflows is connected to.

Below are the various HIVE REST API’s available in Sparkflows

They should be executed after you have logged into Sparkflows

Get all Hive Databases

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hive/databases' -b /tmp/cookies.txt

Get Table for a given Database

	“db”: “default”,

	“table”: “sample_07”

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hive/tables?db=default&table=sample_07' -b /tmp/cookies.txt

Get all Hive Databases

* curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/hive/databases' -b /tmp/cookies.txt

Scheduler REST API

Overview

The Scheduler REST API’s, allow you to schedule some jobs once Sparkflows connected to Hadoop Cluster.

Below are the various Scheduler REST API’s available in Sparkflows

They should be executed after you have logged into Sparkflows

Get list of all Workflows Scheduled

	analysisflowId = 1

curl -X GET --header 'Accept: application/json' 'http://localhost:8080/api/v1/workflow-schedules/projects/1/workflows/1' -b /tmp/cookies.txt

Schedule new Workflow

curl:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: */*' -d '1' 'http://localhost:8080/api/v1/workflow-schedules'

JSON:

 "analysisFlowId": 0,
 "cronPattern": "string",
 "dateCreated": "2019-08-06T11:77:17.221Z",
 "dateLastUpdated": "2019-08-06T11:77:17.221Z",
 "day": "string",
 "dayOfTheMonth": 0,
 "description": "string",
 "emailonFailure":"string",
 "emailonSuccess": "string"
 "endTime": "2019-08-06T11:77:17.221Z",
 "fireEvery": "string",
 "firedTime": "2019-08-06T11:77:17.221Z",
 "hour": 0,
 "id": 0,
 "Libjars": "string",
 "minute": 0,
"name": "string",
"sparkSubmitOptions": "string",
"startTime": "22019-08-06T11:77:17.221Z",
"userId": "0",
"id": "string",
}' 'http://137.117.83.79:8080/api/v1/workflow-schedules' -b /tmp/cookies.txt

Delete Scheduled Workflow

It deletes a scheduled instance of a workflow:

curl -X GET --header 'Accept: application/json' --header 'id: 1' 'http://localhost:8080/api/v1/workflow-schedules/1' -b /tmp/cookies.txt

Third Party Acknowledgements

Sparkflows uses and distributes the following third party software. These are open source software licensed as mentioned.

Server Libraries

	Apache Spark

	https://spark.apache.org/

	Copyright © 2018 The Apache Software Foundation

	License: Apache-2.0

	Apache Avro

	https://avro.apache.org/

	Copyright © 2012 The Apache Software Foundation

	License: Apache-2.0

	Apache Commons

	https://commons.apache.org/

	Copyright © 2019 The Apache Software Foundation.

	License: Apache-2.0

	Apache Hadoop

	https://hadoop.apache.org/

	Copyright © 2018 The Apache Software Foundation.

	License: Apache-2.0

	Apache HBase

	https://hbase.apache.org/

	Copyright ©2007–2019 The Apache Software Foundation

	License: Apache-2.0

	Apache Hive

	https://hive.apache.org/

	Copyright © 2011-2014 The Apache Software Foundation

	License: Apache-2.0

	Apache HTTP

	https://hc.apache.org/

	Copyright © 1999–2019 The Apache Software Foundation.

	License: Apache-2.0

	spark-streaming-kafka

	http://spark.apache.org/

	© 2017 Apache Software Foundation

	License: Apache-2.0

	Apache pdfbox

	https://pdfbox.apache.org

	Copyright © 2009–2019 The Apache Software Foundation

	License: Apache-2.0

	Apache OpenNLP

	https://opennlp.apache.org/

	Copyright © 2017 The Apache Software Foundation

	License: Apache-2.0

	Apache Tika

	https://tika.apache.org/

	Copyright © 2019 The Apache Software Foundation

	License: Apache-2.0

	Apache Tomcat

	http://tomcat.apache.org/

	Copyright © 1999-2019, The Apache Software Foundation

	License: Apache-2.0

	AWS Java SDK

	https://aws.amazon.com/

	Copyright © 2019, Amazon Web Services, Inc. or its affiliates

	License: Apache-2.0

	Eclipse jetty

	https://www.eclipse.org/jetty/

	Copyright © 2016 The Eclipse Foundation.

	License: EPL- v 2.0

	Elasticsearch-spark-20_2.11

	https://github.com/elastic/elasticsearch-hadoop

	© 2019. Elasticsearch B.V.

	License: Apache-2.0

	Guava

	https://github.com/google/guava

	https://github.com/google/guava/blob/master/COPYING

	License: Apache-2.0

	H2O

	https://www.h2o.ai/

	© Copyright 2013, 0xdata, Inc.

	License: Apache-2.0

	Json Java

	http://www.json.org

	Copyright (c) 2002 JSON.org

	License: BSD-style with “no evil” clause

	Log4J

	http://logging.apache.org/log4j/2.x/

	Author: The Apache Software Foundation

	License: Apache-2.0

	Sagemaker-spark_2.11

	https://github.com/aws/sagemaker-spark

	Author: The Apache Software Foundation

	License: Apache-2.0

	Mongo_spark_connector_2.11

	http://github.com/mongo-spark

	Author: The Apache Software Foundation

	License: Apache-2.0

	Python

	https://www.python.org/

	Copyright ©2001-2019. Python Software Foundation

	License: PSFL2

	Quartz

	http://www.quartz-scheduler.org/

	Copyright© Terracotta, Inc., a wholly-owned subsidiary of Software AG USA, Inc. All rights reserved

	License: Apache-2.0

	Spring Framework

	https://spring.io/

	Copyright © 2019 Pivotal Software, Inc. All Rights Reserved

	License: Apache-2.0

	SLF4J

	http://www.slf4j.org/

	Copyright (c) 2004-2017 QOS.ch

	License: MIT

Frontend Libraries

	angularjs

	https://angularjs.org/

	Copyright (c) 2010-2014 Google, Inc.

	License: MIT

	bootstrap

	http://getbootstrap.com/2.3.2/

	Copyright 2011-2014 Twitter, Inc

	License: MIT

	jquery

	https://jquery.com/

	Copyright 2019 The jQuery Foundation. jQuery License

	License: MIT

	rxjs

	https://rxjs-dev.firebaseapp.com/

	Copyright 2015-2018 Google, Inc., Netflix, Microsoft Corp.

	License: Apache License 2.0

Definitions

	Apache-2.0 : Apache License, Version 2.0 : http://www.apache.org/licenses/LICENSE-2.0.html

	MIT : MIT License : https://en.wikipedia.org/wiki/MIT_License#Relation_to_Patents

	BSD-style: BSD-style License : http://json.org/license.html

	EPL: EPL - v 2.0 License: https://www.eclipse.org/legal/epl-2.0/

	PSFL2 : Python Software Foundation License Version 2

Index

Troubleshooting

I do not see anything in my browser after I start Sparkflows.

Do check in the logs for exceptions and the root cause. On Linux & Mac, the log files are in nohup.out. Possible causes are:

The H2 database was not created and it is failing to the find the table.
The server did not start properly because some other Application is running on the configured port. The default configured port for Sparkflows is :8080

Sparkflows UI does not get displayed when I go to :8080. Some other UI is displayed

Sparkflows by default runs on port 8080. It is possible that you have some other application running on port 8080, and you are seeing its output.

The solution is to run Sparkflows on some other port which is not being used by any other application.
Details here : https://www.sparkflows.io/run-fire-on-different-port

When running on a Spark Cluster, I am getting the exception ‘User: ec2-user is not allowed to impersonate ec2-user

Sparkflows impersonates the logged in user when submitting the jobs onto the Cluster. So, the user with which Sparkflows is running has to be configured on HDFS as a proxy user.

Details for allowing the sparkflows user to impersonate other users is available at : https://www.sparkflows.io/connecting-sparkflows-with-spark-cl

Where do I find the logs of the workflows when running on my Cluster

The logs are in /tmp/fire/workflowlogs directory on the machine on which Sparkflows is running. Each workflow execution has its own log file.

The json representation of the workflow is in /tmp/fire/workflows

My cluster is Kerberised. How do I setup Sparkflows for it.

The steps to setup Sparkflows on a Kerberised cluster are here : https://www.sparkflows.io/kerberos

When running the workflows on my Spark Cluster, nothing is happening

This is probably because there is some configuration error. Sparkflows uses spark-submit to submit the jobs to the cluster.

Check out the log for spark-submit for the workflow in /tmp/fire/workflowlogs to find the root cause.

It is also useful to ensure Spark jobs can be submitted to the Cluster from the node on which Sparkflows is running with spark-submit. Submit the Pi job from spark examples to test it.

If the Spark job is running successfully (according to the logs), but the results are still not showing up in the Browser, it could be because the fire spark job is unable to post results back to the Sparkflows web server. You should see these failures in the logs.

Under Administration/Configuration, there is the config app.postMessageURL. It determines the Sparkflows URL to which the results from the spark driver are posted.

I am getting an error when clicking ‘Update’ button on the Create/Update Dataset page.

You may see the error below:

Unable to retrieve schema for this path :: Bad header for field, should start with a character or _ and can contain only alphanumerics and _ 0:” id 1 “

This is because one of the column names of the header is not in the right format. In this case “id 1” column contains a space.

Only alphanumerics and _ are permitted in the header and column names.

If your data does not have a header column, set the “Header” field to “false”.

When I am running the workflow on the cluster, I get ‘Running on Cluster’ and nothing happens

There could be a few reasons for this. Check the log file under /tmp/fire/workflowlogs. It would show you an exception indicating the root cause.

Most common causes are:

	Under Administration/Configuration, app.sparkSubmitJar is not set correctly. The jar file does not exist. In this case you would get ClassNotFound exception in your log file.

	Under Administration/Configuration, app.postMessageURL is not set correctly. Make sure that the machine and port number are set correctly to the machine on which Sparkflows is running. The spark job posts messages to this URL to be displayed in the user’s browser.

When running a Workflow on the cluster I am getting an Exception

org.apache.hadoop.security.AccessControlException: Permission denied: user=admin, access=WRITE, inode=”/user”:hdfs:supergroup:drwxr-xr-x

If the above exception is coming up when running the workflow, then it means that the logged in user does not exist on HDFS.

In the above case, the user is logged into Fire as ‘admin’. So the jobs submitted by Fire on the cluster is as the user ‘admin’. But the user ‘admin’ does not exist on HDFS.

Please make sure to log into Fire as a user which exists on HDFS.

When running the example workflows on the Spark Cluster it is not able to find the input files

The example workflows read in input files. They have to be on HDFS in the home directory of the logged in user. The data directory which comes with Sparkflows has to be uploaded onto HDFS.

For example, if the logged in user is ‘john’, then the data directory would be on HDFS in the directory /user/john

 Test

 hello

 hello

 hi

 hello

 Hello

 hello

 hi

 new file

 test

 hello

 Hello

 hi

 hello

 writing parquet

Run your Sparkflows Workflows on Databricks

Sparkflows is integrated with Databricks. Below are the key integration points:

	Sparkflows can be configured to talk with the Databricks endpoint.

	Datasets can be created in Sparkflows pointing to your tables in Databricks.

	Workflows can be created in Sparkflows with these datasets.

	Workflows from Sparkflows are run on the Databricks cluster.

	As the workflow is running, the summary results from the nodes are streamed back to Sparkflows and displayed.

Note: In order to create certain results from Sparkflows, and be able to use it in your Databricks Notebooks, create a temp table from the result with RegisterTempTable Node in Sparkflows.

[image: Sparkflows Databricks Integration]

Enable Databricks in Sparkflows

In Administration/Configuration tab within the Fire UI,

	Set databricks.enabled to true.

	Set the app.postMessageURL to point to the public IP/hostname of the machine on which Sparkflows is installed. Results from the Sparkflows jobs running in Databricks is streamed back to this URL.

[image: Sparkflows Workflow Execution]

Configure the Databricks Endpoint in Sparkflows

In Databricks/Configuration, configure the Databricks Endpoint. The Databricks username, password and endpoint are needed to set up the endpoint.
For security reasons, nothing gets saved, and just stays in memory only. So when logging back in, the endpoint configuration has to be done again.

[image: Sparkflows Databricks Configuration]

Create a library on Databricks with fire jar

The workflows from Sparkflows are powered by the code in the fire jar file contained in the directory sparkflows-x.y.z/fire-lib

Upload the fire jar file with dependencies to Databricks as a New Library : fire-core-x.y.z-jar-with-dependencies.jar. Use the Library Link in Databricks to create a new library and upload the fire core jar file. The jar file is ~155 MB.

[image: Sparkflows Welcome Databricks]

Create a table on Databricks or use an existing table you have created on Databricks

[image: Sparkflows Create Table]

SAML Authentication with One Login

Fire Insights supports SAML Authentication.

Configuring SAML

Add identity provider configuration information in sso.saml.properties file:

	Metadata url of identity provider

Right click on SAML Metadata menu and copy link address and add it in config properties file like below:

[image: sso]

saml2.idp.metadata-url=https://sparkflows-dev.onelogin.com/saml/metadata/5f5d16a1-07d1-4167-a305-489d2ee0b18b

	Identifier of the SP entity (must be a URI) Audience URI:

[image: sso]

saml2.sp.entityid=https://localhost:8443/sparkflow/saml/metadata

	Identifier of the IdP entity (must be a URI):

[image: sso]

saml2.idp.entityid=https://app.onelogin.com/saml/metadata/5f5d16a1-07d1-4167-a305-489d2ee0b18b

	Signature algorithm:

[image: sso]

saml2.security.signature_algorithm=http://www.w3.org/2001/04/xmldsig-more#rsa-sha1

	Make it sure that recepient url start with /saml/SSO

[image: sso]

Note

Make sure to change localhost to your domain name or your ip

Copying files to S3

There would be times when you want to upload multiple files from your laptop to S3. This document describes the process for it.

Installing aws-cli on mac

brew install awscli

Configure AWS Credentials

aws configure:

- Enter your awsAccessKeyId
- Entery your awsSecretAccessKey

View S3 Buckets

	aws s3 ls

View S3 Directory

	aws s3 ls s3://bucket_name/dir1/

Copy files to S3

Copy all files from local_direcory to s3://bucket-name/dir1:

aws s3 cp local_directory s3://bucket-name/dir1 --recursive

Delete All Files in Directory

	aws s3 rm s3://bucket_name/dir1/ –recursive

Setting Roles and Policies for EMR

In order to be able to access S3 files from the EMR cluster, attach the AmazonS3FullAccess Policy to the EMRDefaultRole.

Now the EMR cluster would have access to the S3 buckets.

REFERENCE : Creating Access Key & Secret Key

	You’ll need create a user with programmatic access by following the steps here (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html).

	Next, you’ll create an IAM policy that defines what this user has access to in your AWS account. It’s important to only grant this user minimal access within your account. See this documentation for how to create IAM policies (https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html).

	Finally, you’ll create an access key and secret key for this user (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey).

Note It’s important to regularly rotate your access and secret keys. See this documentation for more information (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#rotating_access_keys_console)

Planning Guide

This document describes details to help you plan on deploying and using Fire Insights on Azure.

Costs

The main costs involved when using Fire Insights are around the VM.

Pricing for azure vm can be found here : https://docs.microsoft.com/en-us/azure/cost-management-billing/understand/plan-manage-costs

Sizing

We recommend using at least 16GB machines with 300gb+ SSD.

Browsing Databricks Tables

Fire Insights allows you to Browse your Databricks Database & Table.

Go to DATABROWSERS/Databricks DB

It will display the various Databricks Connections in your Applications.

[image: Databricks]

Select the relevant connection

It will use it for viewing the Databrick database & Table available.

[image: Databricks]

Browsing Databricks Clusters

Fire Insights enables you to browse your Databricks Cluster.

Go to DATABROWSERS/Databricks DB

It will display the various Databricks Connections in your Applications.

[image: Databricks]

Select the relevant connection

It will use it for viewing the Databrick Cluster details.

[image: Databricks]

Browse DBFS

Fire Insights enables you to browse your DBFS.

Go to DATA BROWSERS/DBFS

It will display the various Databricks Connections in your Applications.

[image: Databricks]

Select the relevant connection

Your Databricks File System would be displayed.

[image: Databricks]

Reading / Writing

Fire Insights enables you to read from and write to Databricks tables.

Below is a workflow which read data from the Databricks table xyz. It then processes the data and finally writes out the result to the Databricks table abc.

Read Databricks table in Workflow

In the workflow use the processor ‘ReadDatabricksTable’. It will allow you to read tables from Databricks.

Then use the other processors in Fire for processing the data read from the Databricks Table.

Workflow

[image: Databricks]

Processor Configurations for ReadDatabricksTable

[image: Databricks]

Refresh schema for processor ReadDatabricksTable

[image: Databricks]

Processor executions for ReadDatabricksTable

[image: Databricks]

Databricks Workflow execution

Below is the output of executing the above workflow which reads data from a Databricks table.

[image: Databricks]

Write to Databricks Table in Workflow

In the workflow use the processor ‘SaveDatabricksTable’. It will allow you to save tables to Databricks.

Workflow

[image: Databricks]

Processor Configurations for SaveDatabricksTable

[image: Databricks]

Databricks Workflow execution

Below is the output of executing the above workflow which Save the data to Databricks table.

[image: Databricks]

	Verify the Table

it will show that table written successfully, Got saved to databricks cluster.

[image: Databricks]

Fire on Databricks running on AWS

This document contains some details of running Fire on Databricks/AWS.

Accessing S3 buckets from Databricks

This document from Databricks has very good information on the setup for accessing S3 buckets from Databricks.

https://docs.databricks.com/security/credential-passthrough/iam-passthrough.html

Python Installation on Linux - Redhat/CentOS

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire Insights use Python 3.6+.

Check if Python 3.6+ is Installed

	python --version

	python3 --version

Install Python 3 (if not installed)

Some References for Installing Python:

	CentOS : https://www.liquidweb.com/kb/how-to-install-python-3-on-centos-7/

Install EPEL repository if needed:

	https://www.tecmint.com/install-epel-repository-on-centos/

	yum install epel-release

Check if python3 is available in the configured yum repositories:

	sudo yum list installed | grep -i python3

[image: Installations]

Install python3:

	sudo yum install python3 -y

[image: Installations]

Create Python virtual environment & Activate it

	python3 -m venv venv

	source venv/bin/activate

	python --version

[image: Installations]

[image: Installations]

Upgrade pip version

	pip install pip --upgrade

[image: Installations]

Install dependency for fbprophet package (CentOS 7)

Run below command with sudo privilege

	yum install -y xz-devel

[image: Installations]

	yum install centos-release-scl

[image: Installations]

	yum install devtoolset-7

[image: Installations]

	scl enable devtoolset-7 bash

	gcc --version

[image: Installations]

	pip install fbprophet

[image: Installations]

	pip list

[image: Installations]

Reference

Links

	https://linuxize.com/post/how-to-install-gcc-compiler-on-centos-7/

Install Other Packages

Install the required packages:

	cd fire-x.y.x/dist/fire

	pip install -r requirements.txt

requirements.txt file is available in the installation directory of fire insights.

	fire-x.y.x/dist/fire/requirements.txt

Reference

Links

	https://docs.aws.amazon.com/cli/latest/userguide/install-linux-python.html

	https://aws.amazon.com/premiumsupport/knowledge-center/ec2-linux-python3-boto3/

	https://blog.teststation.org/centos/python/2016/05/11/installing-python-virtualenv-centos-7/

Delete a venv

	source venv/bin/activate

	pip freeze > requirements.txt

	pip uninstall -r requirements.txt -y

	deactivate

	rm -r venv/

Installing pip & wheel

	yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

	yum install python-pip

	yum install python-wheel

Add below in .bash_profile

	export PYSPARK_PYTHON=/usr/bin/python3

	export PYSPARK_DRIVER_PYTHON=/usr/bin/python3

For Ubuntu

	Ubuntu : https://docs.python-guide.org/starting/install3/linux/

Python Installation on Windows

Python is only needed if you need to use Python and the PySpark engine in Fire Insights. Python modules in Fire Insights use Python 3.6+.

Check if Python is Installed

	python --version

	python3 --version

Ensure that you have python version 3.6+ installed.

Install Python 3.6+ (if not already installed)

	
	Download python from below Link

	
	https://www.python.org/downloads/

	https://www.python.org/ftp/python/3.6.8/python-3.6.8-amd64.exe

	Install and configure it. Check the option for adding path by default on first page of installation, so that you do not need to add it to the path manually.

Once the installation is complete, open command prompt to see if python is installed or not

	python --version

Create System Variable PYTHONPATH

Create a new system variable called PYTHONPATH with values like shown in the screenshots below.

[image: Installations]

[image: Installations]

Also add to system path

[image: Installations]

Upgrade pip version

	pip install --user --upgrade pip

Install Other Dependent Packages

Install the other required packages:

	pip install -r requirements.txt

requirements.txt file is available in the installation directory of Fire Insights : fire-x.y.x/dist/fire/requirements.txt

Once the above steps have completed successfully, run the below command to ensure everything was setup correctly.

	python ./dist/__main__.py

[image: Installations]

Enable PySpark Engine in Fire Insights

Login to Fire Insights application and go to configurations and set app.enablePySparkEngine to true and save the changes. Now you can start using PySpark engine in Fire Insights.

[image: Installations]

Model Persistence

Save/ Load Model allows you to save your model to file and load it later in order to make predictions.

Fire Insights allows you to save the ML Model created. The ML Models can be loaded in the same or other workflows to be used for scoring. The ML Models can also be downloaded from HDFS Browse.

Spark ML Models

Spark ML models are saved into a directory with multiple files in it. Fire Insights has processors saving and loading the Spark ML models.

Save Model processor

[image: Modelsave]

ML Save Workflow

[image: Modelsave]

Load Model processor

[image: Modelsave]

ML Load Workflow

[image: Modelsave]

H2O Models

H2O Models can be saved in binary format or in MOJO format. Fire Insights has processors for them.

Save H2o Model processor

[image: Modelsave]

Load H2o Model processor

[image: Modelsave]

More details of saving and loading the H2O Models is available here:

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/save-and-load-model.html

Save and Load H2O Workflow

[image: Modelsave]

Scikit-Learn Models

Scikit-Learn models are persisted with pickle. Fire Insights has processors for saving and loading the pickle files.

More details of the pickle format is available here:

https://scikit-learn.org/stable/modules/model_persistence.html

Time Series Analysis

Time series analysis is a statistical technique that deals with time series data, or trend analysis. Time series data means that data is in a series of particular time periods or intervals.

https://www.statisticssolutions.com/time-series-analysis/

Fire Insights provides a number of features for Time Series Analysis.

Time Series Modeling

Fire Insights provides a number of Processors for Time Series Modeling. These include:

	H2OXGBoost

	Prophet : https://facebook.github.io/prophet/

	Arima

Time Series Feature Engineering

Fire Insights provides a number of Processors for Feature Engineering of Time Series Data. These include:

	DateTimeFieldExtract : Extracts year, month, day of month, hour, minute, second and week of year from timestamp/date columns.

	MovingWindowingFunctions : Calculates the moving values using the given function.

	WindowingAnalytics : Window Analytics Functions

Below is the sample workflows which contains DateTimeFieldExtract processor in Fire Insights.

It reads the JetRail Train dataset & use DateTimeFieldExtract processor which create New DataFrame by extracting Date & Time field and print the result.

[image: ml_userguide]

DateTimeFieldExtract processor Configuration:

[image: ml_userguide]

Output result of DateTimeFieldExtract processor:

[image: ml_userguide]

Below is the sample workflows which contains MovingWindowingFunctions processor in Fire Insights.

It reads the ticker dataset, concatenate the input column, casting specified column to new data type, use MovingWindowingFunctions processor which calculates the moving value of selected function of input column and print the result.

[image: ml_userguide]

MovingWindowingFunctions processor Configuration:

[image: ml_userguide]

Output result of MovingWindowingFunctions processor:

[image: ml_userguide]

Time Series Visualizations

Fire Insights provides a number of Processors for the visualization of the time series data.

	Charts : LineChart

Below is the sample workflows which contains Time Series data and visualize using line chart in Fire Insights.

[image: ml_userguide]

Configurations for visualization processors in Fire Insight:

[image: ml_userguide]

Output result of Visualization processor:

[image: ml_userguide]

Splitting

Fire Insights provides processors for splitting the data by time for training, test and validation.

	Split By Time

NLP/Jupyter

Restarting Fire at Regular Intervals

It is a good idea to restart Fire at regular intervals. This could be 4 hrs, 6 hrs, 8 hrs etc. interval.

Restarting enables Fire to continue to run effectively over months. Restarting Fire does not effect any of the running jobs or users.

Notes

Allows capturing Notes on the Workflow

Type

doc

Class

fire.nodes.doc.NodeDocLarge

Fields

	Name

	Title

	Description

	comment

	Comment

	Comments for the Workflow

01-Connectors

	ReadCassandra
	Type

	Class

	Fields

	ReadElasticSearch
	Type

	Class

	Fields

	ReadHBase
	Input

	Output

	Type

	Class

	Fields

	ReadHIVETable
	Input

	Output

	Type

	Class

	Fields

	ReadMarketo
	Type

	Class

	Fields

	ReadMongoDB
	Type

	Class

	Fields

	Salesforce
	Type

	Class

	Fields

	SaveCassandra
	Type

	Class

	Fields

	SaveElasticSearch
	Type

	Class

	Fields

	SaveHBase
	Input

	Output

	Type

	Class

	Fields

	Details

	SaveMongoDB
	Input

	Output

	Type

	Class

	Fields

ReadCassandra

This node reads data from Apache Cassandra

Type

dataset

Class

fire.nodes.cassandra.NodeReadCassandra

Fields

	Name

	Title

	Description

	table

	Cassandra Table

	Cassandra Table from which to read the data

	keyspace

	Cassandra Keyspace

	Cassandra Keyspace

	cluster

	Cassandra Cluster

	The group of the Cluster Level

ReadElasticSearch

Reads data from Elastic Search

Type

dataset

Class

fire.nodes.elasticsearch.NodeReadElasticSearch

Fields

	Name

	Title

	Description

	indexName

	Index Name

	Name of the Elastic Search Index

	elasticSearchHost

	Elastic Search Host

	Name of the Elastic Search Host

	elasticSearchPort

	Elastic Search Port

	Port of Elastic Search

	temporaryTable

	Spark Temporary Table for Reading from ES

	Spark Temporary Table to be used for reading from Elastic Search

	sql

	SQL for reading from Elastic Search

	SQL for reading from Elastic Search. Where condition can be applied here for limiting the rows read from ES.

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

ReadHBase

Read the rows in the incoming DataFrame onto Apache HBase using the specific field mapping

Input

It does not take any DataFrame as input

Output

It queries HBase and creates a DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

dataset

Class

fire.nodes.hbase.NodeReadHBase

Fields

	Name

	Title

	Description

	hbaseSite

	HBase Site XML (if reading from hbase-site.xml)

	HBase Site XML eg: /etc/hbase/conf/hbase-site.xml

	hbaseMaster

	HBase Master

	HBase Master eg: localhost:60000

	timeout

	Timeout

	Timeout eg: 120000

	hbaseZookeeperQuorum

	HBase Zookeeper Quorum

	HBase Zookeeper Quorum eg: localhost

	zookeeperZnodeParent

	Zookeeper Znode Parent

	Zookeeper Znode Parent eg: /hbase

	hbaseTableName

	HBase Table Name

	HBase Table from which to read data from

	dateFormat

	Date Format for date columns

	eg: yyyy-MM-dd

	timeFormat

	Time Format for timestamp columns

	eg: yyyy-MM-dd HH:mm:ss

	inputColNames

	HBase Column Name

	HBase Table Schema

	inputColTypes

	HBase Column Type

	Data Type of the Column

	inputColFamilyNames

	HBase Column Family

	HBase Column Family

ReadHIVETable

This node reads data from Apache HIVE table and creates a DataFrame from it

Input

It reads in CSV text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.hive.NodeHIVE

Fields

	Name

	Title

	Description

	db

	HIVE Database

	HIVE Database

	table

	HIVE Table

	HIVE Table from which to read the data

	query

	HIVE Query (Optional)

	If a separate HIVE query needs to be used for reading from HIVE. This field is optional.

	outputColNames

	Column Names of the database table

	Column Names of the database table

	outputColTypes

	Column Types of the database table

	Column Types of the database table

ReadMarketo

Node for reading Marketo files

Type

dataset

Class

fire.nodes.marketo.NodeReadMarketo

Fields

	Name

	Title

	Description

	clientId

	Client Id

	Marketo account clientId

	clientSecret

	Client Secret

	Marketo account clientSecret

	instanceUrl

	Instance Url

	Instance URL to be used to access Marketo. It has to be specified without /rest. i.e it should be like https://119-AAA-888.mktorest.com

	object

	Object

	Object to be queried from Marketo. ex. leads

	filterType

	Filter Type

	Filter field to be used

	filterValues

	Filter Values

	Comma separated filter values to be applied

	fromDate

	From Date

	(Optional) Datatime from which the data has to be fetched. It has to be in ISO 8601 format

	customObject

	Custom Object

	(Optional) Boolean to specify if the specified object is custom object, Default value is false

	apiVersion

	Api Version

	(Optional) API Version to be used. Default value is v1

	modifiedFields

	Modified Fields

	(Optional) Fields to be considered for leadChanges. It has to be comma separated field names

	queryType

	Query Type

	Query Type of Marketo

	outputColNames

	Column Names for the Marketo

	New Output Columns of the SQL

	outputColTypes

	Column Types for the Marketo

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Marketo

	Format of the Output Columns

ReadMongoDB

Reads data from MongoDB

Type

dataset

Class

fire.nodes.mongodb.NodeReadMongoDB

Fields

	Name

	Title

	Description

	mongoURI

	MongoDB URI

	URI of MongoDB to read from

	mongoDBName

	MongoDB Database

	Name of the MongoDB database to read from

	mongoTableName

	MongoDB Table

	Name of the MongoDB table to read from

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

Salesforce

This node reads data from Salesforce.

Type

dataset

Class

fire.nodes.salesforce.NodeReadSalesforce

Fields

	Name

	Title

	Description

	sql

	SQL

	Sql for reading salesforce data ex - select id, name, amount from opportunity

	userNmae

	User Name

	UserName of Salesforce

	password

	Password

	Password of Salesforce

	readOption

	Read Option

	Pulling data/Object from salesforce

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

SaveCassandra

Saves the rows of the incoming DataFrame into Apache Cassandra

Type

transform

Class

fire.nodes.cassandra.NodeSaveCassandra

Fields

	Name

	Title

	Description

	table

	Cassandra Table Name

	Cassandra Table into which data gets loaded

	keyspace

	Cassandra Keyspace Name

	The keyspace where table is looked for

	cluster

	Cluster

	The group of the Cluster Level Settings to inherit

SaveElasticSearch

Stores the rows of the incoming DataFrame into Elastic Search

Type

transform

Class

fire.nodes.elasticsearch.NodeSaveElasticSearch

Fields

	Name

	Title

	Description

	indexName

	Index Name

	Name of the Elastic Search Index

	elasticSearchHost

	Elastic Search Host

	Name of the Elastic Search Host

	elasticSearchPort

	Elastic Search Port

	Port of Elastic Search

	esIndexAutoCreate

	es.index.auto.create

	ES Index Auto Create

	esNodesWANOnly

	es.nodes.wan.only

	ES Nodes WAN Only

	esNodesIngestOnly

	es.nodes.ingest.only

	ES Nodes Ingest Only

	esNodesDataOnly

	es.nodes.data.only

	ES Nodes Data Only

	esNetHttpAuthUser

	es.net.http.auth.user

	Username

	esNetHttpAuthPass

	es.net.http.auth.pass

	Password

	esConfKeys

	Config Key/Value Pairs

	More Config Values

	esConfValues

	Config Key/Value Pairs

	More Config Values

SaveHBase

Saves all the rows in the incoming DataFrame onto Apache HBase using the specific field mapping

Input

It takes in a DataFrame as input

Output

Incoming dataFrame is passed along to the next nodes.

Type

transform

Class

fire.nodes.hbase.NodeSaveHBase

Fields

Details

SaveHBase node saves all the rows in the incoming DataFrame onto HBase using the specific field mapping.

The DataFrame columns which do not have to be loaded into HBase are left empty.

SaveMongoDB

It Saves the incoming Dataframe into MongoDB

Input

It takes in a DataFrame as input

Output

Incoming dataFrame is passed along to the next nodes.

Type

transform

Class

fire.nodes.mongodb.NodeSaveMongoDB

Fields

	Name

	Title

	Description

	mongoURI

	mongo URI

	URI of mongodb

	mongoDBName

	mongoDB Name

	mongoDB Name

	mongoTableName

	mongo Table Name

	mongo Table Name

ReadAvro

Dataset Node for reading Apache Avro files

Input

It reads in Avro files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetAvro

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Avro file/directory

	outputColNames

	Column Names for the Avro

	Output Columns of the Avro

	outputColTypes

	Column Types for the Avro

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Avro

	Format of the Output Columns

CreateDataset

Creates a dataset with the specified number of Rows and 9 pre-defined columns

Input

It does not read data from any external source

Output

It creates a DataFrame with the specified number of Rows

Type

dataset

Class

fire.nodes.dataset.NodeDatasetCreate

Fields

	Name

	Title

	Description

	numRows

	Number of Rows

	Number of Rows in the Output Dataset

ReadCSV

It reads in CSV files and creates a DataFrame from it

Input

It reads in CSV text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetCSV

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	separator

	Separator

	CSV Separator

	header

	Header

	Does the file have a header row

	dropMalformed

	Drop Malformed

	Whether to drop Malformed records or error

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

DB2 JDBC

This node reads data from other databases using JDBC.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBC

Fields

	Name

	Title

	Description

	url

	DB2 JDBC URL

	The JDBC URL to connect to

	user

	User

	User for connecting to the DB

	password

	Password

	Password for connecting to the DB

	dbtable

	DB2 Table

	The JDBC table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	driver

	DB2 Driver

	The class name of the JDBC driver needed to connect to this URL

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

EmptyDataset

It creates an empty DataFrame

Input

It does not read any input

Output

It creates an empty DataFrame

Type

dataset

Class

fire.nodes.dataset.NodeDatasetEmpty

Fields

ReadExcel

Dataset Node for reading Excel files

Type

dataset

Class

fire.nodes.dataset.NodeDatasetExcel

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Excel file

	sheetName

	Sheetname

	Excel Sheet Name

	header

	Header

	Does the file have a header row

	outputColNames

	Column Names for the Excel

	New Output Columns of the SQL

	outputColTypes

	Column Types for the Excel

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Excel

	Format of the Output Columns

02-ReadStructured

	ReadAvro
	Input

	Output

	Type

	Class

	Fields

	CreateDataset
	Input

	Output

	Type

	Class

	Fields

	ReadCSV
	Input

	Output

	Type

	Class

	Fields

	DB2 JDBC
	Type

	Class

	Fields

	EmptyDataset
	Input

	Output

	Type

	Class

	Fields

	ReadExcel
	Type

	Class

	Fields

	ReadJDBC
	Input

	Output

	Type

	Class

	Fields

	ReadJSON
	Type

	Class

	Fields

	Details

	ReadLibsvm
	Input

	Output

	Type

	Class

	Fields

	ReadParquet
	Input

	Output

	Type

	Class

	Fields

	ReadShapeFile
	Input

	Output

	Type

	Class

	Fields

	DatasetStructured
	Input

	Output

	Type

	Class

	Fields

	Details

	URLTextFileReader
	Type

	Class

	Fields

	URLSingleRecordJSONReader
	Type

	Class

	Fields

	ReadXML
	Input

	Output

	Type

	Class

	Fields

ReadJDBC

This node reads data from Relational Databases using JDBC and creates a DataFrame from it

Input

It reads data from Relational Databases

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJDBC

Fields

	Name

	Title

	Description

	url

	URL

	The JDBC URL to connect to

	user

	User

	User for connecting to the DB

	password

	Password

	Password for connecting to the DB

	dbtable

	DB Table

	The JDBC table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	driver

	Driver

	The class name of the JDBC driver needed to connect to this URL

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

ReadJSON

Dataset Node for reading JSON files

Type

dataset

Class

fire.nodes.dataset.NodeDatasetJSON

Fields

	Name

	Title

	Description

	path

	Path

	Path of the JSON file/directory

	outputColNames

	Column Name

	New Output Column Name

	outputColTypes

	Column Type

	Data Type of the Output Column

	outputColFormats

	Column Format

	Format of the Output Column

Details

It reads in JSON files. Each JSON record has to be on a separate line for Spark to handle it correctly.

There cannot be line break within a record.

ReadLibsvm

It reads in Libsvm files and creates a DataFrame from it

Input

It reads in Libsvm text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetLibsvm

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	numFeatures

	NumFeatures

	Number of features in feature column

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

ReadParquet

Dataset Node for reading Apache Parquet files

Input

It reads in Parquet files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetParquet

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Parquet file/directory

	outputColNames

	Column Names for the Parquet

	Output Columns of the Parquet

	outputColTypes

	Column Types for the Parquet

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Parquet

	Format of the Output Columns

ReadShapeFile

It reads in Shape files and creates a DataFrame from it

Input

It reads in Shape files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetShapeFile

Fields

	Name

	Title

	Description

	path

	Path

	Path of the input directory

DatasetStructured

This Node creates a DataFrame by reading data from HDFS, HIVE etc. The dataset has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.

Input

It reads in data from HIVE or files HDFS

Output

It creates a DataFrame from the input data and sends it to its output.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetStructured

Fields

	Name

	Title

	Description

	dataset

	Dataset

	Selected Dataset

Details

This Node creates a DataFrame by reading data from HDFS, HIVE etc.

The data has been defined earlier in Fire by using the Dataset Feature. As a user, you just have to select the Dataset of your interest.

URLTextFileReader

Reads text file from the given URL and creates a DataFrame from it. Each line in the file is a record in the DataFrame.

Type

dataset

Class

fire.nodes.dataset.NodeDatasetUrlTextFileReader

Fields

	Name

	Title

	Description

	url

	URL

	URL of the file

URLSingleRecordJSONReader

It reads in single record JSON from the given URL and creates a DataFrame from it

Type

dataset

Class

fire.nodes.dataset.NodeDatasetURLSingleRecordJsonReader

Fields

	Name

	Title

	Description

	URL

	URL

	URL from where to read the JSON string from

	outputColNames

	Column Names

	Column Names

	outputColTypes

	Column Types

	Data Types

	outputColFormats

	Column Formats

	Formats

ReadXML

It reads in XML files and creates a DataFrame from it

Input

It reads in XML text files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetXML

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	rowTag

	Row Tag

	Row Tag

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

BinaryFiles

Reads in Binary Files from a given path and loads them as FileName/Content

Type

dataset

Class

fire.nodes.dataset.NodeDatasetBinaryFiles

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Binary file/directory

	fileNameCol

	File Name Column

	File Name Column in the Output DataFrame

	binaryContentCol

	Binary File Content Column

	Binary File Content Column in the Output DataFrame

Details

It creates a new Dataframe from some data.
Data can be in binary, text, parquet, pdf, image files.

03-ReadUnstructured

	BinaryFiles
	Type

	Class

	Fields

	Details

	PDF
	Type

	Class

	Fields

	PDFImageOCR
	Input

	Output

	Type

	Class

	Fields

	TextFiles
	Type

	Class

	Fields

	Tika
	Type

	Class

	Fields

	WholeTextFiles
	Type

	Class

	Fields

PDF

Reads in PDF Files from a given path and extracts the text content from them

Type

dataset

Class

fire.nodes.dataset.NodeDatasetPDF

Fields

	Name

	Title

	Description

	path

	Path

	Path of the PDF file/directory

	fileNameCol

	File Name

	File Name Column in the Output DataFrame

	contentCol

	File Content

	File Content Column in the Output DataFrame

PDFImageOCR

Reads in PDF Files from a given path, extracts the images from them and converts them to text with Tesseract

Input

It reads in a PDF file or a directory containing PDF files

Output

It creates a DataFrame from the data read and sends it to its output

Type

dataset

Class

fire.nodes.dataset.NodeDatasetPDFImageOCR

Fields

	Name

	Title

	Description

	path

	Path of the PDF files

	Path of the PDF file/directory

	fileNameCol

	File Name Column

	File Name Column in the Output DataFrame

	outputCol

	Column Name which contains the result of OCR

	OCR output Column in the Output DataFrame

TextFiles

Reads in Text Files from a given path and loads each line as a separate Row

Type

dataset

Class

fire.nodes.dataset.NodeDatasetTextFiles

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	outputCol

	Output Column Name

	Text Lines Column in the Output DataFrame

Tika

Reads in files from a given path and parses them with Apache Tika

Type

dataset

Class

fire.nodes.dataset.NodeDatasetTika

Fields

	Name

	Title

	Description

	path

	Path

	Path of the file/directory

	fileNameCol

	File Name Column

	File Name Column in the Output DataFrame

	contentCol

	Content Column

	Tika output Column in the Output DataFrame

WholeTextFiles

Reads in Whole Text Files directory from a given path and loads each files as a separate Row with key(file name and values(file content)

Type

dataset

Class

fire.nodes.dataset.NodeDatasetWholeTextFiles

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text files directory

04-Save

	InsertIntoHIVETable
	Type

	Class

	Fields

	Details

	KafkaProducer
	Type

	Class

	Fields

	SaveAsHIVETable
	Type

	Class

	Fields

	Details

	SaveAvro
	Type

	Class

	Fields

	SaveCSV
	Type

	Class

	Fields

	SaveJDBC
	Type

	Class

	Fields

	SaveJSON
	Type

	Class

	Fields

	SaveORC
	Type

	Class

	Fields

	SaveParquet
	Type

	Class

	Fields

	UpsertJDBC
	Type

	Class

	Fields

InsertIntoHIVETable

Saves the DataFrame into an Apache HIVE Table

Type

transform

Class

fire.nodes.save.NodeInsertIntoTable

Fields

	Name

	Title

	Description

	database

	HIVE Database

	Name of the HIVE Database

	table

	HIVE Table

	Name of the HIVE table

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

	partitionBy

	Partition By

	Partition By Column (can be empty)

	bucketBy

	Bucket By

	Bucket By Column (can be empty)

Details

When using Insert Into Table, the HIVE table has to already exist.

Otherwise it throws the following exception:

org.apache.spark.sql.catalyst.analysis.NoSuchTableException: Table or view ‘xyz’ not found in database ‘abc’;

KafkaProducer

Write out the Dataframe to a specified Apache Kafka Topic

Type

transform

Class

fire.nodes.save.NodeKafkaProducer

Fields

	Name

	Title

	Description

	brokers

	Kafka Brokers

	Brokers

	topic

	Topic

	Kafka Topic to write out the incoming Dataframe to

SaveAsHIVETable

Saves the DataFrame into an Apache HIVE Table

Type

transform

Class

fire.nodes.save.NodeSaveAsTable

Fields

	Name

	Title

	Description

	database

	HIVE Database

	Name of the HIVE Database

	table

	HIVE Table

	Name of the HIVE table

	partitionBy

	Partition By

	List of columns to partition by - separated by space

	format

	Format

	File format when saving to HIVE Table

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

Details

If the HIVE table does not exist, it would create the table.

SaveAvro

Saves the DataFrame into the specified location in Apache Avro Format

Type

transform

Class

fire.nodes.save.NodeSaveAvro

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the Avro files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

SaveCSV

Saves the DataFrame into the specified location in CSV Format

Type

transform

Class

fire.nodes.save.NodeSaveCSV

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the CSV files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

	header

	Header

	Should a Header Row be saved with each File?

SaveJDBC

This node writes data to databases using JDBC.

Type

transform

Class

fire.nodes.save.NodeSaveJDBC

Fields

	Name

	Title

	Description

	url

	URL

	The JDBC URL to connect to

	table

	DB Table

	The JDBC table to write to

	driver

	Driver

	The class name of the JDBC driver needed to connect to the URL

	user

	User

	Username with which to connect to the DB

	password

	Password

	Password with which to connect to the DB

	truncate

	Truncate

	Whether to truncate the table in case Save Mode is Overwrite

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the table Exists

SaveJSON

Saves the DataFrame into the specified location in JSON Format

Type

transform

Class

fire.nodes.save.NodeSaveJSON

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the JSON files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

SaveORC

Saves the DataFrame into the specified location in ORC Format

Type

transform

Class

fire.nodes.save.NodeSaveORC

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the ORC files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

SaveParquet

Saves the DataFrame into the specified location in Parquet Format. When running on Hadoop, it is saved onto HDFS.

Type

transform

Class

fire.nodes.save.NodeSaveParquet

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the Parquet files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

UpsertJDBC

This node insert or update the data to databases using JDBC.

Type

transform

Class

fire.nodes.save.NodeUpsertJDBC

Fields

	Name

	Title

	Description

	primaryKeyColumn

	PrimaryKeyColumn

	Key column name in table

	url

	URL

	The JDBC URL to connect to

	table

	DB Table

	The JDBC table to write to

	driver

	Driver

	The class name of the JDBC driver needed to connect to the URL

	user

	User

	Username with which to connect to the DB

	password

	Password

	Password with which to connect to the DB

05-Transform

	01-Filter
	ColumnFilter

	DropColumns

	FilterByDateRange

	FilterByStringLength

	FilterByNumberRange

	RowFilter

	NodeRowFilterByIndex

	02-DataCleaning
	DataWrangling

	DropDuplicateRows

	DropRowsWithNull

	FindAndReplaceUsingRegex

	FindAndReplaceUsingRegexMultiple

	ImputingWithConstant

	ImputingWithMeanValue

	ImputingWithMedian

	ImputingWithModeValue

	RemoveDuplicateRows

	RemoveUnwantedCharacters

	RemoveUnwantedCharactersMult

	TextCaseTransformer

	03-DateTime
	DateTimeFieldExtract

	DateToAge

	DateDifference

	DateToString

	StringToDate

	MultiStringToDate

	StringToUnixTime

	TimeFunctions

	UnixTimeToString

	04-Group
	Cube

	GroupBy

	PivotBy

	Rollup

	05-Validation
	ValidateAddress

	Validation

	ValidationMultiple

	06-Math
	Math Expression

	MathFunctions

	MathFunctionsMultiple

	07-String
	StringFunctions

	StringFunctionsMultiple

	08-Parse
	FieldSplitter

	MultiRegexExtractor

	ParseJSONCol

	RegexTokenizer

	09-Split
	Compare All Columns

	CompareAllColumnsSingleOutput

	CompareSpecificColumns

	Compare Specific Columns

	Split By Expression

	SplitByMultipleExpressions

	10-Condition
	Assert

	Decision

	11-AddColumn
	AddColumns

	CaseWhen

	ConcatColumns

	Expressions

	GenerateUID

	GenerateUUID

	Hash

	ZipWithIndex

	12-CastDataType
	CastColumnType

	MultiCastColumnType

	MultiCastColumnType2

	13-Others
	CDCUsingFullTableMerge

	ColumnsRename

	Count

	Fixed Length Fields

	GeoIP

	GeoPoint

	MultiWindowAnalytics

	MultiWindowRanking

	RecoverHivePartitions

	RegisterTempTable

	RoundValue

	Sample

	SortBy

	Transpose

	WindowAnalytics

	WindowRanking

	MovingWindowFunctions
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	WordCount
	Type

	Class

	Fields

MovingWindowFunctions

This node calculates the moving values of selected functions for the field(input column).

Input

It accepts a DataFrame as input from the previous Node

Output

A new columns is added which contains the results of applying the selected function on the given column of the input DataFrame

Type

transform

Class

fire.nodes.etl.NodeMovingWindowFunctions

Fields

	Name

	Title

	Description

	windowStart

	Window Start

	value to be used to calculate the window from

	windowEnd

	Window End

	value to be used to calculate the window to

	partitionCol

	Partition Column Name

	partition column to split the incoming dataframe for the sliding/window operation

	orderCol

	Order Column Name

	the order of the selected column for the sliding/window operation

	inputCols

	Input Columns

	input column name for calc

	functions

	Functions

	

Examples

Input

	year

	month

	date

	symbol

	temp

	price

	2015

	9

	4

	ADP

	305378

	76.15

	2015

	8

	26

	ADP

	591184

	77.8

	2015

	9

	10

	ADP

	467863

	77.92

	2015

	8

	12

	ADP

	209928

	81.55

	2015

	8

	14

	ADP

	194911

	82.99

Parameters

	Name

	Value

	Window Start

	-1

	Window End

	1

	Order Column Name

	

	Partition Column Name

	symbol

	Input Columns

	Functioms

	price

	avg

	price

	min

	price

	max

	price

	stddev

	price

	variance

	price

	skewness

	price

	kurtosis

	price

	coefficient_of_variation

	price

	range

	price

	rms

Output

	year

	month

	date

	symbol

	temp

	price

	mean_price

	min_price

	max_price

	stddev_price

	variance_price

	skewness_price

	kurtosis_price

	cv_price

	range_price

	rms_price

	2015

	9

	4

	ADP

	305378

	76.15

	79.08999999999999

	77.8

	81.55

	2.131267228669365

	4.542299999999995

	0.7045857353865611

	-1.500000000000001

	0.026947366654056965

	3.75

	45.673684253991745

	2015

	8

	26

	ADP

	591184

	77.8

	77.29

	76.15

	77.92

	0.989090491310071

	0.9782999999999976

	-0.6954155301207766

	-1.4999999999999987

	0.012797134057576282

	1.769999999999996

	44.625838180737105

	2015

	9

	10

	ADP

	467863

	77.92

	79.08999999999999

	77.8

	81.55

	2.131267228669365

	4.542299999999995

	0.7045857353865611

	-1.500000000000001

	0.026947366654056965

	3.75

	45.673684253991745

	2015

	8

	14

	ADP

	194911

	82.99

	82.27

	81.55

	82.99

	1.0182337649086268

	1.0367999999999968

	0.0

	-2.0000000000000018

	0.012376732282832465

	1.4399999999999977

	58.1759026573718

WordCount

Type

transform

Class

fire.nodes.ml.NodeWordCount

Fields

ColumnFilter

This node creates a new DataFrame that contains only the selected columns

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

This node filters the specified columns from the incoming DataFrame

Type

transform

Class

fire.nodes.etl.NodeColumnFilter

Fields

	Name

	Title

	Description

	outputCols

	Columns

	Columns to be included in the output DataFrame

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

Parameters

	Name

	Value

	Columns

	name,height

Output

	name

	height

	Alice

	80

	Alice

	80

	Alice

	80

DropColumns

This node creates a new DataFrame by deleting columns specified as an input

Input

It takes in a DataFrame as input

Output

The specified columns are dropped from the incoming DataFrame to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeDropColumns

Fields

	Name

	Title

	Description

	dropCols

	Columns

	The columns to be excluded from the output DataFrame

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

Parameters

	Name

	Value

	Columns

	age

Output

	name

	height

	Alice

	80

	Alice

	80

	Alice

	80

FilterByDateRange

This node filters Rows within the given date range

Type

transform

Class

fire.nodes.etl.NodeFilterByDateRange

Fields

	Name

	Title

	Description

	inputCol

	Column

	input column name

	fromDateCol

	From Date

	Takes Start Date in the form of yyyy-MM-dd

	toDateCol

	To Date

	Takes End Date in the form of yyyy-MM-dd

Examples

Input

	id

	date_col

	1

	2016-04-09

	2

	2016-08-16

	3

	2016-06-26

	4

	2016-10-20

	5

	2016-07-30

	6

	2016-09-23

	7

	2017-02-23

Parameters

	Name

	Value

	Column

	date_col

	From Date

	2016-07-28

	To Date

	2017-03-31

Output

	name

	date_col

	2

	2016-08-16

	4

	2016-10-20

	5

	2016-07-30

	6

	2016-09-23

FilterByStringLength

This node filters the Rows within the given string length. The column to be used for determining the string length is specified

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFilterByStringLength

Fields

	Name

	Title

	Description

	inputCol

	Input Column Name

	input column name

	minLength

	Minimum length

	Minimum length of String

	maxLength

	Maximum length

	Maximum length of String

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

	Stefan

	7

	80

Parameters

	Name

	Value

	Input Column Name

	name

	Minimum length

	6

	Maximum length

	10

Output

	name

	age

	height

	Stefan

	7

	80

01-Filter

	ColumnFilter
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	DropColumns
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	FilterByDateRange
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	FilterByStringLength
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	FilterByNumberRange
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	RowFilter
	Input

	Output

	Type

	Class

	Fields

	Details

	Examples

	Input

	Parameters

	Output

	NodeRowFilterByIndex
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

FilterByNumberRange

This node filter Rows in the given Number Range

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFilterByNumberRange

Fields

	Name

	Title

	Description

	inputCol

	Input Column Name

	input column name

	lowestValue

	Lowest Value

	input lowest value

	highestValue

	Highest Value

	input highest value

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters

	Name

	Value

	Input Column Name

	age

	Lowest Value

	7

	Highest Value

	10

Output

	name

	age

	height

	Alice

	10

	80

	James

	10

	60

	James

	7

	80

NodeRowFilterByIndex

This node creates a new DataFrame containing only rows satisfying given condition

Input

It accepts DataFrame as input from the previous Node

Output

This node filters the rows based on the conditional expression to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeRowFilterByIndex

Fields

	Name

	Title

	Description

	indexes

	Indexes

	Comma separated index values starts from 0. ex: 0, 1, 2, 5

	indexesRange

	IndexesRange

	Index ranges example like 10-14 i.e 10, 11, 12, 13, 14.

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters1

	Name

	Value

	Indexes

	0,2

	IndexesRange

	

Output1

	name

	age

	height

	Alice

	5

	80

	Alice

	10

	80

Parameters2

	Name

	Value

	Indexes

	0,2

	IndexesRange

	4-5

Output2

	name

	age

	height

	Alice

	5

	80

	Alice

	10

	80

	James

	10

	60

	James

	7

	80

RowFilter

This node creates a new DataFrame containing only rows satisfying given condition

Input

It accepts DataFrame as input from the previous Node

Output

This node filters the rows based on the conditional expression to generate the output DataFrame

Type

transform

Class

fire.nodes.etl.NodeRowFilter

Fields

	Name

	Title

	Description

	conditionExpr

	Conditional Expression

	The filtering condition. Rows not satisfying given condition will be excluded from output DataFrame. eg: usd_pledged_real > 0 and (category = 1 or category == 2) and goal > 100

Details

This node creates a new DataFrame containing only rows satisfying the given condition.

Examples of Conditional Expression

col1 > 5 AND col2 > 3

name is not NULL

name is NULL

usd_pledged_real > 0 and (category = “Narrative Film” or category == “Music”) and goal > 100

datetime > ‘2011-01-01 00:00:00.0’ (datetime column is of type timestamp)

datetime > ‘2011-01-01 00:00:00.0’ and datetime < ‘2016-01-01 00:00:00.0’

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

Parameters

	Name

	Value

	Conditional Expression

	upper(name) = ‘ALICE’ and age = 10

Output

	name

	age

	height

	Alice

	10

	80

ImputingWithConstant

It imputes missing value with constant value. It fills missing values (None) in selected columns with given constant value for the corresponding column, in the incoming DataFrame.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithConstant

Fields

	Name

	Title

	Description

	colNames

	Columns

	Columns to be processed for missing values

	constants

	Constants

	Missing value will be replaced with constant

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	
	80

	James

	5

	50

	James

	
	60

	James

	
	80

Parameters1

	Columns

	Constants

	name

	

	age

	20

	height

	

Output1

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	20

	80

	James

	5

	50

	James

	20

	60

	James

	20

	80

ImputingWithMeanValue

Imputing the continuous variables by mean.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMean

Fields

	Name

	Title

	Description

	inputCols

	Column Names

	Columns type should be continuous

Examples

Input

	id

	amount

	1

	100

	2

	200

	3

	

	4

	400

	5

	400

	6

	400

	7

	600

	8

	700

Parameters

	Name

	Value

	Column Names

	amount

Output

	id

	amount

	1

	100

	2

	200

	3

	400

	4

	400

	5

	400

	6

	400

	7

	600

	8

	700

ImputingWithMedian

Imputing with median

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMedian

Fields

	Name

	Title

	Description

	colNames

	Input Columns

	Input column of type - all numeric for median impute

Examples

Input

	id

	amount

	1

	100

	2

	200

	3

	

	4

	400

	5

	400

	6

	400

	7

	600

	8

	700

Parameters

	Name

	Value

	Input Columns

	amount

Output

	id

	amount

	1

	100

	2

	200

	3

	400

	4

	400

	5

	400

	6

	400

	7

	600

	8

	700

ImputingWithModeValue

Imputing with most frequently observed value. It fills missing values (None) in selected columns with most frequently observed value in the corresponding column, in the incoming DataFrame.

Type

transform

Class

fire.nodes.ml.NodeReplaceMissingValueWithMode

Fields

	Name

	Title

	Description

	colNames

	Columns

	Columns to be processed for imputing the missing values.

Examples

Input

	id

	amount

	1

	100

	2

	200

	3

	

	4

	400

	5

	400

	6

	400

	7

	600

	8

	700

Parameters

	Name

	Value

	Columns

	amount

Output

	id

	amount

	1

	100

	2

	200

	3

	400

	4

	400

	5

	400

	6

	400

	7

	600

	8

	700

DataWrangling

This node creates a new DataFrame by applying each of the Rules specified

Input

It takes in a DataFrame as Input

Output

It creates the output DataFrame by applying the data wrangling rules provided

Type

transform

Class

fire.nodes.etl.NodeDataWrangling

Fields

	Name

	Title

	Description

	rules

	Rules

	Rules to be applied on column and rows

Details

Rename one column to another
rename col:c1 to c2;

Drop Column
drop col:col4

Delete columns with some condition
delete col:col3 > 44

Substring col:col2 0,3
get substring between 0 and 3rd column from the column col2

Trim Values : Removes leading and trailing whitespace from a string value.

set col:Name value: trim(Name)

Sets the new value of Name column to be trim(Name)

DropDuplicateRows

This node creates a new DataFrame by dropping duplicate rows

Type

transform

Class

fire.nodes.etl.NodeDropDuplicateRows

Input

A DataFrame to filter rows on duplicate.

Output

A DataFrame containing no duplicate row on the selected coulmns.

Fields

	Name

	Type

	Description

	COLUMNS

	Seq of Coulmns

	Seq of Coulmns to check the duplicate condition.(By default duplication checked on all the columns)

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

Parameters1

	Name

	Value

	COLUMNS

	name,height

Output1

	name

	age

	height

	Alice

	5

	80

Parameters2

	Name

	Value

	COLUMNS

	

Output2

	name

	age

	height

	Alice

	5

	80

	Alice

	10

	80

DropRowsWithNull

This node creates a new DataFrame by dropping rows containing null values

Input

It accepts DataFrame as input from the previous Node

Output

This node drops rows containing null values

Type

transform

Class

fire.nodes.etl.NodeDropRowsWithNull

Fields

This node has no fields. By default it check the all columns.

Examples

Input

	id

	amount

	1

	100

	2

	200

	3

	

	4

	400

	5

	400

	6

	400

	7

	600

	8

	700

Output

	id

	amount

	1

	100

	2

	200

	4

	400

	5

	400

	6

	400

	7

	600

	8

	700

FindAndReplaceUsingRegex

This node finds and replaces text in a column containing string

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFindAndReplaceUsingRegex

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Columns on which to apply Regex

	searchPattern

	Find

	Enter Search Pattern

	replacePattern

	Replace

	Enter replacement Value

Examples

Input1

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters1

	Name

	Value

	Input Columns

	name

	Find

	Al*

	Replace

	Jim

Output1

	name

	age

	height

	Jimice

	5

	80

	Jimice

	5

	80

	Jimice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Input2

	id

	prodId

	message

	1.0

	2.0

	this is a spam

	0.0

	1.0

	i am going to work

Parameters2

	Name

	Value

	Input Columns

	name

	Find

	\s

	Replace

	*

Output2

	id

	prodId

	message

	1.0

	2.0

	this*is*a*spam

	0.0

	1.0

	i*am*going*to*work

FindAndReplaceUsingRegexMultiple

This node finds and replaces text in a column containing string

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeFindAndReplaceUsingRegexMultiple

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Columns on which to apply Regex

	searchPatterns

	Find

	Enter Search Pattern

	replacePatterns

	Replace

	Enter replacement Value

Examples

Input

	name

	age

	height

	StringType

	IntegerType

	StringType

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters

	Id

	Input Columns

	Find

	Replace

	1

	name

	Al*

	Jim

	2

	height

	80

	60

Output

	name

	age

	height

	Jimice

	5

	60

	Jimice

	5

	60

	Jimice

	10

	60

	James

	5

	50

	James

	10

	60

	James

	7

	60

02-DataCleaning

	DataWrangling
	Input

	Output

	Type

	Class

	Fields

	Details

	DropDuplicateRows
	Type

	Class

	Input

	Output

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

	DropRowsWithNull
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Output

	FindAndReplaceUsingRegex
	Input

	Type

	Class

	Fields

	Examples

	Input1

	Parameters1

	Output1

	Input2

	Parameters2

	Output2

	FindAndReplaceUsingRegexMultiple
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	ImputingWithConstant
	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	ImputingWithMeanValue
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	ImputingWithMedian
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	ImputingWithModeValue
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	RemoveDuplicateRows
	Input

	Output

	Type

	Class

	Fields

	RemoveUnwantedCharacters
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	RemoveUnwantedCharactersMult
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	TextCaseTransformer
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

RemoveUnwantedCharacters

This node removes unwanted characters

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeRemoveUnwantedCharacters

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	input columns

	removeWhitespaces

	Remove Whitespaces

	removes white space

	removeLetters

	Remove Letters

	removes letters

	removeDigits

	Remove Digits

	removes digits

	removeSigns

	Remove Signs

	removes signs

	removeCommas

	Remove Commas

	removes commas

Examples

Input

	id

	prodId

	message

	1.0

	0.0

	this is not a 2 spam

	2.0

	1.0

	i am, going to work

	3.0

	2.0

	this is a spam

Parameters

	Name

	Value

	Input Columns

	message

	Remove Whitespaces

	true

	Remove Letters

	false

	Remove Digits

	true

	Remove Signs

	true

	Remove Commas

	true

Output

	id

	prodId

	message

	1.0

	0.0

	thisisnotaspam

	2.0

	1.0

	iamgoingtowork

	3.0

	2.0

	thisisaspam

RemoveDuplicateRows

This node take an array of fields, compare rows on those fields. If they full match then its a match. From the matches it would randomly take one row and drop the rest.

Input

It accepts a DataFrame as input from the previous Node

Output

The output Dataframe is the same as the input Dataframe with the duplicate rows removed

Type

transform

Class

fire.nodes.etl.NodeRemoveDuplicateRows

Fields

	Name

	Title

	Description

	order

	Order

	Whether to take the first or last matching record when removing duplicates

	inputCols

	Columns

	The columns to be selected for match

RemoveUnwantedCharactersMult

This node removes unwanted characters

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeRemoveUnwantedCharactersMultiple

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	input columns

	removeWhitespaces

	Remove Whitespaces

	removes white space

	removeLetters

	Remove Letters

	removes letters

	removeDigits

	Remove Digits

	removes digits

	removeSigns

	Remove Signs

	removes signs

	removeCommas

	Remove Commas

	removes commas

Examples

Input

	id

	prodId

	message

	1.0

	0.0

	this is not a 2 spam

	2.0

	1.0

	i am, going to work

	3.0

	2.0

	this is a spam

Parameters

	Id

	Input Columns

	Remove Whitespaces

	Remove Letters

	Remove Digits

	Remove Signs

	Remove Commas

	1

	message

	true

	false

	true

	true

	true

Output

	id

	prodId

	message

	1.0

	0.0

	thisisnotaspam

	2.0

	1.0

	iamgoingtowork

	3.0

	2.0

	thisisaspam

TextCaseTransformer

This node converts text to upper or lower case

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeTextCaseTransformer

Fields

	Name

	Title

	Description

	inputCol

	Input Column Name

	input column name

	mode

	Text Case Type

	input to convert text to upper or lower case

	outputCol

	Output Column

	Output Column

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

Parameters1

	Name

	Value

	Input Column Name

	name

	Text Case Type

	upper

	Output Column

	name_upper

Output1

	name

	age

	height

	name_upper

	Alice

	5

	80

	ALICE

	Alice

	5

	80

	ALICE

	Alice

	10

	80

	ALICE

Parameters2

	Name

	Value

	Input Column Name

	name

	Text Case Type

	lower

	Output Column

	name_lower

Output2

	name

	age

	height

	name_lower

	Alice

	5

	80

	alice

	Alice

	5

	80

	alice

	Alice

	10

	80

	alice

DateTimeFieldExtract

It creates a new DataFrame by extracting Date and Time fields.

Input

It takes in a DataFrame as Input

Output

Node to extract year/month/dayofmonth/hour/minute/seconad values from TimeStamp

Type

transform

Class

fire.nodes.etl.NodeDateTimeFieldExtract

Fields

	Name

	Title

	Description

	inputCol

	Column

	The input column name

	extractYear

	Extract Year

	Extract Year

	extractMonth

	Extract Month

	Extract Month

	extractDayOfMonth

	Extract Day of Month

	Extract Day of Month

	extractHour

	Extract Hour

	Extract Hour

	extractMinute

	Extract Minute

	Extract Minute

	extractSecond

	Extract Second

	Extract Second

	extractWeekOfYear

	Extract WeekOfYear

	Extract WeekOfYear

Details

Extracts year, month, day of month, hour, minute, second and week of year in different columns.

Examples

Input

	transactionId

	cardNumber

	tx_timestamp

	amount

	merchnatId

	StringType

	StringType

	TimestampType

	DoubleType

	StringType

	215667691-7

	0003

	2015-12-25 01:17:06

	14952.59

	43199-016

	751006667-0

	0012

	2015-12-29 01:17:06

	16603.44

	63621-354

	52339970-8

	0001

	2015-12-22 01:17:06

	29175.35

	64205-126

	884800094-0

	0003

	2015-12-15 01:17:06

	30190.31

	50730-7993

Parameters

	Name

	Value

	Column

	tx_timestamp

	Extract Year

	true

	Extract Month

	true

	Extract Day of Month

	true

	Extract Hour

	true

	Extract Minute

	true

	Extract Second

	true

	Extract WeekOfYear

	true

Output

	transactionId

	cardNumber

	tx_timestamp

	amount

	merchnatId

	tx_timestamp_year

	tx_timestamp_month

	tx_timestamp_dayofmonth

	tx_timestamp_hour

	tx_timestamp_minute

	tx_timestamp_second

	tx_timestamp_weekofyear

	215667691-7

	0003

	2015-12-25 01:17:06

	14952.59

	43199-016

	2015

	12

	25

	01

	17

	06

	52

	751006667-0

	0012

	2015-12-29 01:17:06

	16603.44

	63621-354

	2015

	12

	29

	01

	17

	06

	53

	52339970-8

	0001

	2015-12-22 01:17:06

	29175.35

	64205-126

	2015

	12

	22

	01

	17

	06

	52

	884800094-0

	0003

	2015-12-15 01:17:06

	30190.31

	50730-7993

	2015

	12

	15

	01

	17

	06

	51

DateToAge

This node converts a date-column into columns of age (both in years and in days).

Type

transform

Class

fire.nodes.etl.NodeDateToAge

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	Input Column Name

	yearsOutputColName

	Years Output Column Name

	Num Years Output Column Name

	daysOutputColName

	Days Output Column Name

	Num Days Output Column Name

Details

Calculates age from the given date or timestamp column.
Age is calculated and displayed in years and days columns.

Examples

Examples when date is 06-25-2019

dd-MM-yyyy : 20-09-2018 , 0 year : 278 days
MM-dd-yyyy : 09-30-2018 , 0 year : 268 days
yyyy-MM-dd : 2012-01-31 , 7 year : 2702 days

Examples

Input

	transactionId

	cardNumber

	tx_timestamp

	amount

	merchnatId

	215667691-7

	0003

	2015-12-25 01:17:06

	14952.59

	43199-016

	751006667-0

	0012

	2015-12-29 01:17:06

	16603.44

	63621-354

	52339970-8

	0001

	2015-12-22 01:17:06

	29175.35

	64205-126

	884800094-0

	0003

	2015-12-15 01:17:06

	30190.31

	50730-7993

Parameters

	Name

	Value

	Input Column Name

	tx_timestamp

	Years Output Column Name

	num_years

	Days Output Column Name

	num_days

Output

	transactionId

	cardNumber

	tx_timestamp

	amount

	merchnatId

	num_years

	num_days

	215667691-7

	0003

	2015-12-25 01:17:06

	14952.59

	43199-016

	3

	1372

	751006667-0

	0012

	2015-12-29 01:17:06

	16603.44

	63621-354

	3

	1368

	52339970-8

	0001

	2015-12-22 01:17:06

	29175.35

	64205-126

	3

	1375

	884800094-0

	0003

	2015-12-15 01:17:06

	30190.31

	50730-7993

	3

	1382

DateDifference

This node finds difference between two dates

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeDateDiff

Fields

	Name

	Title

	Description

	fromDate

	FromDate

	From date column name

	toDate

	Todate

	To date column name

	useCurrentDateAsToDateCol

	useCurrentDateAsToCol

	Current Date As ToDate

	days

	Days

	Days difference

	hours

	Hours

	Hours difference

	minutes

	Minutes

	Minutes difference

	seconds

	Seconds

	Seconds difference

Details

Calculates difference between 2 given dates.
Difference between dates is displayed in days, hours, minutes, and seconds columns.

Examples

Format Examples

dd-MM-yy : 30-11-95 to 19-02-18 diff- 8608 days : 206609 hours : 12396574 min : 743794461 : second
dd-MM-yyyy : 10-02-1996 to 20-09-2017 diff- 8536 days : 204881 hours : 12292884 min : 737573070 : second
MM-dd-yyyy : 19-10-1994 to 06-12-2017 diff- 9015 days : 216377 hours : 12982644 min : 778958670 : second
yyyy-MM-dd : 1994-12-25 to 2019-01-16 diff- 8948 days : 214769 hours : 12886164 min : 773169870 : second
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59 to 2010-12-30 22:59:59 diff-397 days: 1 hour: 0 minutes : 0 seconds

Input

	id

	date_string

	date_string1

	IntegerType

	TimestampType

	StringType

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

Parameters

	Name

	Value

	FromDate

	date_string

	Todate

	

	useCurrentDateAsToCol

	true

	Days

	true

	Hours

	true

	Minutes

	true

	Seconds

	true

Output

	id

	date_string

	date_string1

	DateDiff

	HoursDiff

	MinutesDiff

	SecondsDiff

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	3192

	76615

	4596911

	275814696

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	2814

	67542

	4052531

	243151896

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

	2118

	50837

	3050231

	183013896

DateToString

This node converts a date/time column to string with given format

Type

transform

Class

fire.nodes.etl.NodeDateToString

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	Input Column Name

	outputColFormat

	Output Column Format

	Output Column Format

	outputColName

	Output Column Name

	Output Column Name

Details

This node converts date/time column to string type with given format.

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

Input

	id

	date

	IntegerType

	DateType

	0

	2011-01-01

	1

	2012-01-14

	2

	2013-12-10

Parameters1

	Name

	Value

	Input Column Name

	date_string1

	Output Column Format

	MM/dd/yyyy

	Output Column Name

	date_string

Output1

	id

	date

	date_string

	IntegerType

	DateType

	StringType

	0

	2011-01-01

	01/01/2011

	1

	2012-01-14

	01/14/2012

	2

	2013-12-10

	12/10/2013

03-DateTime

	DateTimeFieldExtract
	Input

	Output

	Type

	Class

	Fields

	Details

	Examples

	Input

	Parameters

	Output

	DateToAge
	Type

	Class

	Fields

	Details

	Examples

	Examples

	Input

	Parameters

	Output

	DateDifference
	Input

	Type

	Class

	Fields

	Details

	Examples

	Input

	Parameters

	Output

	DateToString
	Type

	Class

	Fields

	Details

	Examples

	Input

	Parameters1

	Output1

	StringToDate
	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

	MultiStringToDate
	Type

	Class

	Fields

	Details

	Examples

	Input

	Parameters

	Output

	StringToUnixTime
	Type

	Class

	Fields

	Details

	Examples

	Input

	Parameters

	Output

	TimeFunctions
	Type

	Class

	Fields

	Input

	Parameters

	Output

	UnixTimeToString
	Type

	Class

	Fields

	Details

	Examples

	Input

	Parameters

	Output

StringToDate

This node converts a string column to date using the given date/time format

Type

transform

Class

fire.nodes.etl.NodeStringToDate

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	Input Column Name

	inputColFormat

	Input Column Format

	Input Column Format. eg: yyyy-MM-dd yyyy-MM-dd HH:mm:ss

	outputColName

	Output Column Name

	Output Column Name

	outputColType

	Output Column Type

	Output Column Type

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

	OUTPUT COLUMN NAME: - If user inputs an existing column name, it overrides the column

	otherwise it will add a new column.

Input

	id

	date_string

	date_string1

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

Parameters1

	Name

	Value

	Input Column Name

	date_string1

	Input Column Format

	MM/dd/yyyy HH:mm:ss

	Output Column Name

	date

	Output Column Type

	Date

Output1

	id

	date_string

	date_string1

	date

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	2016-05-26

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	2017-06-22

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

	2016-01-12

Parameters2

	Name

	Value

	Input Column Name

	date_string1

	Input Column Format

	MM/dd/yyyy HH:mm:ss

	Output Column Name

	date

	Output Column Type

	TimeStamp

Output2

	id

	date_string

	date_string1

	date_timestamp

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	2016-05-26 01:01:01.0

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	2017-06-22 01:00:00.0

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

	2016-01-12 01:01:01.0

MultiStringToDate

This node converts a string column to date using the given date/time format

Type

transform

Class

fire.nodes.etl.NodeMultiStringToDate

Fields

	Name

	Title

	Description

	inputColNames

	Columns

	Columns

	inputColFormats

	Column Formats

	Input Column Formats. eg: yyyy-MM-dd yyyy-MM-dd HH:mm:ss

	outputColNames

	Output Column Names

	Output Column Names

	outputColTypes

	New Data Types

	New data types (DATE, TIMESTAMP)

Details

This node converts multiple string columns to date/time.

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

Input

	id

	date_string

	date_string1

	IntegerType

	StringType

	StringType

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

Parameters

	Id

	Columns

	Column Formats

	Output Column Names

	New Data Types

	1

	date_string

	yyyy-M-dd HH:mm:ss

	date_string_date

	DATE

	2

	date_string

	yyyy-M-dd HH:mm:ss

	date_string_timestamp

	TIMESTAMP

	3

	date_string1

	MM/dd/yyyy HH:mm:ss

	date_string1_date

	DATE

	4

	date_string1

	MM/dd/yyyy HH:mm:ss

	date_string1_timestamp

	TIMESTAMP

Output

	id

	date_string

	date_string1

	date_string_date

	date_string_timestamp

	date_string1_date

	date_string1_timestamp

	IntegerType

	StringType

	StringType

	DateType

	TimestampType

	DateType

	TimestampType

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	2011-01-01

	2011-01-01 00:00:00.0

	2016-05-26

	2016-05-26 01:01:01.0

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	2012-01-14

	2012-01-14 01:00:00.0

	2017-06-22

	2017-06-22 01:00:00.0

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

	2013-12-10

	2013-12-10 02:00:00.0

	2016-01-12

	2016-01-12 01:01:01.0

StringToUnixTime

This nodes converts a string to Unix Time

Type

transform

Class

fire.nodes.etl.NodeStringToUnixTime

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	Input Column Name

	inputColFormat

	Input Column Format

	Input Column Format (eg: yyyy-MM-dd HH:mm:ss)

	outputColName

	Output Column Name

	Output Column Name

Details

This node converts a string column to unix time (seconds).

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

Example:
Date (string), Format , Unix time (seconds)

2003-07-25 , yyy-MM-dd , 1059091200

Input

	id

	date_string

	date_string1

	IntegerType

	StringType

	StringType

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

Parameters

	Name

	Value

	Input Column Name

	date_string

	Input Column Format

	yyyy-MM-dd HH:mm:ss

	Output Column Name

	unix_time

Output

	id

	date_string

	date_string1

	unix_time

	0

	2011-1-1 00:00:00.0

	05/26/2016 01:01:01

	1293840000

	1

	2012-1-14 01:00:00.0

	06/22/2017 01:00:00

	1326502800

	2

	2013-12-10 02:00:00.0

	01/12/2016 01:01:01

	1386640800

TimeFunctions

Type

transform

Class

fire.nodes.etl.NodeTimeFunctions

Fields

	Name

	Title

	Description

	timeStampCol

	TimeStamp Column Name

	input column name

	timeFunctions

	Time Functions

	Time Functions Name

Input

	Date

	Temp

	DateType

	IntegerType

	1981-01-01

	20.7

	1981-01-02

	17.9

	1981-01-03

	18.8

	1981-01-04

	14.6

	1981-01-05

	15.8

Parameters

	Name

	Value

	TimeStamp Column Name

	date_string

	Time Functions

	year, month, dayofmonth, dayofweek, dayofyear, weekofyear, season

Output

	Date

	Temp

	date_year

	date_month

	date_dayofmonth

	date_dayofweek

	date_dayofyear

	date_weekofyear

	date_season

	1981-01-01

	20.7

	1981

	1

	1

	5

	1

	1

	Winter

	1981-01-02

	17.9

	1981

	1

	2

	6

	2

	1

	Winter

	1981-01-03

	18.8

	1981

	1

	3

	7

	3

	1

	Winter

	1981-01-04

	14.6

	1981

	1

	4

	1

	4

	1

	Winter

	1981-01-05

	15.8

	1981

	1

	5

	2

	5

	2

	Winter

UnixTimeToString

This node converts Unix Time to String

Type

transform

Class

fire.nodes.etl.NodeUnixTimeToString

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	input column name

	outputColName

	Output Column Name

	Output Column Name

	outputColFormat

	Output Column Format

	Output Column Format (eg: yyyy-MM-dd HH:mm:ss)

Details

This node converts unix time (seconds) to string type.

Examples

Format Examples

dd-MM-yy : 31-01-12
dd-MM-yyyy : 31-01-2012
MM-dd-yyyy : 01-31-2012
yyyy-MM-dd : 2012-01-31
yyyy-MM-dd HH:mm:ss : 2012-01-31 23:59:59
yyyy-MM-dd HH:mm:ss.SSS : 2012-01-31 23:59:59.999
yyyy-MM-dd HH:mm:ss.SSSZ : 2012-01-31 23:59:59.999+0100
EEEEE MMMMM yyyy HH:mm:ss.SSSZ : Saturday November 2012 10:45:42.720+0100

Example:
select an input column (long type), output column name and desired output column format.
It will add one more column in string format.

If you input a date format like dd-MM-yy. It will add one column having value like 31-01-12.

Input

	id

	unix_time

	IntegerType

	LongType

	0

	1326483000

	1

	1386621000

	2

	1392669000

Parameters

	Name

	Value

	Input Column Name

	unix_time

	Output Column Name

	unixtime_to_string

	Output Column Format

	yyyy-MM-dd

Output

	id

	unix_time

	unixtime_to_string

	IntegerType

	LongType

	StringType

	0

	1326483000

	2011-01-01

	1

	1386621000

	2012-01-14

	2

	1392669000

	2013-12-10

Cube

Cube Node generates a result set that shows aggregates for all combinations of values in the selected columns.

Type

transform

Class

fire.nodes.etl.NodeCube

Fields

	Name

	Title

	Description

	cubeCols

	Cube Columns

	

	aggregateCols

	Aggregate Columns

	Aggregate Columns

	aggregateOperations

	Aggregate Operation to Use

	Aggregate Operation

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters1

	Name

	Value

	Cube Columns

	name

	Id

	Aggregate Columns

	Aggregate Operation to Use

	1

	age

	max

	2

	height

	min

Output1

	name

	max_age

	min_height

	Alice

	10

	80

	
	10

	50

	James

	10

	50

Parameters2

	Name

	Value

	Cube Columns

	age

	Id

	Aggregate Columns

	Aggregate Operation to Use

	1

	height

	max

	2

	height

	min

Output2

	age

	max_height

	min_height

	
	80

	50

	5

	80

	50

	10

	80

	60

	7

	80

	80

GroupBy

Grouper Node

Type

transform

Class

fire.nodes.etl.NodeGroupBy

Fields

	Name

	Title

	Description

	groupingCols

	Grouping Columns

	Grouping Columns

	aggregateCols

	Aggregate Columns

	Aggregate Columns

	aggregateOperations

	Aggregate Operation to Use

	Aggregate Operation

	havingClause

	Having Clause

	having condition after group by function

	whereClause

	Where Clause

	where condition before group by function

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters1

	Name

	Value

	Grouping Columns

	name

	Having Clause

	

	Where Clause

	

	Id

	Aggregate Columns

	Aggregate Operation to Use

	1

	age

	max

	2

	height

	min

	3

	name

	count

Output1

	name

	max_age

	min_height

	count_name

	James

	10

	50

	3

	Alice

	10

	80

	3

Parameters2

	Name

	Value

	Grouping Columns

	name

	Having Clause

	

	Where Clause

	(age = 5 or age = 7) and height != 50

	Id

	Aggregate Columns

	Aggregate Operation to Use

	1

	age

	max

	2

	height

	min

	3

	name

	count

Output2

	name

	max_age

	min_height

	count_name

	James

	7

	80

	1

	Alice

	5

	80

	2

Parameters3

	Name

	Value

	Grouping Columns

	name

	Having Clause

	min_height > 60

	Where Clause

	

	Id

	Aggregate Columns

	Aggregate Operation to Use

	1

	age

	max

	2

	height

	min

	3

	name

	count

Output3

	name

	max_age

	min_height

	count_name

	Alice

	10

	80

	3

04-Group

	Cube
	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

	GroupBy
	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

	Parameters3

	Output3

	PivotBy
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	Rollup
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

PivotBy

Pivot Node

Type

transform

Class

fire.nodes.etl.NodePivotBy

Fields

	Name

	Title

	Description

	groupingCols

	Grouping Columns

	Grouping Columns

	pivotCols

	Pivot Columns

	Pivoting Columns

	aggregateCols

	Aggregate Columns

	Aggregate Columns

	aggregateOperations

	Aggregate Operation to Use

	Aggregate Operation

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters

	Name

	Value

	Grouping Columns

	name

	Pivot Columns

	age

	Id

	Aggregate Columns

	Aggregate Operation to Use

	1

	age

	max

	2

	height

	min

Output

	name

	5

	7

	10

	James

	50

	80

	60

	Alice

	80

	
	50

Rollup

Rollup Node generates a result set that shows aggregates for a hierarchy of values in the selected columns.

Type

transform

Class

fire.nodes.etl.NodeRollup

Fields

	Name

	Title

	Description

	rollupCols

	Rollup Columns

	

	aggregateCols

	Aggregate Columns

	Aggregate Columns

	aggregateOperations

	Aggregate Operation to use

	Aggregate Operation

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters

	Name

	Value

	Rollup Columns

	name

	Id

	Aggregate Columns

	Aggregate Operation to Use

	1

	age

	max

	2

	height

	min

Output

	name

	max_age

	min_height

	Alice

	10

	80

	
	10

	50

	James

	10

	50

ValidateAddress

This node validate the USA address

Input

It accepts a DataFrame as input from the previous Node

Output

A new column isValidAddress is added which contains valid or inValid values

Type

transform

Class

fire.nodes.etl.NodeValidateAddress

Fields

	Name

	Title

	Description

	inputColName

	Input Column Name

	input column name

05-Validation

	ValidateAddress
	Input

	Output

	Type

	Class

	Fields

	Validation
	Type

	Class

	Fields

	ValidationMultiple
	Type

	Class

	Fields

Validation

Validation Node

Type

transform

Class

fire.nodes.etl.NodeValidation

Fields

	Name

	Title

	Description

	description

	Description

	Validations being Performed

	inputCols

	Columns

	Columns

	functions

	Function

	Validation Function to apply

	values

	Values

	Values

ValidationMultiple

Validation Multiple Node

Type

transform

Class

fire.nodes.etl.NodeValidationMultiple

Fields

	Name

	Title

	Description

	description

	Description

	Validations being Performed

	inputCols

	Columns

	Columns

	functions1

	Function

	Validation Function to apply

	values1

	Values

	Values

	conditions1

	Condition

	Validation Condition to apply

	functions2

	Function

	Validation Function to apply

	values2

	Values

	Values

	conditions2

	Condition

	Validation Condition to apply

	functions3

	Function

	Validation Function to apply

	values3

	Values

	Values

06-Math

	Math Expression
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	MathFunctions
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	MathFunctionsMultiple
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

Math Expression

Type

transform

Class

fire.nodes.etl.NodeMathExpression

Fields

	Name

	Title

	Description

	outputCols

	OutPut Column

	Output Column Name

	expressions

	Math Expression

	Define math expression.

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters

	Id

	OutPut Column

	Math Expression

	1

	squre_of_age

	age * age

	2

	add_height

	height + 10

	3

	minus_height

	height - 10

Output

	name

	age

	height

	squre_of_age

	add_height

	minus_height

	Alice

	5

	80

	25

	90

	70

	Alice

	5

	80

	25

	90

	70

	Alice

	10

	80

	100

	90

	70

	James

	5

	50

	25

	60

	40

	James

	10

	60

	100

	70

	50

	James

	7

	80

	49

	90

	70

MathFunctions

This node performs specified math function on a row

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added which contains the results of applying the Math function on the given column of the input DataFrame

Type

transform

Class

fire.nodes.etl.NodeMathFuntions

Fields

	Name

	Title

	Description

	inputCol

	Input Column Name

	input column name

	mathFunction

	Math Function

	Math Function Name

	outputCol

	Output Column

	Output Column Name

	scale

	Scale

	Scale to be used when applying the Math Functions pow & round function.

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters

	Name

	Value

	Input Column Name

	age

	Math Function

	pow

	Output Column

	pow_age

	Scale

	2

Output

	name

	age

	height

	pow_age

	Alice

	5

	80

	25.0

	Alice

	5

	80

	25.0

	Alice

	10

	80

	100.0

	James

	5

	50

	25.0

	James

	10

	60

	100.0

	James

	7

	80

	49.0

MathFunctionsMultiple

Math Functions Multiple

Type

transform

Class

fire.nodes.etl.NodeMathFunctionsMultiple

Fields

	Name

	Title

	Description

	description

	Description

	Description

	inputCols

	Columns

	Columns

	functions

	Function

	Math Function to apply

	replaceExistingCols

	Replace Existing Cols

	Replace Existing Columns (true, false)

	scales

	Scale

	Scale to be used when applying the Math Function

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters

	Id

	Columns

	Function

	Replace Existing Cols

	Scale

	1

	age

	pow

	true

	2

	2

	height

	sqrt

	false

	

Output

	name

	height

	age

	height_sqrt

	Alice

	80

	25.0

	8.94427190999916

	Alice

	80

	25.0

	8.94427190999916

	Alice

	80

	100.0

	8.94427190999916

	James

	50

	25.0

	7.0710678118654755

	James

	60

	100.0

	7.745966692414834

	James

	80

	49.0

	8.94427190999916

07-String

	StringFunctions
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

	StringFunctionsMultiple
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

StringFunctions

This node performs specified String function on a row

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeStringFunctions

Fields

	Name

	Title

	Description

	inputCols

	Input Column Name

	input column name

	stringFunction

	String Function

	String Function Name

	replaceExistingCols

	ReplaceExistingCols

	replaceExistingCols

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters1

	Name

	Value

	Input Column Name

	name

	String Function

	upper

	ReplaceExistingCols

	true

Output1

	age

	height

	name

	5

	80

	ALICE

	5

	80

	ALICE

	10

	80

	ALICE

	5

	50

	JAMES

	10

	60

	JAMES

	7

	80

	JAMES

Parameters2

	Name

	Value

	Input Column Name

	name

	String Function

	upper

	ReplaceExistingCols

	false

Output2

	name

	age

	height

	name_upper

	Alice

	5

	80

	ALICE

	Alice

	5

	80

	ALICE

	Alice

	10

	80

	ALICE

	James

	5

	50

	JAMES

	James

	10

	60

	JAMES

	James

	7

	80

	JAMES

StringFunctionsMultiple

String Functions Multiple

Type

transform

Class

fire.nodes.etl.NodeStringFunctionsMultiple

Fields

	Name

	Title

	Description

	description

	Description

	Description

	inputCols

	Columns

	columns

	functions

	Function

	String Function to apply

	replaceExistingCols

	Replace Existing Cols

	Replace Existing Columns (true or false)

Examples

Input

	name

	age

	height

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

	James

	5

	50

	James

	10

	60

	James

	7

	80

Parameters

	Id

	Columns

	Function

	Replace Existing Cols

	1

	name

	upper

	false

	2

	name

	lower

	false

Output

	name

	age

	height

	name_upper

	name_lower

	Alice

	5

	80

	ALICE

	alice

	Alice

	5

	80

	ALICE

	alice

	Alice

	10

	80

	ALICE

	alice

	James

	5

	50

	JAMES

	james

	James

	10

	60

	JAMES

	james

	James

	7

	80

	JAMES

	james

FieldSplitter

This node splits the string of the specified input column using the specified delimiter

Input

It accepts a DataFrame as input from the previous Node

Output

New columns are added to the incoming DataFrame with values from the result of splitting the value in the input column

Type

transform

Class

fire.nodes.etl.NodeFieldSplitter

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	input column name

	outputCols

	Output Columns

	new column names separed by comma’,’.(eg: col1,co2,col3)

	sep

	Separator

	separator to split the input column value(default: space)

	onError

	On Error

	

Examples

Input

	date_of_payment

	total_amount

	StringType

	DoubleType

	12/17/2013

	113.48

	12/4/2013

	119.49

	12/16/2013

	12.01

	10/22/2013

	10.61

Parameters

	Name

	Value

	Input Column

	date_of_payment

	Separator

	/

	Output Columns

	month,date,year

Output

	date_of_payment

	total_amount

	month

	date

	year

	StringType

	DoubleType

	StringType

	StringType

	StringType

	12/17/2013

	113.48

	12

	17

	2013

	12/4/2013

	119.49

	12

	4

	2013

	12/16/2013

	12.01

	12

	16

	2013

	10/22/2013

	10.61

	10

	22

	2013

08-Parse

	FieldSplitter
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	MultiRegexExtractor
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	ParseJSONCol
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	RegexTokenizer
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

MultiRegexExtractor

This node to extract pattren from input columns

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node extract pattren from input columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiRegexExtractor

Fields

	Name

	Title

	Description

	inputColNames

	InputColumnsName

	Columns

	outputColNames

	OuputColumnsName

	name of the output column

	patterns

	Patterns

	patterns or regex to extract the input column name

	groups

	Groups

	An regular expression group number starting with 1, defining which portion of the matching string will be returned

Examples

Input

	id

	name

	datetime

	StringType

	StringType

	StringType

	1

	Robert ryl

	2018-10-11 12:10:22

	2

	Daniell Hammack

	2017-10-11 10:10:22

	3

	Versie Hillebrand

	2013-10-11 20:10:22

	4

	Markita Hansen

	2012-11-13 23:10:25

	5

	Kary Hendrixson

	2017-10-18 22:10:26

Parameters

	InputColumnsName

	OuputColumnsName

	Patterns

	Groups

	name

	(.*) (.*)

	firstname

	1

	name

	(.*) (.*)

	lastname

	2

	datetime

	([0-9]{4}-[0-9]{2}-[0-9]{2})

	date

	1

Output

	id

	name

	datetime

	firstname

	lastname

	date

	StringType

	StringType

	StringType

	StringType

	StringType

	StringType

	1

	Robert ryl

	2018-10-11 12:10:22

	Robert

	ryl

	2018-10-11

	2

	Daniell Hammack

	2017-10-11 10:10:22

	Daniell

	Hammack

	2017-10-11

	3

	Versie Hillebrand

	2013-10-11 20:10:22

	Versie

	Hillebrand

	2013-10-11

	4

	Markita Hansen

	2012-11-13 23:10:25

	Markita

	Hansen

	2012-11-13

	5

	Kary Hendrixson

	2017-10-18 22:10:26

	Kary

	Hendrixson

	2017-10-18

ParseJSONCol

Parses JSON content in a given Col

Type

transform

Class

fire.nodes.etl.NodeParseJSONColumn

Fields

	Name

	Title

	Description

	jsonColName

	JSON Col Name

	Column containing the JSON Content

	inputCol

	Input Col

	Input Columns

	jsonFieldNames

	JSON Field names

	JSON Field names

	jsonFieldTypes

	JSON Field Type

	Data Type of the JSON field

Examples

Input

	txt

	StringType

	{“name”:”Michael”}

	{“name”:”Andy”, “age”:30}

	{“name”:”Justin”, “age”:19}

Parameters

	Name

	Value

	JSON Col Name

	txt

	Input Col

	JSON Field names

	JSON Field Type

	txt

	name

	StringType

	txt

	age

	IntegerType

Output

	txt

	txt_parsed

	name

	age

	StringType

	StructType(StructField(name,StringType,true)

	StringType

	IntegerType

	{“name”:”Michael”}

	[Michael,null]

	Michael

	

	{“name”:”Andy”, “age”:30}

	[Andy,30]

	Andy

	30

	{“name”:”Justin”, “age”:19}

	[Justin,19]

	Justin

	19

RegexTokenizer

This node creates a new DataFrame by the process of taking text (such as a sentence) and breaking it into individual terms (usually words) based on regular express

Type

transform

Class

fire.nodes.etl.NodeRegexTokenizer

Fields

	Name

	Title

	Description

	inputCol

	Column

	input column for tokenizing

	outputCol

	Tokenized Column

	New output column after tokenization

	pattern

	Pattern

	The regex pattern used to match delimiters

	gaps

	Gaps

	Indicates whether the regex splits on gaps

Examples

Input

	label

	message

	id

	DoubleType

	StringType

	DoubleType

	1.0

	this is a spam

	2.0

	0.0

	i am going to work

	1.0

Parameters

	Name

	Value

	Column

	message

	Tokenized Column

	token_output

	Pattern

	\s+

	Gaps

	false

Output

	label

	message

	id

	token_output

	DoubleType

	StringType

	DoubleType

	ArrayType(StringType,true)

	1.0

	this is a spam

	2.0

	WrappedArray(this, is, a, spam)

	0.0

	i am going to work

	1.0

	WrappedArray(i, am, going, to, work)

Compare All Columns

Compares 2 incoming DataFrames. Outputs 3 DataFrames (A-B), (B-A), (A intersection B)

Type

join

Class

fire.nodes.etl.NodeCompareAllColumns

Fields

CompareAllColumnsSingleOutput

Compares 2 incoming DataFrames. Outputs 1 DataFrame (A-B) or (B-A) or (A intersection B) based on user’s input

Type

join

Class

fire.nodes.etl.NodeCompareAllColumnsSingleOutput

Fields

	Name

	Title

	Description

	compareOption

	Compare Type

	Comparision options whether (A-B) or (B-A) or (A intersection B)

CompareSpecificColumns

Compares 2 incoming DataFrames on specific columns. Outputs 3 DataFrames (A-B), (B-A), (A intersection B)

Type

join

Class

fire.nodes.etl.NodeCompareSpecificColumns

Fields

	Name

	Title

	Description

	columnsToCompare

	Columns to Compare

	Columns to be used in the comparison

Compare Specific Columns

Compares 2 incoming DataFrames on specific columns. Outputs 1 DataFrame (A-B) or (B-A) or (A intersection B) based on user’s input

Type

join

Class

fire.nodes.etl.NodeCompareSpecificColumnsSingleOutput

Fields

	Name

	Title

	Description

	columnsToCompare

	Columns to Compare

	Columns to be used in the comparison

	compareOption

	Compare Type

	Comparision options whether (A-B) or (B-A) or (A intersection B)

09-Split

	Compare All Columns
	Type

	Class

	Fields

	CompareAllColumnsSingleOutput
	Type

	Class

	Fields

	CompareSpecificColumns
	Type

	Class

	Fields

	Compare Specific Columns
	Type

	Class

	Fields

	Split By Expression
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output1

	Output2

	SplitByMultipleExpressions
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output1

	Output2

	Output3

	Output4

Split By Expression

This node splits the incoming DataFrame into two output DataFrames by applying the conditional logic

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeSplitByExpression

Fields

	Name

	Title

	Description

	conditionExpr

	Conditional Expression to split the Data on

	Conditional Expression to be used for Splitting the DataFrame into two. DataFrame which matches the condition will go to the lower edge output. The other would go to the higher edge output.

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Name

	Value

	Conditional Expression to split the Data on

	id > 22

Output1

	id

	label

	f1

	f2

	66

	1.0

	2.1

	2.0

Output2

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

SplitByMultipleExpressions

Splits the incoming DataFrame into multiple output DataFrames by applying the conditional logic

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeSplitByMultipleExpressions

Fields

	Name

	Title

	Description

	conditionExpr1

	Conditional Expression 1 to split the Data on

	Conditional Expression 1 to be used for Splitting the Dataset

	conditionExpr2

	Conditional Expression 2 to split the Data on

	Conditional Expression 2 to be used for Splitting the Dataset

	conditionExpr3

	Conditional Expression 3 to split the Data on

	Conditional Expression 3 to be used for Splitting the Dataset

	conditionExpr4

	Conditional Expression 4 to split the Data on

	Conditional Expression 4 to be used for Splitting the Dataset

	conditionExpr5

	Conditional Expression 5 to split the Data on

	Conditional Expression 5 to be used for Splitting the Dataset

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Name

	Value

	Conditional Expression 1 to split the Data on

	id <= 4

	Conditional Expression 2 to split the Data on

	id > 4 AND id <= 5

	Conditional Expression 3 to split the Data on

	id > 5 AND id <= 6

	Conditional Expression 4 to split the Data on

	id > 12 AND id <= 30

Output1

	id

	label

	f1

	f2

	4

	0.0

	4.1

	5.0

Output2

	id

	label

	f1

	f2

	5

	0.0

	3.1

	6.0

Output3

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

Output4

Assert

This Node takes in an expression. It evaluates the expression and based on the results sends the execution to the first or the second output Node

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is sent to the output. Only one of the output Nodes receives the DataFrame based on the results of the expression

Type

transform

Class

fire.nodes.etl.NodeAssert

Fields

	Name

	Title

	Description

	expression

	Expression

	Expression to be evaluated. It can use variables computed in the previous Nodes

Decision

It computes expressions to determine if the condition is met or not. Accordingly proceeds to the next step or stops here.

Type

transform

Class

fire.nodes.etl.NodeDecision

Fields

	Name

	Title

	Description

	description

	Description

	Description

	inputCols

	Columns

	Columns

	functions

	Function

	Function to apply

	symbols

	Symbol

	Symbol to apply

	values

	Values

	Values

10-Condition

	Assert
	Input

	Output

	Type

	Class

	Fields

	Decision
	Type

	Class

	Fields

AddColumns

This node allows adding new columns with certain values

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node adds the user specified columns to the DataFrame

Type

transform

Class

fire.nodes.etl.NodeAddColumns

Fields

	Name

	Title

	Description

	addCurrentDateCol

	Add Current Date Column

	Whether to add the current date as a new column

	currentDateColName

	Current Date Column Name

	Name of the new Current Date Column Created

	addCurrentTimeCol

	Add Current Time Column

	Whether to add the current time as a new column

	currentTimeColName

	Current Time Column Name

	Name of the new Current Time Column Created

	addConstantStringCol1

	Add Constant String Column

	Whether to add a new columns with constant string value

	constantStringColName1

	Constant String Column Name

	Constant String Name

	constantStringColValue1

	Constant String Column Value

	Constant String Value

	addConstantIntCol1

	Add Constant Integer Column

	Whether to add a new columns with constant integer value

	constantIntColName1

	Constant Integer Column Name

	Constant Integer Column Name

	constantIntColValue1

	Constant Integer Column Value

	Constant Integer Value

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Name

	Value

	Join Column

	txid

	Add Current Date Column

	true

	Current Date Column Name

	current_date

	Add Current Time Column

	true

	Current Time Column Name

	current_time

	Add Constant String Column

	true

	Constant String Column Name

	constant_string

	Constant String Column Value

	XYZ

	Add Constant Integer Column

	true

	Constant Integer Column Name

	constant_integer

	Constant Integer Column Value

	10

Output

	id

	label

	f1

	f2

	current_date

	current_time

	constant_string

	constant_integer

	6

	1.0

	2.1

	2.0

	2019-09-29

	2019-09-29 14:27:16.206

	XYZ

	10

	4

	0.0

	4.1

	5.0

	2019-09-29

	2019-09-29 14:27:16.206

	XYZ

	10

	5

	0.0

	3.1

	6.0

	2019-09-29

	2019-09-29 14:27:16.206

	XYZ

	10

	66

	1.0

	2.1

	2.0

	2019-09-29

	2019-09-29 14:27:16.206

	XYZ

	10

CaseWhen

Sets values based on conditions

Type

transform

Class

fire.nodes.etl.NodeCaseWhen

Fields

	Name

	Title

	Description

	outputCol

	Output Column Name

	output column name

	whenConditions

	When Condition

	When Condition

	values

	Value

	Value when this condition is true

	finallyElse

	Else

	else

Examples

Input

	txid

	itemid

	date

	pyid

	amount

	1001

	0001

	2019-09-20

	01

	100

	1002

	0001

	2019-09-20

	02

	100

Parameters

	When Condition

	Value

	amount >= 100.0 and amount < 200.0

	“high_value”

	amount >=200.0

	“very_high_value”

	Name

	Value

	Output Column Name

	transaction_type

	Else

	“low-value”

Output

	txid

	itemid

	date

	pyid

	amount

	transaction_type

	1001

	0001

	2019-09-20

	01

	100

	high_value

	1002

	0001

	2019-09-20

	02

	100

	high_value

ConcatColumns

This node creates a new DataFrame by concatenating the specified columns of the input DataFrame

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added to the incoming DataFrame by concatenating the specified columns. The new DataFrame is sent to the output of this Node.

Type

transform

Class

fire.nodes.etl.NodeConcatColumns

Fields

	Name

	Title

	Description

	inputCols

	Columns

	Columns to be concatenated

	outputCol

	Concatenated Column Name

	Column name for the concatenated columns

	sep

	Separator

	Separator to be used when concatenating the columns

Examples

Input

	site_id

	app_id

	site_domain

	site_category

	1fbe01fe

	ecad2386

	f3845767

	28905ebd

	1fbe01fe

	ecad2386

	f3845767

	28905ebd

	fe8cc448

	ecad2386

	9166c161

	0569f928

	d6137915

	ecad2386

	bb1ef334

	f028772b

Parameters

	Name

	Value

	Columns

	site_id app_id

	Concatenated Column Name

	site_id_app_id

	Separator

	

Output

	site_id

	app_id

	site_domain

	site_category

	site_id_app_id

	1fbe01fe

	ecad2386

	f3845767

	28905ebd

	1fbe01fe|ecad2386

	1fbe01fe

	ecad2386

	f3845767

	28905ebd

	1fbe01fe|ecad2386

	fe8cc448

	ecad2386

	9166c161

	0569f928

	fe8cc448|ecad2386

	d6137915

	ecad2386

	bb1ef334

	f028772b

	d6137915|ecad2386

Expressions

Expressions

Type

transform

Class

fire.nodes.etl.NodeExpressions

Fields

	Name

	Title

	Description

	description

	Description

	Description

	outputCols

	New Columns Name

	New Columns Name

	expressions

	Expressions

	Expressions

Functions Used in Expression: abs, acros, asin, atan, atan2, bin, cbrt, ceil, conv, cos, sosh, exp, expm1, factorial, floor, hex, hypot, log, log10, log1p, log2, pmod, pow, rint, round, shiftLeft, shiftRight, shiftRightUnsigned, signum, sin, sinh, sqrt, tan, tanh, toDegrees, toRadians, unhex

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	-5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	id

	New Columns Name

	Expressions

	1

	sqrt_f1

	sqrt(f1)

	2

	abs_f2

	abs(f2)

output

	id

	label

	f1

	f2

	sqrt_f1

	abs_f2

	6

	1.0

	2.1

	2.0

	1.449137674618944

	2.0

	4

	0.0

	4.1

	-5.0

	2.0248456731316584

	5.0

	5

	0.0

	3.1

	6.0

	760681686165901

	6.0

	66

	1.0

	2.1

	2.0

	1.449137674618944

	2.0

GenerateUUID

This node Generates a Universally Unique ID

Input

It accepts a dataframe as input

Output

It adds a new column for UUID to the input DataFrame. This new DataFrame is sent to the output

Type

transform

Class

fire.nodes.etl.NodeGenerateUUID

Fields

	Name

	Title

	Description

	outputCol

	Output Column

	Output Column Name

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Name

	Value

	Output Column

	UUID

Output

	id

	label

	f1

	f2

	UUID

	6

	1.0

	2.1

	2.0

	4a3fb350-d18c-4984-9ed6-799ef15cf4a3

	4

	0.0

	4.1

	5.0

	5de0c6c7-1787-436e-a0fc-9220ff6147ad

	5

	0.0

	3.1

	6.0

	1542c223-c8ba-456a-af4f-e3c09aca357c

	66

	1.0

	2.1

	2.0

	91cbe234-7bf8-4e7d-9b2f-10f276c80f51

GenerateUID

This node Generates a new column with unique Index/Value for each row in the Dataset for each partition. Each Partition starts a new range.

Type

transform

Class

fire.nodes.etl.NodeGenerateUID

Fields

	Name

	Title

	Description

	outputCol

	UID Column Name

	UID column name

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Name

	Value

	Output Column

	uid

Output

	id

	label

	f1

	f2

	uid

	6

	1.0

	2.1

	2.0

	0

	4

	0.0

	4.1

	5.0

	1

	5

	0.0

	3.1

	6.0

	2

	66

	1.0

	2.1

	2.0

	3

Hash

This node adds a new Columns which contains the Hash of the specified columns

Input

It accepts a DataFrame as input from the previous Node

Output

A new column is added to the incoming DataFrame by creating a Hash of the specified input columns.

Type

transform

Class

fire.nodes.etl.NodeHash

Fields

	Name

	Title

	Description

	inputCols

	Columns

	Columns to be concatenated

	hashingAlgorithm

	Hashing Algorithm

	Hashing Algorithm SHA2 & MD5, by default MD5)

	outputCol

	Output Column Name

	Column name for Hash

	bitLength

	Bit Length

	Bit Length(used in SHA2) and Hashing node bitLength-(0, 224, 256, 384, 512)

	sep

	Separator

	Separator to be used when concatenating the columns

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters1

	Name

	Value

	Columns

	f1 f2

	Hashing Algorithm

	SH2

	Output Column Name

	sh2_hash

	Bit Length

	0

	separator

	

Output1

	id

	label

	f1

	f2

	sh2_hash

	6

	1.0

	2.1

	2.0

	1476beec9dd8dc61bb617ba15e068e43ad918c83cc543d290f45a219d603e75c

	4

	0.0

	4.1

	5.0

	fcfeacf3a36da93855bf43bca5b6942e09f76330692d8a666a0215d3ce05889f

	5

	0.0

	3.1

	6.0

	a7c8371a5a7b55d0f4e5dff4e083b5d3c82f83b025ff26f4123bd4c348a8bbb2

	66

	1.0

	2.1

	2.0

	1476beec9dd8dc61bb617ba15e068e43ad918c83cc543d290f45a219d603e75c

Parameters2

	Name

	Value

	Columns

	f1 f2

	Hashing Algorithm

	MD5

	Output Column Name

	md5_hash

	Bit Length

	

	separator

	

Output2

	id

	label

	f1

	f2

	md5_hash

	6

	1.0

	2.1

	2.0

	32d7edaf74fd94509361bcd1f0c56763

	4

	0.0

	4.1

	5.0

	f2880da79c8d1c255c1afdba28a9001e

	5

	0.0

	3.1

	6.0

	c5c2c80d0b26cecafe376dc4cdc91e6f

	66

	1.0

	2.1

	2.0

	32d7edaf74fd94509361bcd1f0c56763

11-AddColumn

	AddColumns
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	CaseWhen
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	ConcatColumns
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	Expressions
	Type

	Class

	Fields

	Input

	Parameters

	output

	GenerateUID
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	GenerateUUID
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	Hash
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

	ZipWithIndex
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

ZipWithIndex

This node Generates a new column with unique Index/Value for each row in the Dataset

Type

transform

Class

fire.nodes.etl.NodeZipWithIndex

Fields

	Name

	Title

	Description

	indexColName

	Index Column Name

	Index column name

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Name

	Value

	Index Column Name

	row_id

Output

	id

	label

	f1

	f2

	row_id

	6

	1.0

	2.1

	2.0

	0

	4

	0.0

	4.1

	5.0

	1

	5

	0.0

	3.1

	6.0

	2

	66

	1.0

	2.1

	2.0

	3

CastColumnType

This node creates a new DataFrame by casting input columns with a new data type

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeCastColumnType

Fields

	Name

	Title

	Description

	inputCols

	Columns

	Columns to be cast to new data type

	outputColType

	New Data Type

	New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)

	replaceExistingCols

	Replace Existing Cols

	Whether to replace existing columns or create new ones

Examples

Input

	name

	age

	height

	StringType

	StringType

	StringType

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

Parameters1

	Name

	Value

	Columns

	age,height

	New Data Type

	DOUBLE

	Replace Existing Cols

	true

Output1

	name

	age

	height

	DoubleType

	DoubleType

	DoubleType

	Alice

	5.0

	80.0

	Alice

	5.0

	80.0

	Alice

	10.0

	80.0

Parameters2

	Name

	Value

	Columns

	age,height

	New Data Type

	DOUBLE

	Replace Existing Cols

	false

Output2

	name

	age

	height

	age-new

	height-new

	DoubleType

	StringType

	StringType

	DoubleType

	DoubleType

	Alice

	5

	80

	5.0

	80.0

	Alice

	5

	80

	5.0

	80.0

	Alice

	10

	80

	10.0

	80.0

MultiCastColumnType

This node creates a new DataFrame by casting input columns with a new data type

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiCastColumnType

Fields

	Name

	Title

	Description

	inputColNames

	Columns

	Columns

	outputColTypes

	New Data Type

	New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)

	replaceExistingCols

	Replace Existing Cols

	Whether to replace existing Columns or create New Ones

MultiCastColumnType2

This node creates a new DataFrame by casting input columns with a new data type

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

This node casts the data type of columns as specified

Type

transform

Class

fire.nodes.etl.NodeMultiCastColumnType2

Fields

	Name

	Title

	Description

	inputColNames

	Columns

	Columns

	outputColTypes

	New Data Type

	New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)

	replaceExistingCols

	Replace Existing Cols

	Whether to replace existing Columns or create New Ones

	formats

	Formats

	Formats like yyy-MM-dd used in input & output

Examples

Input

	name

	age

	height

	StringType

	StringType

	StringType

	Alice

	5

	80

	Alice

	5

	80

	Alice

	10

	80

Parameters

	Variables

	Columns

	New Data Type

	Replace Existing Cols

	Formats

	1

	age

	DOUBLE

	true

	

	2

	height

	DOUBLE

	false

	

Output

	name

	height

	age

	height-new

	DoubleType

	StringType

	DoubleType

	DoubleType

	Alice

	80

	5.0

	80.0

	Alice

	80

	5.0

	80.0

	Alice

	80

	10.0

	80.0

12-CastDataType

	CastColumnType
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters1

	Output1

	Parameters2

	Output2

	MultiCastColumnType
	Input

	Output

	Type

	Class

	Fields

	MultiCastColumnType2
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

CDCUsingFullTableMerge

CDC Using Full Table Merge

Type

transform

Class

fire.nodes.etl.NodeCDCUsingFullTableMerge

Fields

	Name

	Title

	Description

	baseTable

	Base Table Name

	Name of the Base Table

	idCols

	ID Column Names

	ID Column names

	modifiedDateCol

	Modified Date Column

	Modified Date Column

ColumnsRename

This node creates a new DataFrame by renaming existing columns with new name

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

The specified columns are renamed to have the new names.

Type

transform

Class

fire.nodes.etl.NodeColumnsRename

Fields

	Name

	Title

	Description

	currentColNames

	Current Column Names

	Current Column Names

	newColNames

	Columns New Name

	New name for existing columns

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Name

	Value

	Current Column Names

	f1 f2

	Columns New Name

	new_f1 new_f2

Output

	id

	label

	new_f1

	new_f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Count

This node counts the number of records in the incoming Dataframe and puts the count into a variable to the used by subsequent Nodes

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is sent to the output

Type

transform

Class

fire.nodes.etl.NodeCount

Fields

	Name

	Title

	Description

	variable

	Variable Name

	Name of the Variable in which the count is stored

Fixed Length Fields

Fixed Length

Type

transform

Class

fire.nodes.etl.NodeFixedLength

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	input column name

	outputColNames

	Column Names for the CSV

	New Output Columns of the SQL

	outputColTypes

	Column Types for the CSV

	Data Type of the Output Columns

	colLengths

	Length of each column

	Length of the columns in characters

	outputColFormats

	Column Formats for the CSV

	Format of the Output Columns

GeoIP

This node converts IP to geo location

Input

The input dataframe is passed in the variable inDF

Output

Transforms the IP to Geo location

Type

transform

Class

fire.nodes.etl.NodeGeoIP

Fields

	Name

	Title

	Description

	ipCol

	IP Column

	IP Column in the DataFrame

	databaseFilePath

	Database File Path

	Database File Path

GeoPoint

Type

transform

Class

fire.nodes.etl.NodeGeoPoint

Fields

	Name

	Title

	Description

	longitude

	Longitude

	

	latitude

	Latitude

	

13-Others

	CDCUsingFullTableMerge
	Type

	Class

	Fields

	ColumnsRename
	Input

	Output

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	Count
	Input

	Output

	Type

	Class

	Fields

	Fixed Length Fields
	Type

	Class

	Fields

	GeoIP
	Input

	Output

	Type

	Class

	Fields

	GeoPoint
	Type

	Class

	Fields

	MultiWindowAnalytics
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Input

	MultiWindowRanking
	Type

	Class

	Fields

	RecoverHivePartitions
	Type

	Class

	Fields

	Details

	Parameters

	RegisterTempTable
	Input

	Output

	Type

	Class

	Fields

	RoundValue
	Input

	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	Sample
	Type

	Class

	Fields

	SortBy
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	Transpose
	Input

	Output

	Type

	Class

	Fields

	WindowAnalytics
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

	WindowRanking
	Type

	Class

	Fields

	Examples

	Input

	Parameters

	Output

MultiWindowAnalytics

Type

transform

Class

fire.nodes.etl.NodeMultiWindowAnalytics

Fields

	Name

	Title

	Description

	partitionByCols

	PartitionBy

	partition column names separated by comma(,)

	orderByCols

	OrderBy

	order by column names separated by comma(,)

	windowFunctions

	Window Function

	Window Function Name

	analyticsCols

	AnalyticsColumn

	

	outPutColumns

	OutPutColumn

	Enter output field(column) name

Examples

Input

	id

	price

	lotsize

	bedrooms

	bathrms

	stories

	1

	42000

	5850

	3

	1

	2

	2

	38500

	4000

	2

	1

	1

	3

	49500

	3060

	3

	1

	1

	4

	60500

	6650

	3

	1

	2

	5

	61000

	6360

	2

	1

	1

	6

	66000

	4160

	3

	1

	1

	7

	66000

	3880

	3

	2

	2

Parameters

	PartitionBy

	OrderBy

	WindowFunction

	AnalyticsColumn

	OutPutColumn

	bedrooms

	price

	lag

	price

	lag_price

	bedrooms

	price desc

	first_value

	price

	firstvalue_price

Input

	id

	price

	lotsize

	bedrooms

	bathrms

	stories

	lag

	firstvalue

	6

	66000

	4160

	3

	1

	1

	60500.0

	66000.0

	7

	66000

	3880

	3

	2

	2

	66000.0

	66000.0

	4

	60500

	6650

	3

	1

	2

	49500.0

	66000.0

	3

	49500

	3060

	3

	1

	1

	42000.0

	66000.0

	1

	42000

	5850

	3

	1

	2

	
	66000.0

	5

	61000

	6360

	2

	1

	1

	38500.0

	61000.0

	2

	38500

	4000

	2

	1

	1

	
	61000.0

MultiWindowRanking

Type

transform

Class

fire.nodes.etl.NodeMultiWindowRanking

Fields

	Name

	Title

	Description

	partitionByCols

	PartitionBy

	partition column names separated by comma(,)

	orderByCols

	OrderBy

	order by column names separated by comma(,)

	windowFunctions

	WindowFunction

	Window Function Name

	outPutColumns

	OutPutColumn

	Enter output field(column) name

RecoverHivePartitions

Node to recover the partitions of external hve table.

Type

doc

Class

fire.nodes.etl.NodeRecoverHivePartitions

Fields

	Name

	Title

	Description

	databaseName

	HIVE Database

	Name of the HIVE Database

	tableName

	HIVE Table

	Name of the HIVE table

Details

This node is used recover the partitions of external hve table.

It will run the command: “MSCK REPAIR TABLE ${HIVE Database}.${HIVE Table}”

Parameters

	Name

	Value

	HIVE Database

	test

	HIVE Table

	transactions

RegisterTempTable

This node registers the incoming DataFrame as a temporary table in Spark

Input

It accepts a DataFrame as input from the previous Node

Output

The incoming DataFrame is output without any changes

Type

transform

Class

fire.nodes.etl.NodeRegisterTempTable

Fields

	Name

	Title

	Description

	tempTable

	Temporary Table

	Name of the temporary table to be created

RoundValue

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.etl.NodeRoundDouble

Fields

	Name

	Title

	Description

	inputCols

	Input Column

	The columns containing double or float values to round.

	precision

	Precision

	The scale of the double values to round to.

Examples

Input

	V1

	V2

	V3

	1.1032154353

	-0.040296215

	1.2673320886

	-0.41428881

	0.9054373226

	1.7274529442

	1.1140085954

	0.0855460897

	0.4937024874

	-0.291540245

	0.4455753137

	1.2497521162

Parameters

	Name

	Value

	Input Column

	V1 V2

	Precision

	2

Output

	V3

	V1

	V2

	1.2673320886

	1.1

	-0.04

	1.7274529442

	-0.41

	0.91

	0.4937024874

	1.11

	0.09

	1.2497521162

	-0.29

	0.45

Sample

Samples the incoming DataFrame

Type

transform

Class

fire.nodes.etl.NodeSample

Fields

	Name

	Title

	Description

	withReplacement

	With Replacement

	With or without Replacement

	fraction

	Fraction

	Fraction

	seed

	Seed

	Seed

SortBy

It sorts the incoming DataFrame on the fields specified.

Type

transform

Class

fire.nodes.etl.NodeSortBy

Fields

	Name

	Title

	Description

	description

	Description

	Description

	sortByColNames

	Columns

	Columns on which to Sort By

	ascDesc

	Sorting Order

	Whether to sort in ascending or descending order

Examples

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Columns

	Sorting Order

	id

	desc

	label

	asc

Output

	id

	label

	f1

	f2

	66

	1.0

	2.1

	2.0

	6

	1.0

	2.1

	2.0

	5

	0.0

	3.1

	6.0

	4

	0.0

	4.1

	5.0

Transpose

This node transposes a dataframe without performing aggregation function by given column(transposeby). ALL INPUT COLUMNS TO THIS NODE HAVE TO BE OF THE SAME TYPE

Input

It accepts a DataFrame as input from the previous Node

Output

Output dataframe consisting of three columns transposeBy, column_name, column_value

Type

transform

Class

fire.nodes.etl.NodeTranspose

Fields

	Name

	Title

	Description

	transposeBy

	TransposeByColumn Name

	transposeBy column name

WindowAnalytics

Type

transform

Class

fire.nodes.etl.NodeWindowAnalytics

Fields

	Name

	Title

	Description

	partitionByCols

	PartitionBy

	partition column names separated by comma(,)

	orderByCols

	OrderBy

	order by column names separated by comma(,)

	windowFunction

	Window Function

	Window Function Name

	analyticsCol

	Analytics Column

	

Examples

Input

	id

	price

	lotsize

	bedrooms

	bathrms

	stories

	1

	42000

	5850

	3

	1

	2

	2

	38500

	4000

	2

	1

	1

	3

	49500

	3060

	3

	1

	1

	4

	60500

	6650

	3

	1

	2

	5

	61000

	6360

	2

	1

	1

	6

	66000

	4160

	3

	1

	1

	7

	66000

	3880

	3

	2

	2

Parameters

	Name

	Value

	PartitionBy

	bedrooms , bathrms

	OrderBy

	lotsize , price desc

	Window Function

	Analytics Column

	first_value

	price

Output

	id

	price

	lotsize

	bedrooms

	bathrms

	stories

	first_value

	7

	66000

	3880

	3

	2

	2

	66000.0

	3

	49500

	3060

	3

	1

	1

	49500.0

	6

	66000

	4160

	3

	1

	1

	49500.0

	1

	42000

	5850

	3

	1

	2

	49500.0

	4

	60500

	6650

	3

	1

	2

	49500.0

	2

	38500

	4000

	2

	1

	1

	38500.0

	5

	61000

	6360

	2

	1

	1

	38500.0

WindowRanking

Type

transform

Class

fire.nodes.etl.NodeWindowRanking

Fields

	Name

	Title

	Description

	partitionByCols

	PartitionBy

	partition column names separated by comma(,)

	orderByCols

	OrderBy

	order by column names separated by comma(,)

	windowFunction

	Window Function

	Window Function Name

Examples

Input

	id

	price

	lotsize

	bedrooms

	bathrms

	stories

	1

	42000

	5850

	3

	1

	2

	2

	38500

	4000

	2

	1

	1

	3

	49500

	3060

	3

	1

	1

	4

	60500

	6650

	3

	1

	2

	5

	61000

	6360

	2

	1

	1

	6

	66000

	4160

	3

	1

	1

	7

	66000

	3880

	3

	2

	2

Parameters

	Name

	Value

	PartitionBy

	bedrooms , bathrms

	OrderBy

	lotsize , price desc

	Window Function

	Rank

Output

	id

	price

	lotsize

	bedrooms

	bathrms

	stories

	rank

	7

	66000

	3880

	3

	2

	2

	1

	3

	49500

	3060

	3

	1

	1

	1

	6

	66000

	4160

	3

	1

	1

	2

	1

	42000

	5850

	3

	1

	2

	3

	4

	60500

	6650

	3

	1

	2

	4

	2

	38500

	4000

	2

	1

	1

	1

	5

	61000

	6360

	2

	1

	1

	2

JoinUsingColumn

This node joins the incoming dataframes on a joinCol

Input

This node takes in 2 DataFrames as input and produces one DataFrame as output

Output

The output DataFrame is the result of joining the 2 incoming DataFrames on the join column

Type

join

Class

fire.nodes.etl.NodeJoinUsingColumn

Fields

	Name

	Title

	Description

	joinCol

	Join Column

	column on which to join

Input1

	txid

	item_id

	date

	py_id

	amount

	1001

	0001

	2019-09-20

	01

	100

	1002

	0001

	2019-09-20

	02

	100

Input2

	py_id

	txid

	pay_type

	amount

	01

	1001

	credt_card

	60

	01

	1001

	redme_coupon

	20

	01

	1001

	redme_emp_offer

	20

	02

	1002

	credt_card

	160

	02

	1002

	redme_coupon

	40

Parameters

	Name

	Value

	Join Column

	txid

Refresh the Schema tab.

Output

	txid

	item_id

	date

	py_id

	amount

	py_id

	pay_type

	amount

	1001

	0001

	2019-09-20

	01

	100

	01

	credt_card

	60

	1001

	0001

	2019-09-20

	01

	100

	01

	redme_coupon

	20

	1001

	0001

	2019-09-20

	01

	100

	01

	redme_emp_offer

	20

	1002

	0001

	2019-09-20

	02

	100

	02

	credt_card

	160

	1002

	0001

	2019-09-20

	02

	100

	02

	redme_coupon

	40

JoinUsingColumns

This node joins the incoming dataframes on 1 or more columns

Input

It takes in 2 DataFrames as input and produces one DataFrame as output by joining on the specified columns

Output

The output DataFrame produced as a result of joining the incoming DataFrames on the specified columns

Type

join

Class

fire.nodes.etl.NodeJoinUsingColumns

Fields

	Name

	Title

	Description

	joinCols

	Join Columns

	Space separated list of columns on which to join

	joinType

	Join Type

	Type of Join

	outputColNames

	Output Column Names

	Name of the Output Columns

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

	whereClause

	Where Clause

	where condition after join function

Input1

	txid

	item_id

	date

	py_id

	amount

	1001

	0001

	2019-09-20

	01

	100

	1002

	0001

	2019-09-20

	02

	100

Input2

	py_id

	txid

	pay_type

	amount

	01

	1001

	credt_card

	60

	01

	1001

	redme_coupon

	20

	01

	1001

	redme_emp_offer

	20

	02

	1002

	credt_card

	160

	02

	1002

	redme_coupon

	40

Parameters

	Name

	Value

	Join Column

	txid, py_id

	Join Type

	inner

	Where Clause

	pay_type = ‘credt_card’

Refresh the Schema tab.

Output

	txid

	py_id

	item_id

	date

	amount

	pay_type

	amount

	1001

	01

	0001

	2019-09-20

	100

	credt_card

	60

	1002

	02

	0001

	2019-09-20

	100

	credt_card

	160

JoinOnCommonColumns

This node joins the incoming dataframes on 1 or more columns

Input

It takes in 2 DataFrames as input and produces one DataFrame as output by joining on the specified columns

Output

The output DataFrame produced as a result of joining the incoming DataFrames on the specified columns

Type

join

Class

fire.nodes.etl.NodeJoinUsingColumns

Fields

	Name

	Title

	Description

	joinCols

	Join Columns

	Space separated list of columns on which to join

	joinType

	Join Type

	Type of Join

	outputColNames

	Output Column Names

	Name of the Output Columns

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

	whereClause

	Where Clause

	where condition after join function

GraphRegionGeo

This node displays values on a Map

Type

transform

Class

fire.nodes.graph.NodeGraphRegionGeo

Fields

GraphValues

Type

transform

Class

fire.nodes.graph.NodeGraphValues

Fields

GraphWeekDayDistribution

This node Finds the distribution of Week Days from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphWeekDayDistribution

Fields

GraphYearDistribution

This node Finds the distribution of Years from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphYearDistribution

Fields

GraphGroupByColumn

Type

transform

Class

fire.nodes.graph.NodeGraphGroupByColumn

Fields

08-Visualization

	GraphGroupByColumn
	Type

	Class

	Fields

	GraphRegionGeo
	Type

	Class

	Fields

	GraphValues
	Type

	Class

	Fields

	GraphWeekDayDistribution
	Type

	Class

	Fields

	GraphYearDistribution
	Type

	Class

	Fields

	GraphMonthDistribution
	Type

	Class

	Fields

GraphMonthDistribution

This node Finds the distribution of months from Date values

Type

transform

Class

fire.nodes.graph.NodeGraphMonthDistribution

Fields

09-MachineLearning

	01-basic-statistics
	BarChart

	Correlation

	FlagOutlier

	HistoGram

	Summary

	02-feature-scaler
	MinMaxScaler

	StandardScaler

	03-feature-extraction
	CountVectorizer

	HashingTF

	Word2Vec

	04-feature-transformers
	Binarizer

	IDF

	IndexString

	NGramTransformer

	Normalizer

	OneHotEncoder

	PolynominalExpansion

	QuantileDiscretizer

	SQLTransformer

	StopWordsRemover

	StringIndexer

	Tokenizer

	VectorAssembler

	VectorFunctions

	VectorIndexer

	WordToScoreMapping

	05-dimensionality-reduction
	PCA

	SVD

	06-feature-selection
	ChiSqSelector

	RFormula

	VectorSlicer

	07-split-dataset
	Split

	SplitProbabilityColumn

	Split With Stratified Sampling

	08-clustering
	GaussianMixture

	KMeans

	LDA

	09-regression
	AFTSurvivalRegression

	DecisionTreeRegression

	GBTRegression

	LinearRegression

	RandomForestRegression

	10-classification
	DecisionTreeClassifier

	GBTClassifier

	LogisticRegression

	MultiLayerPerceptron

	NaiveBayes

	RandomForestClassifier

	11-collaborative-filtering
	ALS

	12-freq-pattern-mining
	FPGrowth

	13-evaluate-predict
	BinaryClassificationEvaluator

	MulticlassClassificationEvaluator

	Predict

	RegressionEvaluator

	14-h2o
	H2ODRF

	H2OGBM

	H2OGLM

	H2OGLRM

	H2OIsolationForest

	H2OKMeans

	H2OModelLoad

	H2OModelSave

	H2OMojoLoad

	H2OMojoSave

	H2ONaiveBayes

	H2ONeuralNetwork

	H2OPCA

	H2OScore

	H2OWord2Vec

	15-aws-sagemaker
	KMeansSageMakerEstimator

	SageMakerLinearLearnerBinaryClassifier

	SageMakerLinearLearnerRegressor

	PCASageMakerEstimator

	SaveSageMakerFormat

	XGBoostSageMakerEstimator

	16-util
	ARIMA

	ARIMATEST

	CrossValidator

	ML Model Load

	ML Model Save

	Pipeline

	ROC

	TrainValidation plit

BarChart

Distribution of categorical data

Type

transform

Class

fire.nodes.ml.NodeBarChartCal

Fields

	Name

	Title

	Description

	inputCol

	ColumnName

	Name of column

HistoGram

Computes a histogram of the data using number of bins evenly spaced between the minimum and maximum of the specific columns.

Type

transform

Class

fire.nodes.ml.NodeHistoGramCal

Fields

	Name

	Title

	Description

	inputCols

	ColumnName

	Name of column

	bins

	Bins

	Number of bins

Correlation

calculates the correlation between two series of data.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The input DataFrame is passed along to the next Processors

Type

transform

Class

fire.nodes.ml.NodeCorrelation

Fields

Details

This node calculates the correlation between two series of data in a common operation in Statistics.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-statistics.html#correlations

FlagOutlier

Falg the outlier based on the selected column using Box-and-Whisker technique.

Type

transform

Class

fire.nodes.ml.NodeFlagOutlier

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The Input Column to flag the outlier

01-basic-statistics

	BarChart
	Type

	Class

	Fields

	Correlation
	Input

	Output

	Type

	Class

	Fields

	Details

	FlagOutlier
	Type

	Class

	Fields

	HistoGram
	Type

	Class

	Fields

	Summary
	Type

	Class

	Fields

	Details

Summary

Summary statistics provide useful information about sample data. eg: measures of spread.

Type

transform

Class

fire.nodes.ml.NodeSummary

Fields

Details

Summary statistics provides useful information about sample data. eg: measures of spread.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-statistics.html#summary-statistics

Summary Node provides a table consist of informations such as number of non-null entries (count), mean, standard deviation, and minimum and maximum value for each numerical column.

MinMaxScaler

MinMaxScaler transforms a dataset of Vector rows, rescaling each feature to a specific range (often [0, 1])

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

A new column containing the scaled features is added to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeMinMaxScaler

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	max

	Max

	The upper bound after transformation, shared by all features

	min

	Min

	The lower bound after transformation, shared by all features

02-feature-scaler

	MinMaxScaler
	Input

	Output

	Type

	Class

	Fields

	StandardScaler
	Input

	Output

	Type

	Class

	Fields

	Details

StandardScaler

StandardScaler transforms a dataset of Vector rows, normalizing each feature to have unit standard deviation and/or zero mean.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column containing the transform of the input Vector column to unit standard deviation and/or zero mean features to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeStandardScaler

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	withMean

	With Mean

	Centers the data with mean before scaling.

	withStd

	With Standard Dev

	Scales the data to unit standard deviation

Details

StandardScaler transforms a dataset of Vector rows, normalizing each feature to have unit standard deviation and/or zero mean.

StandardScaler is an Estimator which can be fit on a dataset to produce a StandardScalerModel; this amounts to computing summary statistics. The model can then transform a Vector column in a dataset to have unit standard deviation and/or zero mean features.

If the standard deviation of a feature is zero, it will return default 0.0 value in the Vector for that feature.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#standardscaler

CountVectorizer

Extracts the vocabulary from a given collection of documents and generates a vector of token counts for each document.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column to the incoming DataFrame containing the vector of token counts in the input column, to generate the output DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeCountVectorizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Input column name

	outputCol

	Output Column

	Output column name

	vocabularySize

	Vocabulary Size

	Max size of the vocabulary.

Details

CountVectorizer and CountVectorizerModel aim to help convert a collection of text documents to vectors of token counts. When an a-priori dictionary is not available, CountVectorizer can be used as an Estimator to extract the vocabulary and generates a CountVectorizerModel. The model produces sparse representations for the documents over the vocabulary, which can then be passed to other algorithms like LDA.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-features.html#countvectorizer

HashingTF

Maps a sequence of terms to term frequencies using the hashing trick.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

A new column is added to the input DataFrame containing hashing of the bag of words into a feature vector

Type

ml-transformer

Class

fire.nodes.ml.NodeHashingTF

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Contains sets of terms. In text processing, a ‘set of terms’ might be a bag of words

	outputCol

	Output Column

	Output column name

03-feature-extraction

	CountVectorizer
	Input

	Output

	Type

	Class

	Fields

	Details

	HashingTF
	Input

	Output

	Type

	Class

	Fields

	Word2Vec
	Input

	Output

	Type

	Class

	Fields

	Details

Word2Vec

Transforms vectors of words into vectors of numeric codes for the purpose of further processing by NLP or machine learning algorithms.

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

A new column containing feature vector is added to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeWord2Vec

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Contains sequences of words

	inputColStringArrCol

	Text Array Column

	The text array column which is produced

	outputCol

	Output Column

	Output column name

	vectorSize

	Vector Size

	Vector Size

	minCount

	Min Count

	Min Count

Details

Word2Vec is an Estimator which takes sequences of words representing documents and trains a Word2VecModel. The model maps each word to a unique fixed-size vector. The Word2VecModel transforms each document into a vector using the average of all words in the document; this vector can then be used for as features for prediction, document similarity calculations, etc.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#word2vec

PolynominalExpansion

Perform feature expansion in a polynomial space

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column of type vector, Expanding your features into a polynomial space, which is formulated by an n-degree combination of original dimensions.

Type

ml-transformer

Class

fire.nodes.ml.NodePolynominalExpansion

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	degree

	Degree

	The polynomial degree to expand, which should be >= 1. A value of 1 means no expansion.

QuantileDiscretizer

QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical features.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column of binned categorical features.

Type

ml-transformer

Class

fire.nodes.ml.NodeQuantileDiscretizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The Input column name

	outputCol

	Output Column

	Output column name

	numBuckets

	NumBuckets

	Maximum number of buckets (quantiles or categories) into which the data points are grouped. Must be >= 2.

Details

QuantileDiscretizer takes a column with continuous features and outputs a column with binned categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#quantilediscretizer

WordToScoreMapping

Map the original word of hashValue to score.

Type

ml-transformer

Class

fire.nodes.ml.NodeWordToScoreMapping

Fields

	Name

	Title

	Description

	words

	Words

	Array of words

	features

	Features

	Vector with hash value of words

	output

	Output

	

Binarizer

Binarize a column of continuous features given a threshold.

Input

This type of node takes in a DataFrame and transforms it to another DataFrame

Output

A new column containing the binarized values is added to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeBinarizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	threshold

	Threshold

	The features greater than the threshold, will be binarized to 1.0.The features equal to or less than the threshold, will be binarized to 0.0.

Details

This node binarizes a column of continuous features given a threshold.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-features.html#binarizer

IDF

Compute the Inverse Document Frequency (IDF) given a collection of documents.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column of type vector, It takes feature vectors (generally created from HashingTF) as input and scales each column. Intuitively, it down-weights columns which appear frequently in a corpus.

Type

ml-transformer

Class

fire.nodes.ml.NodeIDF

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Input Column Name

	outputCol

	Output Column

	Output column name

	minDocFreq

	MinDocFreq

	The minimum of documents in which a term should appear.

04-feature-transformers

	Binarizer
	Input

	Output

	Type

	Class

	Fields

	Details

	IDF
	Input

	Output

	Type

	Class

	Fields

	IndexString
	Type

	Class

	Fields

	Details

	NGramTransformer
	Input

	Output

	Type

	Class

	Fields

	Details

	Normalizer
	Input

	Output

	Type

	Class

	Fields

	Details

	OneHotEncoder
	Input

	Output

	Type

	Class

	Fields

	PolynominalExpansion
	Input

	Output

	Type

	Class

	Fields

	QuantileDiscretizer
	Input

	Output

	Type

	Class

	Fields

	Details

	SQLTransformer
	Type

	Class

	Fields

	StopWordsRemover
	Output

	Type

	Class

	Fields

	Details

	StringIndexer
	Input

	Output

	Type

	Class

	Fields

	Tokenizer
	Input

	Output

	Type

	Class

	Fields

	VectorAssembler
	Input

	Output

	Type

	Class

	Fields

	VectorFunctions
	Type

	Class

	Fields

	VectorIndexer
	Input

	Output

	Type

	Class

	Fields

	WordToScoreMapping
	Type

	Class

	Fields

IndexString

Maps a column of indices back to a new column of corresponding string values. The index-string mapping is either from the ML attributes of the input column, or from user-supplied labels

Type

ml-transformer

Class

fire.nodes.ml.NodeIndexString

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Column containing label indices

	outputCol

	Output Column

	Output column name

Details

This node maps a column of indices back to a new column of corresponding string values. The index-string mapping is either from the ML attributes of the input column, or from user-supplied labels

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#indextostring

NGramTransformer

Converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words.When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned

Input

It takes in a DataFrame as input and transforms it to another DataFrame

Output

It adds a new column consisting of a sequence of nn-grams where each nn-gram is represented by a space-delimited string of nn consecutive words, to the incoming DataFrame

Type

ml-transformer

Class

fire.nodes.ml.NodeNGramTransformer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Contains sequence of strings

	inputColStringArrCol

	List of Words

	Sequence of words

	outputCol

	Output Column

	Consist of a sequence of n-grams where each n-gram is represented by a space-delimited string of n consecutive words

	numberOfGrams

	Number of Grams

	Sequence of ‘string array’ for integer ‘Number of Grams’

Details

This node converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words.When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned”

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#n-gram

Normalizer

Normalizer is a Transformer which transforms a dataset of Vector rows, normalizing each Vector to have unit norm.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the normalized value of the input column, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeNormalizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	p

	P

	Normalization in L^p space. Must be >= 1. (default: p = 2)

Details

Normalizer is a Transformer which transforms a dataset of Vector rows, normalizing each Vector to have unit norm.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#normalizer

OneHotEncoder

Maps a column of label indices to a column of binary vectors, with at most a single one-value

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

The output DataFrame contains a new column which contains the mapping of a column of label indices to a column of binary vectors, with at most a single one-value.

Type

ml-transformer

Class

fire.nodes.ml.NodeOneHotEncoder

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Input columns for encoding

	outputCols

	Output Columns

	Output columns

SQLTransformer

This node runs the given SQL on the incoming DataFrame using Spark ML SQLTransformer

Type

transform

Class

fire.nodes.ml.NodeSQLTransformer

Fields

	Name

	Title

	Description

	tempTable

	Temp Table

	Temp Table Name to be used

	sql

	SQL

	SQL to be run

	outputColNames

	Output Column Names

	Name of the Output Columns

	outputColTypes

	Output Column Types

	Data Type of the Output Columns

	outputColFormats

	Output Column Formats

	Format of the Output Columns

StopWordsRemover

Filters out stop words from input. Null values from input array are preserved unless adding null to stopWords explicitly.

Output

It adds a new column containing the sequence of strings from the input column but with the stop words removed, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeStopWordsRemover

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Column containing the array text from which the stop words have to be removed

	outputCol

	Output Column

	Contains array of text by dropping list of stop words

	caseSensitive

	Case Sensitive

	Case Sensitive

	stopWords

	Comma Separated List of Custom Stop Words. If not provided, the default list of stop words would be used.

	Custom List of Stop Words

Details

Stop words filters out stop words from input. Null values from input array are preserved unless adding null to stopWords explicitly.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#stopwordsremover

StringIndexer

StringIndexer encodes a string column of labels to a column of label indices

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the encoding of the string column of labels to a column of label indices, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeStringIndexer

Fields

	Name

	Title

	Description

	handleInvalid

	Handle Invalid

	Invalid entries to be skipped or thrown error

	inputCols

	Input Columns

	Column containing labels

	outputCols

	Output Columns

	Output columns

Tokenizer

A tokenizer that converts the input string to lowercase and then splits it by white spaces.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column containing the results of tokenization of the input column, to the incoming DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeTokenizer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	Column containing text (such as sentence)

	outputCol

	Output Column

	Output column name

VectorAssembler

Merges multiple columns into a vector column

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It adds a new column to the incoming DataFrame. The new column contains the values of the input columns concatenated into a vector in the specified order.

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorAssembler

Fields

	Name

	Title

	Description

	inputCols

	Input Columns

	Input column of type - all numeric, boolean and vector

	outputCol

	Output Column

	Output column name

VectorFunctions

Vector Functions for transforming Vectors

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorFunctions

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The Input column name

	vectorFunction

	Vector Function

	Vector Function Name

	parameter

	Parameter

	Parameter for the Function

	outputCol

	Output Column

	Output column name

VectorIndexer

Vector Indexer indexes categorical features inside of a Vector. It decides which features are categorical and converts them to category indices. The decision is based on the number of distinct values of a feature.

Input

It takes in a DataFrame and transforms it to another DataFrame

Output

It indexes categorical features in datasets of Vectors and stores the result into a new column of the DataFrame.

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorIndexer

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The Input column name

	outputCol

	Output Column

	Output column name

	maxCategories

	Maximum Categories

	Threshold for the number of values a categorical feature can take. If a feature is found to have > maxCategories values, then it is declared continuous. Must be >= 2

05-dimensionality-reduction

	PCA
	Input

	Output

	Type

	Class

	Fields

	Details

	SVD
	Type

	Class

	Fields

PCA

Trains a model to project vectors to a low-dimensional space using PCA.

Input

This takes in a DataFrame as input

Output

The output DataFrame is a projection of the vectors in the incoming DataFrame to a low-dimensional space using PCA

Type

ml-transformer

Class

fire.nodes.ml.NodePCA

Fields

	Name

	Title

	Description

	inputCol

	Input Column

	The input column name

	outputCol

	Output Column

	The output column name

	k

	K

	The number of principal components

Details

PCA trains a model to project vectors to a low-dimensional space using PCA.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-features.html#pca

SVD

Type

transform

Class

fire.nodes.ml.NodeSVD

Fields

ChiSqSelector

Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label.

Type

ml-transformer

Class

fire.nodes.ml.NodeChiSqSelector

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	The features column name

	outputCol

	Output Column

	The output column name

	labelCol

	Label Column

	The label column name

	numTopFeatures

	NumTopFeatures

	Number of features that selector will select (ordered by statistic value descending).

RFormula

RFormula feature selection, RFormula selects columns specified by an R model formula. Currently we support a limited subset of the R operators, including ‘~’, ‘.’, ‘:’, ‘+’, and ‘-‘

Type

ml-transformer

Class

fire.nodes.ml.NodeRFormula

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	The features column name

	formula

	Formula

	formula

	labelCol

	Label Column

	The label column name

06-feature-selection

	ChiSqSelector
	Type

	Class

	Fields

	RFormula
	Type

	Class

	Fields

	VectorSlicer
	Type

	Class

	Fields

VectorSlicer

VectorSlicer feature selection, which takes a feature vector and outputs a new feature vector with a sub-array of the original features. It is useful for extracting features from a vector column

Type

ml-transformer

Class

fire.nodes.ml.NodeVectorSlicer

Fields

	Name

	Title

	Description

	inputCol

	Features Column

	The features column name

	outputCol

	Output Column

	The output column name

07-split-dataset

	Split
	Input

	Output

	Type

	Class

	Fields

	Input

	Parameters

	Output1

	Output2

	SplitProbabilityColumn
	Type

	Class

	Fields

	Split With Stratified Sampling
	Input

	Output

	Type

	Class

	Fields

	Details

Split

This node splits the incoming DataFrame into 2. It takes in the fraction to use in splitting the data. For example, if the fraction is .7, it would split the data into 2 DataFrames, one containing 70% of the rows and the other containing the remaining 30%.

Input

It takes in a DataFrame as input

Output

The input DataFrame is split into 2 DataFrames and output

Type

transform

Class

fire.nodes.ml.NodeSplit

Fields

Input

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

	66

	1.0

	2.1

	2.0

Parameters

	Name

	Value

	Fraction 1

	0.8

Output1

	id

	label

	f1

	f2

	6

	1.0

	2.1

	2.0

	4

	0.0

	4.1

	5.0

	5

	0.0

	3.1

	6.0

Output2

	id

	label

	f1

	f2

	66

	1.0

	2.1

	2.0

SplitProbabilityColumn

Type

transform

Class

fire.nodes.ml.NodeSplitProbabilityCol

Fields

	Name

	Title

	Description

	probabilityColName

	Probability Column

	

	numFields

	NumFields

	Number of fields in probability columns to extract

Split With Stratified Sampling

This node splits the incoming DataFrame into 2. It takes in the fraction to use in splitting the data by Stratified Sampling.

Input

It takes in a DataFrame as input

Output

The input DataFrame is split into 2 DataFrames and output

Type

transform

Class

fire.nodes.util.SplitWithStratifiedSampling

Fields

	Name

	Title

	Description

	keyInputCol

	Column Name

	column that defines strata

	fraction

	Fraction

	sampling fraction for each stratum. If a stratum is not specified, we treat its fraction as zero

	seed

	Seed

	random seed

Details

Split With Stratified Sampling, which is the preferred way to sample from populations with varing subpopulation sizes.

More details are available at : https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.sampleBy

GaussianMixture

This class performs expectation maximization for multivariate Gaussian Mixture Models (GMMs). A GMM represents a composite distribution of independent Gaussian distributions with associated mixing weights specifying each’s contribution to the composite.

Input

It takes in a DataFrame as input and performs GaussianMixture clustering

Output

The input DataFrame is passed along to the next Processors

Type

ml-estimator

Class

fire.nodes.ml.NodeGaussianMixture

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting.

	k

	K

	The number of clusters to create.

	maxIter

	Max Iterations

	The maximum number of iterations.

	predictionCol

	Prediction Column

	The prediction column created during model scoring.

	seed

	Seed

	Random Seed.

	tol

	Tolerence

	The convergence tolerance for iterative algorithms.

Details

GaussianMixture clustering will maximize the log-likelihood for a mixture of k Gaussians, iterating until the log-likelihood changes by less than convergenceTol, or until it has reached the max number of iterations.
While this process is generally guaranteed to converge, it is not guaranteed to find a global optimum.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/2.2.0/mllib-clustering.html#gaussian-mixture

08-clustering

	GaussianMixture
	Input

	Output

	Type

	Class

	Fields

	Details

	KMeans
	Input

	Output

	Type

	Class

	Fields

	Details

	LDA
	Input

	Output

	Type

	Class

	Fields

KMeans

K-means clustering with support for k-means|| initialization proposed by Bahmani et al

Input

It takes in a DataFrame as input and performs K-Means clustering

Output

The input DataFrame is passed along to the next Processors

Type

ml-estimator

Class

fire.nodes.ml.NodeKMeans

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting.

	k

	K

	The number of clusters to create.

	maxIter

	Max Iterations

	The maximum number of iterations.

	predictionCol

	Prediction Column

	The prediction column created during model scoring.

	seed

	Seed

	Random Seed.

	tol

	Tolerence

	The convergence tolerance for iterative algorithms.

	initMode

	initMode

	The initialization algorithm mode.

	initSteps

	initSteps

	The number of steps for the k-means|| initialization mode. It will be ignored when other initialization modes are chosen.

Details

K-means clustering with support for k-means|| initialization proposed by Bahmani et al

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-clustering.html#k-means

LDA

LDA is given a collection of documents as input data, via the featuresCol parameter. Each document is specified as a Vector of length vocabSize, where each entry is the count for the corresponding term (word) in the document

Input

It takes in a DataFrame as input and performs LDA

Output

LDA Model is passed to the next Node for Prediction or Storing

Type

ml-estimator

Class

fire.nodes.ml.NodeLDA

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting.

	k

	K

	The number of topics to create.

	maxIter

	Max Iterations

	The maximum number of iterations.

	optimizer

	Optimizer

	Optimizer or inference algorithm used to estimate the LDA model.

	topicDistributionCol

	TopicDistributionColumn

	Output column with estimates of the topic mixture distribution for each document

	checkpointInterval

	checkpointInterval

	The checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations.

	subsamplingRate

	subsamplingRate

	Fraction of the corpus to be sampled and used in each iteration of mini-batch gradient descent, in range (0, 1].

	seed

	Seed

	Random Seed.

	maxTermsPerTopic

	MaxTermsPerTopic

	Number of Terms in Topics

AFTSurvivalRegression

Accelerated failure time (AFT) model which is a parametric survival regression model for censored data.

Output

It generates the LAFTSurvivalRegressionModel and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeAFTSurvivalRegression

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting

	labelCol

	Label Column

	The label column for model fitting

	censorCol

	Censor Column

	Indicator of the event has occurred or not. If the value is 1.O, it means the event has occurred i.e. uncensored; otherwise censored

	fitIntercept

	Fit Intercept

	Whether to fit an intercept term

	maxIter

	Maximum Iterations

	Maximum number of iterations (>= 0)

	tol

	Tolerance

	The convergence tolerance for iterative algorithms

	quantileProbabilities

	QuantileProbabilities

	Values of the quantile probabilities array should be in the range (0, 1)

	quantilesCol

	Quantiles Column

	The quantiles column created during model scoring

	predictionCol

	Prediction Column

	The prediction column created during model scoring

Details

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/latest/ml-classification-regression.html#survival-regression

DecisionTreeRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Decision Tree Regression

Output

The Decision Tree Regression Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeDecisionTreeRegression

Fields

Details

Decision tree supports both continuous and categorical features.

More at Spark MLlib/ML docs page : https://spark.apache.org/docs/1.6.0/ml-classification-regression.html#decision-tree-regression

GBTRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Logistic Regression

Output

It generates the GBTRegression and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeGBTRegression

Fields

Details

GBT Regression supports both continuous and categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#gradient-boosted-trees-gbts

RandomForestRegression

It supports both continuous and categorical features.

Input

This takes in a DataFrame and performs Random Forest Regression

Output

It generates the Random Forest Regression Model and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeRandomForestRegression

Fields

09-regression

	AFTSurvivalRegression
	Output

	Type

	Class

	Fields

	Details

	DecisionTreeRegression
	Input

	Output

	Type

	Class

	Fields

	Details

	GBTRegression
	Input

	Output

	Type

	Class

	Fields

	Details

	LinearRegression
	Input

	Output

	Type

	Class

	Fields

	Details

	RandomForestRegression
	Input

	Output

	Type

	Class

	Fields

LinearRegression

The interface for working with linear regression models and model summaries is similar to the logistic regression case.

Input

This takes in a DataFrame and performs Logistic Regression

Output

It generates the LinearRegressionModel and passes it to the next Predict and ModelSave Nodes. The input DataFrame is also passed along to the next nodes.

Type

ml-estimator

Class

fire.nodes.ml.NodeLinearRegression

Fields

Details

The interface for working with linear regression models and model summaries is similar to the logistic regression case.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#linear-regression

DecisionTreeClassifier

It supports both binary and multiclass labels, as well as both continuous and categorical features.

Input

It takes in a DataFrame and performs Decision Tree Classification

Output

The Decision Tree Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeDecisionTreeClassifier

Fields

Details

Decision trees supports both binary and multiclass labels, as well as both continuous and categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#decision-tree-classifier

GBTClassifier

Gradient-Boosted Trees (GBTs) is a learning algorithm for classification. It supports binary labels, as well as both continuous and categorical features. Note: Multiclass labels are not currently supported.

Input

It takes in a DataFrame as input and performs GBT Classification

Output

The GBT Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeGBTClassifier

Fields

MultiLayerPerceptron

It supports creation of full connected neural network.

Type

ml-estimator

Class

fire.nodes.ml.NodeMultilayerPerceptron

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting

	labelCol

	Label Column

	The label column for model fitting

	predictionCol

	Prediction Column

	The prediction column created during model scoring.

	layers

	Layers - comma separated list of integers

	The integer array specifying the number of activation units in each layer

	maxIter

	Max number of iterations

	Number of iterations to train the Neural network

	blockSize

	Block Size

	Block size

	seed

	Seed

	The initial seed to initialise the neural network.

NaiveBayes

Creates a NaiveBayes model. Supports both Multinomial NB which can handle finitely supported discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a binary (0/1) data, it can also be used as Bernoulli NB.The input feature values must be nonnegative

Type

ml-estimator

Class

fire.nodes.ml.NodeNaiveBayes

Fields

	Name

	Title

	Description

	featuresCol

	Features Column

	Features column of type vectorUDT for model fitting

	labelCol

	Label Column

	The label column for model fitting

	predictionCol

	Prediction Column

	The prediction column created during model scoring

	modelType

	modelType

	The model type. Supported options: multinomial and bernoulli. (default = multinomial)

	smoothing

	Smoothing

	The smoothing parameter.

RandomForestClassifier

Supports both binary and multiclass labels, as well as both continuous and categorical features.

Input

Takes in a DataFrame and performs Random Forest Classification

Output

Random Forest Classification Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeRandomForestClassifier

Fields

Details

Random forests supports both binary and multiclass labels, as well as both continuous and categorical features.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-classification-regression.html#random-forest-classifier

10-classification

	DecisionTreeClassifier
	Input

	Output

	Type

	Class

	Fields

	Details

	GBTClassifier
	Input

	Output

	Type

	Class

	Fields

	LogisticRegression
	Input

	Output

	Type

	Class

	Fields

	Details

	Examples

	MultiLayerPerceptron
	Type

	Class

	Fields

	NaiveBayes
	Type

	Class

	Fields

	RandomForestClassifier
	Input

	Output

	Type

	Class

	Fields

	Details

LogisticRegression

Logistic regression. Currently, this class only supports binary classification.

Input

This takes in a DataFrame and performs Logistic Regression

Output

The Logistic Regression Model generated is passed along to the next nodes. The input DataFrame is also passed along to the next nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeLogisticRegression

Fields

Details

Logistic regression is a popular method to predict a categorical response.

It is a special case of Generalized Linear models that predicts the probability of the outcomes.
In spark.ml logistic regression can be used to predict a binary outcome by using binomial logistic regression, or it can be used to predict a multiclass outcome by using multinomial logistic regression.

More details are available at : https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#logistic-regression

Examples

The below example is available at : https://spark.apache.org/docs/2.3.0/ml-classification-regression.html#logistic-regression

import org.apache.spark.ml.classification.LogisticRegression

// Load training data
val training = spark.read.format(“libsvm”).load(“data/mllib/sample_libsvm_data.txt”)

	val lr = new LogisticRegression()

	.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)

// Fit the model
val lrModel = lr.fit(training)

// Print the coefficients and intercept for logistic regression
println(s”Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}”)

// We can also use the multinomial family for binary classification
val mlr = new LogisticRegression()

.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
.setFamily(“multinomial”)

val mlrModel = mlr.fit(training)

// Print the coefficients and intercepts for logistic regression with multinomial family
println(s”Multinomial coefficients: ${mlrModel.coefficientMatrix}”)
println(s”Multinomial intercepts: ${mlrModel.interceptVector}”)

ALS

Alternating Least Squares (ALS) matrix factorization.

Input

It takes in a DataFrame as input and performs ALS

Output

It generates the ALSModel and passes it to the next Predict and ModelSave Nodes. It also passes the incoming DataFrame to the next Nodes

Type

ml-estimator

Class

fire.nodes.ml.NodeALS

Fields

	Name

	Title

	Description

	userCol

	User Column

	The column name for user ids.

	itemCol

	Item Column

	The column name for item ids.

	ratingCol

	Rating Column

	The column name for ratings.

	predictionCol

	Prediction Column

	The prediction column created during model scoring

	maxIter

	Max iterations

	The maximum number of iterations.

	regParam

	Regularization Param

	The regularization parameter.(>=0)

	alpha

	Alpha

	The alpha parameter in the implicit preference formulation.(>=0)

	checkpointInterval

	Checkpoint Interval

	The checkpoint interval.

	nonnegative

	Non negative

	Whether to apply nonnegativity constraints.

	numItemBlocks

	Num Item Blocks

	The number of item blocks.

	numUserBlocks

	Num User Blocks

	The number of user blocks.

	rank

	Rank

	The rank of the matrix factorization.

	seed

	Seed

	Random Seed.

	implicitPrefs

	Implicit Prefs

	whether to use implicit preference

Details

Collaborative filtering is commonly used for recommender systems. These techniques aim to fill in the missing entries of a user-item association matrix. spark.mllib currently supports model-based collaborative filtering, in which users and products are described by a small set of latent factors that can be used to predict missing entries. spark.mllib uses the alternating least squares (ALS) algorithm to learn these latent factors.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-collaborative-filtering.html

11-collaborative-filtering

	ALS
	Input

	Output

	Type

	Class

	Fields

	Details

FPGrowth

Does Pattern Mining using FPGrowth Algorithm

Type

transform

Class

fire.nodes.ml.NodeFPGrowth

Fields

	Name

	Title

	Description

	transactionCol

	Transaction Column

	Input data set, each element contains a transaction

	minSupport

	Min Support

	The minimum support for an itemset to be identified as frequent

	numPartitions

	Number of Partitions

	The number of partitions used to distribute the work

Details

This node does Pattern Mining using FPGrowth Algorithm.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html

12-freq-pattern-mining

	FPGrowth
	Type

	Class

	Fields

	Details

BinaryClassificationEvaluator

Evaluator for binary classification, which expects two input columns: rawPrediction and label.

Output

It outputs the Probability for each class

Type

ml-evaluator

Class

fire.nodes.ml.NodeBinaryClassificationEvaluator

Fields

	Name

	Title

	Description

	labelCol

	Label Column

	The label column for model fitting.

	predictionCol

	Prediction Column

	The prediction column.

	metricName

	Metric Name

	The metric used in evaluation.

Details

Evaluator for binary classification, which expects two input columns: rawPrediction and label.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/mllib-evaluation-metrics.html#binary-classification

13-evaluate-predict

	BinaryClassificationEvaluator
	Output

	Type

	Class

	Fields

	Details

	MulticlassClassificationEvaluator
	Type

	Class

	Fields

	Details

	Predict
	Input

	Output

	Type

	Class

	Fields

	RegressionEvaluator
	Input

	Output

	Type

	Class

	Fields

	Details

MulticlassClassificationEvaluator

Evaluator for multiclass classification, which expects two input columns: score and label.

Type

ml-evaluator

Class

fire.nodes.ml.NodeMulticlassClassificationEvaluator

Fields

	Name

	Title

	Description

	labelCol

	Label Column

	The label column for model fitting.

	predictionCol

	Prediction Column

	The prediction column.

	metricName

	Metric Name

	The metric used in evaluation.

Details

Evaluator for multiclass classification, which expects two input columns: score and label.

More at Spark MLlib/ML docs page :https://spark.apache.org/docs/1.6.0/mllib-evaluation-metrics.html#multiclass-classification

Predict

Predict node takes in a DataFrame and Model and makes predictions

Input

It takes in a DataFrame and Model as input

Output

A new column containing the predictions is added to the input DataFrame

Type

ml-predict

Class

fire.nodes.ml.NodePredict

Fields

RegressionEvaluator

Evaluator for regression, which expects two input columns: prediction and label.

Input

It takes in a DataFrame as input

Output

The incoming DataFrame is passed to the output

Type

ml-evaluator

Class

fire.nodes.ml.NodeRegressionEvaluator

Fields

	Name

	Title

	Description

	labelCol

	Label Column

	The label column for model fitting.

	predictionCol

	Prediction Column

	The prediction column.

	metricName

	Metric Name

	The metric used in evaluation.

Details

Evaluator for regression, which expects two input columns: prediction and label.

More at Spark MLlib/ML docs page:

http://spark.apache.org/docs/1.6.0/api/scala/index.html#org.apache.spark.ml.evaluation.RegressionEvaluator

H2ODRF

H2O DRF

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2ODrf

Fields

Details

Distributed Random Forest (DRF) is a powerful classification and regression tool. When given a set of data, DRF generates a forest of classification or regression trees, rather than a single classification or regression tree. Each of these trees is a weak learner built on a subset of rows and columns. More trees will reduce the variance. Both classification and regression take the average prediction over all of their trees to make a final prediction, whether predicting for a class or numeric value.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html

H2OGBM

H2O GBM

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGbm

Fields

Details

Gradient Boosting Machine (for Regression and Classification) is a forward learning ensemble method. The guiding heuristic is that good predictive results can be obtained through increasingly refined approximations. H2O’s GBM sequentially builds regression trees on all the features of the dataset in a fully distributed way - each tree is built in parallel.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html

H2OGLM

H2O GLM

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGlm

Fields

Details

Generalized Linear Models (GLM) estimate regression models for outcomes following exponential distributions. In addition to the Gaussian (i.e. normal) distribution, these include Poisson, binomial, and gamma distributions. Each serves a different purpose, and depending on distribution and link function choice, can be used either for prediction or classification.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html

H2OGLRM

H2O GLRM

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OGlrm

Fields

Details

Generalized Low Rank Models (GLRM) is an algorithm for dimensionality reduction of a dataset. It is a general, parallelized optimization algorithm that applies to a variety of loss and regularization functions. Categorical columns are handled by expansion into 0/1 indicator columns for each level. With this approach, GLRM is useful for reconstructing missing values and identifying important features in heterogeneous data.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glrm.html

H2OIsolationForest

H2O IsolationForest

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OIsolationForest

Fields

Details

Isolation Forest is similar in principle to Random Forest and is built on the basis of decision trees. Isolation Forest, however, identifies anomalies or outliers rather than profiling normal data points. Isolation Forest isolates observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of that selected feature. This split depends on how long it takes to separate the points.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/if.html

H2OKMeans

H2O KMeans

Input

It takes in a DataFrame as input

Type

ml-estimator

Class

fire.nodes.h2o.NodeH2OKMeans

Fields

Details

K-Means falls in the general category of clustering algorithms. Clustering is a form of unsupervised learning that tries to find structures in the data without using any labels or target values. Clustering partitions a set of observations into separate groupings such that an observation in a given group is more similar to another observation in the same group than to another observation in a different group.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/k-means.html

H2OModelLoad

Type

ml-modelload

Class

fire.nodes.h2o.NodeH2OModelLoad

Fields

	Name

	Title

	Description

	path

	Path

	Path for loading the H2O Mojo

H2OModelSave

Type

ml-modelsave

Class

fire.nodes.h2o.NodeH2OModelSave

Fields

	Name

	Title

	Description

	path

	Absolute Path

	Absolute Path for saving the H2O Mojo

H2OMojoLoad

Type

ml-modelload

Class

fire.nodes.h2o.NodeH2OMojoLoad

Fields

	Name

	Title

	Description

	path

	Absolute Path

	Absolute Path for loading the H2O Mojo

H2OMojoSave

Type

ml-modelsave

Class

fire.nodes.h2o.NodeH2OMojoSave

Fields

	Name

	Title

	Description

	path

	Path

	Path for saving the H2O Mojo

H2ONaiveBayes

H2O Naive Bayes

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2ONaiveBayes

Fields

Details

Naïve Bayes is a classification algorithm that relies on strong assumptions of the independence of covariates in applying Bayes Theorem. The Naïve Bayes classifier assumes independence between predictor variables conditional on the response, and a Gaussian distribution of numeric predictors with mean and standard deviation computed from the training dataset.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/naive-bayes.html

H2ONeuralNetwork

H2O Deep Learning/Neural Network

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2ONeuralNetwork

Fields

Details

H2O’s Deep Learning is based on a multi-layer feedforward artificial neural network that is trained with stochastic gradient descent using back-propagation. The network can contain a large number of hidden layers consisting of neurons with tanh, rectifier, and maxout activation functions.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html

H2OPCA

H2O PCA

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OPCA

Fields

Details

Principal Components Analysis (PCA) is closely related to Principal Components Regression. The algorithm is carried out on a set of possibly collinear features and performs a transformation to produce a new set of uncorrelated features.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/pca.html

H2OScore

Type

ml-predict

Class

fire.nodes.h2o.NodeH2OScore

Fields

H2OWord2Vec

H2O Word2Vec

Input

It takes in a DataFrame as input

Type

transform

Class

fire.nodes.h2o.NodeH2OWord2vec

Fields

	Name

	Title

	Description

	min_word_freq

	Min Word Freq

	Specify an integer for the minimum word frequency. Word2vec will discard words that appear less than this number of times.

	vec_size

	Vec Size

	Specify the size of word vectors.

	window_size

	Window Size

	This specifies the size of the context window around a given word.

	epochs

	Epochs

	Specify the number of training iterations to run.

	init_learning_rate

	Init Learning Rate

	Set the starting learning rate.

	sent_sample_rate

	Sent Sample Rate

	Set the threshold for the occurrence of words. Those words that appear with higher frequency in the training data will be randomly down-sampled. An ideal range for this option 0, 1e-5.

	aggregateMethod

	AggregateMethod

	Specifies how to aggregate sequences of words.

Details

The Word2vec algorithm takes a text corpus as an input and produces the word vectors as output. The algorithm first creates a vocabulary from the training text data and then learns vector representations of the words.

More details are available at : http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/word2vec.html#

14-h2o

	H2ODRF
	Input

	Type

	Class

	Fields

	Details

	H2OGBM
	Input

	Type

	Class

	Fields

	Details

	H2OGLM
	Input

	Type

	Class

	Fields

	Details

	H2OGLRM
	Input

	Type

	Class

	Fields

	Details

	H2OIsolationForest
	Input

	Type

	Class

	Fields

	Details

	H2OKMeans
	Input

	Type

	Class

	Fields

	Details

	H2OModelLoad
	Type

	Class

	Fields

	H2OModelSave
	Type

	Class

	Fields

	H2OMojoLoad
	Type

	Class

	Fields

	H2OMojoSave
	Type

	Class

	Fields

	H2ONaiveBayes
	Input

	Type

	Class

	Fields

	Details

	H2ONeuralNetwork
	Input

	Type

	Class

	Fields

	Details

	H2OPCA
	Input

	Type

	Class

	Fields

	Details

	H2OScore
	Type

	Class

	Fields

	H2OWord2Vec
	Input

	Type

	Class

	Fields

	Details

15-aws-sagemaker

	KMeansSageMakerEstimator
	Type

	Class

	Fields

	SageMakerLinearLearnerBinaryClassifier
	Type

	Class

	Fields

	SageMakerLinearLearnerRegressor
	Type

	Class

	Fields

	PCASageMakerEstimator
	Type

	Class

	Fields

	SaveSageMakerFormat
	Type

	Class

	Fields

	XGBoostSageMakerEstimator
	Type

	Class

	Fields

KMeansSageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeKMeansSageMakerEstimator

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint Instance Type

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

	k

	K

	The number of clusters to create.

	featureDim

	Feature Dim

	The number of dimensions in dataset

SageMakerLinearLearnerBinaryClassifier

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeLinearLearnerBinaryClassifier

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint Instance Type

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

SageMakerLinearLearnerRegressor

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeLinearLearnerRegressor

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint InstanceType

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

PCASageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodePCASageMakerEstimator

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint Instance Type

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

	numComponents

	Num Components

	The number of principal components to find.

	featureDim

	Feature Dim

	The number of dimensions in dataset

SaveSageMakerFormat

Saves the DataFrame into the specified location in Sagemaker Format

Type

transform

Class

fire.nodes.sagemaker.NodeSaveSagemaker

Fields

	Name

	Title

	Description

	path

	Path

	Path where to save the Sagemaker files

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

	labelColumnName

	Label Column Name

	label column name

	featuresColumnName

	Features Column Name

	features column name

XGBoostSageMakerEstimator

Type

ml-estimator

Class

fire.nodes.sagemaker.NodeXGBoostSageMakerEstimator

Fields

	Name

	Title

	Description

	roleArn

	Role Arn

	Role arn to use sagemaker

	trainingInstanceType

	Training Instance Type

	InstanceType for training

	trainingInstanceCount

	Training Instance Count

	Number of Instance for training

	endpointInstanceType

	Endpoint Instance Type

	InstanceType for Endpoint

	endpointInitialInstanceCount

	Endpoint Initial Instance Count

	Number of Instance for Endpoint

	booster

	Booster

	Select the type of model to run at each iteration. It has 2 options: gbtree: tree-based models & gblinear: linear models

	silent

	Silent

	Silent mode is activated is set to 1, i.e. no running messages will be printed

	nthread

	NThread

	If you wish to run on all cores, value should not be entered and algorithm will detect automatically

	objective

	Objective

	This defines the loss function to be minimized

	numTrees

	Num Trees

	The number of rounds for boosting

	numClasses

	Num Classes

	For Objective: multi:softmax, you also need to set an additional num_class (number of classes) parameter defining the number of unique classes

	seed

	Seed

	Can be used for generating reproducible results and also for parameter tuning

ARIMA

Type

transform

Class

fire.nodes.ml.NodeARIMA

Fields

	Name

	Title

	Description

	inputCol

	Input Series Column

	Input Series Column Name

	p

	P

	

	d

	D

	

	q

	Q

	

	numFuture

	Future Forecast

	

ARIMATEST

Fits the ARIMA model and tests for accuracy. It splits the data for training and test, fits the ARIMA model on the training set and then finds the accuracy on the test set.

Type

transform

Class

fire.nodes.ml.NodeARIMATest

Fields

	Name

	Title

	Description

	inputCol

	Input Series Column

	Input Series Column Name

	split

	Training Split Size

	Split size for training and test. 0.5 splits it to 50% for training and 50% for test

	autofit

	AutoFit

	Should it automatically find the p, d, q values for the best model, or take the user supplied values

	p

	P

	

	d

	D

	

	q

	Q

	

CrossValidator

This node represents Cross Validator from Spark ML

Input

It takes in a DataFrame, Estimator and Evaluator as input.

Output

The incoming dataframe is passed to the output.

Type

ml-crossvalidator

Class

fire.nodes.ml.NodeCrossValidator

Fields

	Name

	Title

	Description

	numFolds

	Num Folds

	The number of folds

Details

This node represents Cross Validator from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#example-model-selection-via-cross-validation

16-util

	ARIMA
	Type

	Class

	Fields

	ARIMATEST
	Type

	Class

	Fields

	CrossValidator
	Input

	Output

	Type

	Class

	Fields

	Details

	ML Model Load
	Type

	Class

	Fields

	ML Model Save
	Input

	Output

	Type

	Class

	Fields

	Pipeline
	Input

	Output

	Type

	Class

	Fields

	Details

	ROC
	Type

	Class

	Fields

	TrainValidation plit
	Input

	Output

	Type

	Class

	Fields

	Details

ML Model Load

Type

ml-modelload

Class

fire.nodes.ml.NodeModelLoad

Fields

ML Model Save

This node saves the ML model generated at the specified path

Input

It takes in a Model and DataFrame as input.

Output

The incoming dataframe is passed to the output.

Type

ml-modelsave

Class

fire.nodes.ml.NodeModelSave

Fields

Pipeline

This node represents Pipeline from Spark ML

Input

It takes in a DataFrame as input.

Output

The incoming DataFrame is passed to the output.

Type

ml-pipeline

Class

fire.nodes.ml.NodePipeline

Fields

Details

This node represents Pipeline from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#pipeline-components

ROC

Type

transform

Class

fire.nodes.etl.NodeROC

Fields

	Name

	Title

	Description

	probabilityCol

	Probability Column

	

	labelCol

	Label Column

	

TrainValidation plit

This node represents Train Validation Split from Spark ML

Input

TrainValidationSplit takes an Estimator, a set of ParamMaps provided in the estimatorParamMaps parameter, and anEvaluator.

Output

The incoming DataFrame is passed to the output.

Type

ml-trainvalidationsplit

Class

fire.nodes.ml.NodeTrainValidationSplit

Fields

	Name

	Title

	Description

	trainRatio

	Train Ratio

	Training Ratio

Details

This node represents Train Validation Split from Spark ML.

More at Spark MLlib/ML docs page : http://spark.apache.org/docs/latest/ml-guide.html#example-model-selection-via-train-validation-split

10-AWS

	ReadAVRO-S3-AWS
	Type

	Class

	Fields

	ReadCSV-S3-AWS
	Type

	Class

	Fields

	ReadParquet-S3-AWS
	Type

	Class

	Fields

	ReadRedshift-AWS
	Type

	Class

	Fields

	SaveAVRO-S3-AWS
	Type

	Class

	Fields

	SaveCSV-S3-AWS
	Type

	Class

	Fields

	SaveParquet-S3-AWS
	Type

	Class

	Fields

	SaveRedshift-AWS
	Type

	Class

	Fields

ReadAVRO-S3-AWS

Read the AVRO file from specified S3 location

Type

dataset

Class

fire.nodes.aws.NodeReadAvroS3

Fields

	Name

	Title

	Description

	path

	Path To S3

	Path from where AVRO files to read (s3a://<bucketName>),If you don’t give path it will browse your s3 bucket list

	outputColNames

	Column Names for the AVRO

	New Output Columns of the SQL

	outputColTypes

	Column Types for the AVRO

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the AVRO

	Format of the Output Columns

ReadCSV-S3-AWS

Read the CSV file from specified S3 location

Type

dataset

Class

fire.nodes.aws.NodeReadCSVS3

Fields

	Name

	Title

	Description

	path

	Path To S3

	Path from where CSV files to read (s3a://<bucketName>),If you don’t give path it will browse your s3 bucket list

ReadParquet-S3-AWS

Read the Parquet file from specified S3 location

Type

dataset

Class

fire.nodes.aws.NodeReadParquetS3

Fields

	Name

	Title

	Description

	path

	Path To S3

	Path from where Parquet files to read (s3a://<bucketName>),If you don’t give path it will browse your s3 bucket list

	outputColNames

	Column Names for the Parquet

	New Output Columns of the SQL

	outputColTypes

	Column Types for the Parquet

	Data Type of the Output Columns

	outputColFormats

	Column Formats for the Parquet

	Format of the Output Columns

ReadRedshift-AWS

This node reads data from Redshift using JDBC.

Type

dataset

Class

fire.nodes.aws.NodeReadRedshift

Fields

	Name

	Title

	Description

	url

	URL

	The JDBC URL to connect to

	dbtable

	Redshift Table

	The Redshift table that should be read. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	awsAccessKeyId

	AWS Access Key Id

	AWS Access Key Id

	awsSecretAccessKey

	AWS Secret Access Key

	AWS Secret Access Key

	tempS3Dir

	Temporary S3 directory

	Temporary S3 directory

	outputColNames

	Column Names of the Table

	Output Columns Names of the Table

	outputColTypes

	Column Types of the Table

	Output Column Types of the Table

	outputColFormats

	Column Formats

	Output Column Formats

SaveAVRO-S3-AWS

Saves the DataFrame into the specified S3 location in AVRO Format

Type

transform

Class

fire.nodes.aws.NodeSaveAvroS3

Fields

	Name

	Title

	Description

	path

	Path To S3

	Path where to save the AVRO files Ex- (s3a://<bucketName>),If you don’t give path it will browse your s3 bucket list

SaveCSV-S3-AWS

Saves the DataFrame into the specified S3 location in CSV Format

Type

transform

Class

fire.nodes.aws.NodeSaveCSVS3

Fields

	Name

	Title

	Description

	path

	Path To S3

	Path where to save the CSV files Ex- (s3a://<bucketName>),If you don’t give path it will browse your s3 bucket list

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

SaveParquet-S3-AWS

Saves the DataFrame into the specified S3 location in Parquet Format

Type

transform

Class

fire.nodes.aws.NodeSaveParquetS3

Fields

	Name

	Title

	Description

	path

	Path To S3

	Path where to save the Parquet files Ex- (s3a://<bucketName>),If you don’t give path it will browse your s3 bucket list

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

SaveRedshift-AWS

This node save data to Redshift using JDBC.

Type

transform

Class

fire.nodes.aws.NodeSaveRedshift

Fields

	Name

	Title

	Description

	url

	URL

	The JDBC URL to connect to

	dbtable

	Redshift Table

	The Redshift table that should be write. Note that anything that is valid in a FROM clause of a SQL query can be used. For example, instead of a full table you could also use a subquery in parentheses.

	awsAccessKeyId

	AWS Access Key Id

	AWS Access Key Id

	awsSecretAccessKey

	AWS Secret Access Key

	AWS Secret Access Key

	tempS3Dir

	Temporary S3 directory

	Temporary S3 directory

	saveMode

	Save Mode

	Whether to Append, Overwrite or Error if the path Exists

11-OpenNLP

	NodeOpenNLPDocumentCategorizer
	Input

	Output

	Type

	Class

	Fields

	Details

	OpenNLPNameFinder
	Input

	Output

	Type

	Class

	Fields

	Details

	OpenNLPSentenceDetector
	Input

	Type

	Class

	Fields

	Details

NodeOpenNLPDocumentCategorizer

This node classifies text into pre-defined categories using OpenNLP - https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.doccat. It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

Input

It takes in a DataFrame as input.

Output

It finds the Document Category and stores the result in the specified output column.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPDocumentCategorizer

Fields

	Name

	Title

	Description

	model

	Model

	Path to the model file (on HDFS when running on the cluster)

	inputCol

	Input Text Column

	input cpulmn name

	outputCol

	Output Column

	Output Column containing the results

Details

This node classifies text into pre-defined categories using OpenNLP

https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.doccat.

It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

OpenNLPNameFinder

This node finds names using OpenNLP. It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

Input

It takes in a DataFrame as input.

Output

It extracts the names from the specified column and stores the result in the specified output column.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPNameFinder

Fields

	Name

	Title

	Description

	model

	Model

	Path to the model file (on HDFS when running on the cluster)

	inputCol

	Input Text Column

	input column name

	outputCol

	Output Column

	Output Column containing the results

Details

This node performs namefinder using OpenNLP to easily detect named entities and numbers in text.

To be able to detect entities the Name Finder needs a model. The model is dependent on the language and entity type it was trained for.

https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition.cmdline

The OpenNLP project offers a number of pre-trained name finder models which are trained on various freely available corpora. They can be downloaded at the OpenNLP download page.

http://opennlp.sourceforge.net/models-1.5/

OpenNLPSentenceDetector

This node detects sentences using OpenNLP - https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.sentdetect. It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

Input

It takes in a DataFrame as input.

Type

transform

Class

fire.nodes.opennlp.NodeOpenNLPSentenceDetector

Fields

	Name

	Title

	Description

	model

	Model

	Path to the model file (on HDFS when running on the cluster)

	inputCol

	Input Text Column

	input cpulmn name

	outputCol

	Output Column

	Output Column containing the results

Details

This node detects sentences using OpenNLP -

https://opennlp.apache.org/documentation/1.7.2/manual/opennlp.html#tools.sentdetect.

It takes in the OpenNLP model. Models can be downloaded from http://opennlp.sourceforge.net/models-1.5/

StructuredStreamingConsoleSink

It output the DataFrame to the console

Input

It takes in DataFrame as input

Output

It writes the incoming DataFrame to the console.

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingConsoleSink

Fields

	Name

	Title

	Description

	outputMode

	Output Mode

	Output Mode for saving to Files

StructuredStreamingCSV

It monitors a specified directory for new files. It keeps reading in any new files created in the directory.

Input

It does not take any DataFrame as input

Output

It reads the new files and creates DataFrame from the content of the text files. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingCSV

Fields

	Name

	Title

	Description

	path

	Path

	Path of the Text file/directory

	separator

	Separator

	CSV Separator

	outputColNames

	Column Names for the CSV

	Output Column Names

	outputColTypes

	Column Types for the CSV

	Output Column Types

	outputColFormats

	Column Formats for the CSV

	Output Column Formats

StructuredStreamingFileSink

It writes the DataFrame to files with Structured Streaming

Input

It takes in DataFrame as input

Output

It writes the incoming DataFrame to files.

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingFileSink

Fields

	Name

	Title

	Description

	path

	Path

	Path where to write the files

	outputMode

	Output Mode

	Output Mode for saving to Files

	checkpointLocation

	Checkpoint Location

	Checkpoint Location on HDFS compatible file system for Streaming

	format

	Format

	File Format

	partitionBy

	Partition By Columns

	Partition By Columns separated by space (can be empty in which case partitionBy would not be applied)

12-StructuredStreaming

	StructuredStreamingConsoleSink
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingCSV
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingFileSink
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingKafka
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingKinesis
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingSocket
	Input

	Output

	Type

	Class

	Fields

	StructuredStreamingHiveSink
	Type

	Class

	Fields

	StructuredStreamingHiveSink2
	Type

	Class

	Fields

StructuredStreamingKafka

Reads in streaming text from topics in Apache Kafka

Input

It does not take any DataFrame as input

Output

It reads events from Kafka and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingKafka

Fields

	Name

	Title

	Description

	batchDuration

	Batch Duration in Seconds

	Batch Duration in Seconds

	brokers

	Kafka Brokers

	Kafka Brokers

	group

	Consumer Group

	Consumer Group

	topics

	Kafka Topics

	List of Topics separated by , (comma)

	autoOffsetReset

	auto.offset.reset

	Auto Offset Reset

	enableAutoCommit

	enable.auto.commit

	Enable Auto Commit

	kafkaParamsKeys

	Params Key/Value Pairs

	More Config Values

	kafkaParamsValues

	Parms Key/Value Pairs

	More Config Values

StructuredStreamingKinesis

Reads in streaming text from Kinesis stream

Input

It does not take any DataFrame as input

Output

It reads events from Kinesis and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingKinesis

Fields

	Name

	Title

	Description

	streamName

	Stream Name

	Kinesis Stream Name

	endpointUrl

	Endpoint Url

	Kinesis Endpoint Url

	editorData

	Editor Data

	Data to be used for testing in the Workflow Editor

StructuredStreamingSocket

Reads in streaming text from a socket

Input

It does not take any DataFrame as input

Output

It reads events a socket and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingSocket

Fields

	Name

	Title

	Description

	host

	Hostname

	Host to connect to for listening

	port

	Port

	Port to connect to

StructuredStreamingHiveSink

Saves the streaming data into a HIVE Table

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingHiveSink

Fields

	Name

	Title

	Description

	databaseName

	HIVE Database

	Name of the HIVE Database

	tableName

	HIVE Table

	Name of the HIVE table

StructuredStreamingHiveSink2

Saves the streaming data into an Apache HIVE Table

Type

transform

Class

fire.nodes.structuredstreaming.NodeStructuredStreamingHiveSink2

Fields

	Name

	Title

	Description

	databaseName

	HIVE Database

	Name of the HIVE Database

	tableName

	HIVE Table

	Name of the HIVE table

13-Streaming

	StreamingKafka
	Input

	Output

	Type

	Class

	Fields

	StreamingSocketTextStream
	Input

	Output

	Type

	Class

	Fields

	Details

	Key Fields

	Examples

	StreamingTextFileStream
	Input

	Output

	Type

	Class

	Fields

StreamingKafka

Reads in streaming text from topics in Apache Kafka

Input

It does not take any DataFrame as input

Output

It reads events from Kafka and creates DataFrame from the resulting rows. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.streaming.NodeStreamingKafka

Fields

	Name

	Title

	Description

	batchDuration

	Batch Duration in Seconds

	Batch Duration in Seconds

	brokers

	Kafka Brokers

	Kafka Brokers

	group

	Consumer Group

	Consumer Group

	topics

	Kafka Topics

	List of Topics separated by , (comma)

	autoOffsetReset

	auto.offset.reset

	Auto Offset Reset

	enableAutoCommit

	enable.auto.commit

	Enable Auto Commit

	kafkaParamsKeys

	Params Key/Value Pairs

	More Config Values

	kafkaParamsValues

	Parms Key/Value Pairs

	More Config Values

StreamingSocketTextStream

Reads in streaming text from a socket

Input

It does not take any DataFrame as input

Output

It creates DataFrame from reading data from a socket. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.streaming.NodeStreamingSocketTextStream

Fields

	Name

	Title

	Description

	batchDuration

	Batch Duration in Seconds

	Batch Duration in Seconds

	hostname

	Hostname

	Host to connect to for listening

	port

	Port

	Port to connect to

Details

This Processor reads in messages from a Socket

Key Fields

Below are the key fields of this Processor.

	hostname: this is the name of the host from where to read in the messages

	port: this is the port number from where to read in the messages

Examples

Below is an example of the fields:

	hostname: localhost

	port: 8099

StreamingTextFileStream

It monitors a specified directory for new files. It keeps reading in any new files created in the directory.

Input

It does not take any DataFrame as input

Output

It reads the new files and creates DataFrame from the content of the text files. This DataFrame is passed to the output Nodes.

Type

sparkstreaming

Class

fire.nodes.streaming.NodeStreamingTextFileStream

Fields

	Name

	Title

	Description

	path

	Path

	Directory from where to pick up files from

	batchDuration

	Batch Duration in Seconds

	Batch Duration in Seconds

	outputCol

	Output Column

	Output Column

CacheDataFrame

Caches the DataFrame with the provided StorageLevel

Input

It takes in a DataFrame as input

Output

The input DataFrame is cached with the specified storage level and send to the output

Type

transform

Class

fire.nodes.util.NodeCacheDataFrame

Fields

	Name

	Title

	Description

	storageLevel

	Storage Level

	storage level name

Coalesce

This node coalesces the DataFrame into specified number of Partitions

Input

This type of node takes in a DataFrame and transforms it to another DataFrame.

Output

The output DataFrame has the specified number of partitions

Type

transform

Class

fire.nodes.etl.NodeCoalesce

Fields

	Name

	Title

	Description

	numPartitions

	Number of Partitions

	input for number of partitions

Details

This node coalesces the DataFrame into specified number of Partitions.

It is specially helpful for the case when too many small files are being created. In such a scenario, the Coalesce node can be used to limit the number of output files produced.

Dedup

This node is used for problems like entity resolution or data matching. Entity resolution or Data matching is the problem of finding and linking different mentions of the same entity in a single data source or across multiple data sources.

Input

It takes in a DataFrame as input

Output

Dataframe with confidence score field and other selected scores for entities

Type

transform

Class

fire.nodes.ml.NodeDedup

Fields

	Name

	Title

	Description

	confidenceScore

	Confidence Score

	Confidence Score

	lhsCols

	LHS Variables

	LHS columns for matching

	rhsCols

	RHS Variables

	RHS columns for matching

	matchingAlgorithms

	Algorithm to use

	Algorithm to use for matching

	matchingWeights

	Weights

	Weights for matches

	outputCols

	Output Column

	Output Column

Details

Levenstein

The Levenshtein distance between two strings is defined as the minimum number of edits needed to transform one string into the other, with the allowable edit operations being insertion, deletion, or substitution of a single character.

How many char you change to make two strings equal.

JaroWinker

Jaro–Winkler distance for two strings is, the more similar the strings are. The Jaro–Winkler distance metric is designed and best suited for short strings such as person names. The score is normalized such that 0 equates to no similarity and 1 is an exact match.

Good for short words, typos and nikename.

Fullmatch

Fullmatch distance for two strings is, how two strings are match exactly. The score is assigned such that 1 is for exact match and 0 is for not match.

Jaccard

The Jaccard similarity measures similarity between finite sample sets, and is defined as the cardinality of the intersection of sets divided by the cardinality of the union of the sample sets. Suppose you want to find jaccard similarity between two sets A and B it is the ration of cardinality of A ∩ B and A ∪ B.

Sparkflows provide default 3-gram Jaccard similarity measures.

Longest common subsequences(LCS): LCS distance between strings s1 and s2, computed as |s1| +|s2| - 2 * |LCSfunction(s1, s2)| and distance is normalized between 0 and 1.

LCSfunction returns the length of Longest Common Subsequence (LCS) between strings s1 and s2.

Notional distance

Notional distance between two numbers X and Y, computed as abs(X - Y) / abs(x) + abs(Y).

Date Difference

Date Difference gives number of days between two dates(yyyy-MM-dd).

ExecuteWorkflow

Fires the given workflow. Does not wait for the workflow to complete to resume execution

Type

transform

Class

fire.nodes.util.NodeExecuteWorkflow

Fields

14-Util

	CacheDataFrame
	Input

	Output

	Type

	Class

	Fields

	Coalesce
	Input

	Output

	Type

	Class

	Fields

	Details

	Dedup
	Input

	Output

	Type

	Class

	Fields

	Details

	ExecuteWorkflow
	Type

	Class

	Fields

	NumberOfPartitions
	Type

	Class

	Fields

	OCR
	OCR

	PrintNRows
	Type

	Class

	Fields

	ReadParameters
	Input

	Output

	Type

	Class

	Fields

	Repartition
	Input

	Type

	Class

	Fields

	Sample PrintNRows
	Type

	Class

	Fields

	SpecifyParameters
	Type

	Class

	Fields

	StickyNote
	Type

	Class

	Fields

	UnpersistDataFrame
	Input

	Output

	Type

	Class

	Fields

NumberOfPartitions

This node will get the number partitions in input dataframe.

Type

transform

Class

fire.nodes.util.NodeGetNumberOfPartitions

Fields

PrintNRows

Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output

Type

transform

Class

fire.nodes.util.NodePrintFirstNRows

Fields

ReadParameters

Reads in the parameters from the given file.

Input

Input file has records in the following form on each line : name=value

Output

It adds the input parameters into the JobContext

Type

shellcommand

Class

fire.nodes.util.NodeReadParameters

Fields

	Name

	Title

	Description

	path

	Path

	Path of the parameters file containing the parameter name and value in each line

Repartition

This node repartitions incoming dataframe into a specified number of partitions

Input

It accepts a DataFrame as input from the previous Node

Type

transform

Class

fire.nodes.etl.NodeRepartition

Fields

	Name

	Title

	Description

	numPartitions

	Number of Partitions

	Number of Partitions

Sample PrintNRows

Prints the specified number of records in the DataFrame. It is useful for seeing intermediate output

Type

transform

Class

fire.nodes.util.NodeSamplePrintFirstNRows

Fields

SpecifyParameters

Provides additional parameters to the workflow. When running with spark-submit, variables can also be given on the command line with –var name=value.

Type

doc

Class

fire.nodes.util.NodeSpecifyParameters

Fields

	Name

	Title

	Description

	names

	Parameter Names

	Parameter Names

	values

	Parameter Values

	Parameter Values

StickyNote

Allows capturing Notes on the Workflow

Type

sticky

Class

fire.nodes.doc.NodeStickyNote

Fields

	Name

	Title

	Description

	comment

	Comment

	Comments for the Workflow

UnpersistDataFrame

Unpersists the output DataFrames of the given Nodes

Input

It takes in a DataFrame as input

Output

The outputs the incoming DataFrame

Type

transform

Class

fire.nodes.util.NodeUnpersistDataFrame

Fields

	Name

	Title

	Description

	nodeIdsToUnpersist

	Node ID to Unpersist

	Output of node to unpersist

OCR

	OCR
	Type

	Class

	Fields

OCR

Performs Optical Character Recognition using the Tesseract Library. Please make sure the TESSDATA_PREFIX environment variable is set to the parent directory of your ‘tessdata’ directory. Download the tessdata directory with git clone https://github.com/tesseract-ocr/tessdata.git

Type

transform

Class

fire.nodes.ocr.NodeOCRTesseract

Fields

	Name

	Title

	Description

	imageNameCol

	Image Name Column

	input image column name

	imageCol

	Image Column

	input image column name

	outputCol

	Output OCR Column

	output column name

ApacheLogs

Reads in Apache Log files from a given path, parses them and loads them into a DataFrame

Type

dataset

Class

fire.nodes.logs.NodeApacheFileAccessLog

Fields

	Name

	Title

	Description

	path

	Path

	Full path for the directory or file for the Apache File Logs

15-Logs

	ApacheLogs
	Type

	Class

	Fields

16-Sftp

	SFTP
	Type

	Class

	Fields

SFTP

Secure file transfer protocol

Type

dataset

Class

fire.nodes.sftp.NodeSftp

Fields

	Name

	Title

	Description

	sftpHost

	Sftp Host

	IP address of sftp

	sftPort

	Sft Port

	Port no of SFTP. Default port is 22

	sftpUser

	Sftp User Name

	SFTP User Name

	sftpPass

	Sftp Password

	SFTP User Password

	sftpUserDir

	Sftp User Directory

	user directory path(File take from)

	sftpDirectory

	Sftp Directory

	server directory path(Inside SFTP uploads folder ‘/uploads’)

	pemKey

	Pem Key

	Path of pem key directory

March 2020

New Features

	Integeration with Databricks

	Added Browsing databricks DB, Databricks Cluster & DBFS

	Added scheduling in standalone mode

	Compatible with Amazon Aurora database

UI Improvement

	Improvement of metrics which include stage informations

	Improvement in JOIN USING SQL Processors

More Workflow Execution API’s

Consume the message sent from YarnRestWorkflowContext

jobId=1

message=test:

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/plain' 'http://localhost:8080/api/v1/spark-job/messages?jobId=1&message=test'

Get the Spark Configuration for the username

curl -X GET –header ‘Accept: application/json’ ‘http://localhost:8080/api/v1/spark-configs/username/admin’

List all the workflow executions by all users

curl -X GET –header ‘Accept: application/json’ ‘http://localhost:8080/api/v1/workflow-executions/users’

More Workflows REST API

Execute Workflow Locally Synchronous

	nodeId : 1

	projectId : 1

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --header 'api_key: cookies' -d '{"name":"SQL","nodes":[],"edges":[]}' 'http://localhost:8080/api/v1/workflows/nodes/1/execute?projectId=1'

Get the updated values for a node in the workflow

	nodeId: 1

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/html' --header 'nodeId: 1' -d '{"name":"string","nodes":[],"edges":[]}' 'http://localhost:8080/nodeWithUpdatedValuesJSON' -b /tmp/cookies.txt

Get the list of nodes that are in an inconsistent state - mainly with regard to schema

	nodeId: 1

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/html' -d '{"name":"Elastic Search","nodes":[],"edges":[]}' 'http://localhost:8080/nodesInconsistentStateJSON' -b /tmp/cookies.txt

Get the value of a given field in a Node of a Workflow

	“nodeId”: “2”,

	“fieldName”: “imageCol”

curl -X POST --header 'Content-Type: application/json' --header 'Accept: text/html' --header 'nodeId: 2' --header 'fieldName: imageCol' -d '{"name":"OCR","nodes":[],"edges":[]}' 'http://localhost:8080/getValue1d' -b /tmp/cookies.txt

Load Example Applications

Load Example Applications

An example request for Loading Example Applications

curl -X GET --header 'Accept: text/plain' 'http://localhost:8080/api/v1/apps/example-datasets-and-workflows/load' -b /tmp/cookies.txt

An example response:

Since already Example application is there

"Example Applications might already have been loaded"

Get input schema For a Node

	nodeId: 1

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --header 'api_key: cookies' -d '{"name":"string","nodes":[],"edges":[]}

‘ ‘http://localhost:8080/api/v1/nodes/2/schema/input?projectId=1’

Get output schema of a Node

	nodeId: 1

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' --header 'api_key: cookies' -d '{"name":"string","nodes":[],"edges":[]}

‘ ‘http://localhost:8080/api/v1/nodes/2/schema/output?projectId=3’

Workflow Execution API

List all Executions

	Endpoint

	HTTP Method

	/api/v1/workflow-executions?page=0&size=1000

	GET

Request Structure

For Listing all the executions, we need to add below parameters:

	Field Name

	Description

	page

	The number of pages can be added.

	size

	The different size can be added.

An Example Response:

[
{
 "id": 135,
 "analysisFlowId": 161,
 "userId": 33,
 "projectId": 33,
 "analysisFlowScheduleId": null,
 "status": 2,
 "name": "Test_csv",
 "category": "-",
 "description": "Fired Manually",
 "logs": "/tmp/fire/workflowlogs/workflow-5342148677548385044.log",
 "fireJobId": "02aedbe5-0713-4172-9f7c-c63272f7cbd9",
 "applicationId": "application_1560754639341_5932",
 "uiWebUrl": "http://hostname:4042",
 "metrics": null,
 "startTime": 1566821007783,
 "endTime": 1566821024075,
 "emailOnSuccess": null,
 "emailOnFailure": null
},

List Executions of Workflow

	Endpoint

	HTTP Method

	/api/v1/workflow-executions/workflows/{workflowId}

	GET

Request Structure

For Listing executions of a workflow, we need to add below parameters:

	Field Name

	Description

	workflowId

	The canonical identifier of the List execution of workflow. This field is required.

An Example Response:

 [
 {
 "id": 99,
 "analysisFlowId": 131,
 "userId": 33,
 "projectId": 33,
 "analysisFlowScheduleId": null,
 "status": 2,
 "name": "Test_workflow",
 "category": "-",
 "description": "Fired Manually",
 "logs": "/tmp/fire/workflowlogs/workflow-4439919411814145818.log",
 "fireJobId": "7b7b7dd5-b27b-419e-b853-794b5f53a5b8",
 "applicationId": "application_1560754639341_5929",
 "uiWebUrl": "http://hostname:4041",
 "metrics": null,
 "startTime": 1566795625424,
 "endTime": 1566795650970,
 "emailOnSuccess": null,
 "emailOnFailure": null
}
],

GET Status of Workflow Execution

	Endpoint

	HTTP Method

	/api/v1/workflow-executions/{workflowExecutionId}/status

	GET

Request Structure

For getting Status of Workflow Execution, we need to add below parameter:

	Field Name

	Description

	workflowExecutionId

	The canonical identifier of the Workflow Execution. This field is required.

An Example Responses:

KILLED
RUNNING
STOPPED
COMPLETED
FAILED
STARTING
STOP

Stop Workflow Execution

	Endpoint

	HTTP Method

	/api/v1/workflow-execution/{workflowExecutionId}/stop

	POST

Request Structure

For Stopping execution of a workflow, we need to add below parameters:

	Field Name

	Description

	workflowExecutionId

	The canonical identifier of the Execution of workflow. This field is required.

An Example Response:

{"status":"ok","message":"Stopping Analysis Flow Execution"}

Kill Workflow Execution

	Endpoint

	HTTP Method

	/api/v1/workflow-execution/{workflowExecutionId}/kill

	POST

Request Structure

For Killing execution of a workflow, we need to add below parameters:

	Field Name

	Description

	workflowExecutionId

	The canonical identifier of the Execution of workflow. This field is required.

An Example Response:

Killed YARN application : yarn application -kill application_1560754639341_5930,Exit Value : 0

Delete Workflow Executions by days

	Endpoint

	HTTP Method

	/api/v1/workflow-executions/days/{days}

	DELETE

Request Structure

For deleting execution of a workflow, we need to add below parameters:

	Field Name

	Description

	days

	The canonical identifier of the Execution of workflow. This field is required.

An Example Response:

Workflow executions deleted successfully

Get Latest Five Executions

	Endpoint

	HTTP Method

	/api/v1/workflow-executions/latest

	GET

An Example Response:

[
{
"id": 193,
"userId": 33,
"uuid": "9213211a-c0ae-40e0-be80-824800e06d82",
"name": "string",
"category": "string",
"content": "{\"name\":\"string\",\"uuid\":\"9213211a-c0ae-40e0-be80-824800e06d82\",\"category\":\"string\",\"description\":\"string\",\"parameters\":\"string\",\"nodes\":[{\"id\":\"string\",\"path\":\"string\",\"name\":\"string\",\"iconImage\":\"string\",\"description\":\"string\",\"details\":\"\",\"examples\":\"\",\"type\":\"string\",\"nodeClass\":\"string\",\"x\":\"string\",\"y\":\"string\",\"fields\":[{\"name\":\"string\",\"value\":\"string\",\"widget\":\"string\",\"title\":\"string\",\"description\":\"string\",\"optionsMap\":{},\"datatypes\":[\"string\"],\"optionsArray\":[\"string\"],\"required\":true,\"display\":true,\"editable\":true,\"disableRefresh\":true}],\"engine\":\"string\"}],\"edges\":[{\"source\":\"string\",\"target\":\"string\",\"id\":0}],\"dataSetDetails\":[],\"engine\":\"string\"}",
"description": "string",
"version": 0,
"dateCreated": 1566831921251,
"dateLastUpdated": 1566831921251,
"lockedByUserId": null,
"permission": null,
"workflow": {
 "name": "string",
 "uuid": "9213211a-c0ae-40e0-be80-824800e06d82",
 "category": "string",
 "description": "string",
 "parameters": "string",
 "nodes": [
 {
 "id": "string",
 "path": "string",
 "name": "string",
 "iconImage": "string",
 "description": "string",
 "details": "",
 "examples": "",
 "type": "string",
 "nodeClass": "string",
 "x": "string",
 "y": "string",
 "fields": [
 {
 "name": "string",
 "value": "string",
 "widget": "string",
 "title": "string",
 "description": "string",
 "optionsMap": {},
 "datatypes": [
 "string"
],
 "optionsArray": [
 "string"
],
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": true
 }
],
 "engine": "string"
 }
],
 "edges": [
 {
 "source": "string",
 "target": "string",
 "id": 0
 }
],
 "dataSetDetails": [],
 "engine": "string",
 "h2OWorkflow": false
},
"projectId": 33,
"engine": "string"
},

Dataset API

The Dataset REST APIs, allow you to manage the Datasets.

Below are the various Dataset APIs available in Fire Insights. They should be executed after you have logged into Fire Insights.

Create

	Endpoint

	HTTP Method

	/api/v1/datasets

	POST

An example request to Create Dataset:

{
 "category": "string",
 "datasetSchema": "string",
 "datasetType": "CSV",
 "dateCreated": "2019-08-28T04:19:09.520Z",
 "dateLastUpdated": "2019-08-28T04:19:09.520Z",
 "delimiter": "string",
 "description": "string",
"filterLinesContaining": "string",
"header": true,
"json": "string",
"name": "string",
"path": "string",
"permission": "PERMISSION_NONE",
"projectId": 33,
"readOptions": "string",
"readOptionsModel": {},
"sampleData": {
"cells": [
 [
 "string"
]
],
"headers": [
 "string"
]
},
 "schemaModel": {
 "schemaColList": [
 {
 "colFormat": "string",
 "colMLType": "NUMERIC",
 "colName": "string",
 "colType": "ARRAY"
 }
]
},
 "userId": 0,
 "uuid": "string",
 "version": 0
},

Request Structure

For Creating a datset, Id value should not be passed.

	Parameter

	Value

	Id

	id value should not be passed, As its not required

An example response:

Dataset created successfully.

Update

	Endpoint

	HTTP Method

	/api/v1/datasets

	POST

An example request to Update Dataset:

{
 "id": 129
 "category": "string",
 "datasetSchema": "string",
 "datasetType": "CSV",
 "dateCreated": "2019-08-28T04:19:09.520Z",
 "dateLastUpdated": "2019-08-28T04:19:09.520Z",
 "delimiter": "string",
 "description": "string",
"filterLinesContaining": "string",
"header": true,
"json": "string",
"name": "string",
"path": "string",
"permission": "PERMISSION_NONE",
"projectId": 33,
"readOptions": "string",
"readOptionsModel": {},
"sampleData": {
"cells": [
 [
 "string"
]
],
"headers": [
 "string"
]
},
 "schemaModel": {
 "schemaColList": [
 {
 "colFormat": "string",
 "colMLType": "NUMERIC",
 "colName": "string",
 "colType": "ARRAY"
 }
]
},
 "userId": 0,
 "uuid": "string",
 "version": 0
},

Request Structure

For Updating datset, Id value should be passed.

	Parameter

	Value

	Id

	id value should be passed, As its required

An example response with Dataset Id “129”:

Dataset updated successfully

GET List of Datasets by Application

	Endpoint

	HTTP Method

	/api/v1/datasets/projects/{projectId}

	GET

Request Structure

For Getting List of Datasets by Application, Below Parameter are required

	Parameter

	Value

	projectId

	The canonical identifier for Getting List of Datasets by Application. This field is required.

An example response:

{
 "string": "Test",
 "1e13ec2a-4094-405e-a6e7-ffed3bd027f7": "Test-dataset"
},

Delete Dataset

	Endpoint

	HTTP Method

	/api/v1/datasets/{datasetId}

	DELETE

Request Structure

For Getting List of Datasets by Application, Below Parameter are required

An example response with datasetId 98 & projectId 33:

Dataset with id 98 deleted successfully

GET Dataset by Id

	Endpoint

	HTTP Method

	/api/v1/datasets/{datasetId}

	GET

Request Structure

For Getting List of Datasets by Application, Below Parameter are required

An example response with datasetId 65 & projectId 33:

{
 "id": 65,
 "userId": 33,
 "uuid": "1e13ec2a-4094-405e-a6e7-ffed3bd027f7",
 "version": 0,
 "name": "Test-dataset",
 "category": null,
 "description": "Test",
 "header": true,
 "readOptions": null,
 "path": "/user/sparkflows/Clickthru.csv",
 "delimiter": ",",
 "datasetType": "CSV",
 "filterLinesContaining": null,
 "datasetSchema": "{colNames:[\"Timestamp\",\"UserId\",\"IP Address\",\"Product Id\"],colTypes:[\"STRING\",\"INTEGER\",\"STRING\",\"INTEGER\"],colFormats:[\"\",\"\",\"\",\"\"],colMLTypes:[\"TEXT\",\"NUMERIC\",\"TEXT\",\"NUMERIC\"]}",
 "dateCreated": 1566880637842,
 "dateLastUpdated": 1566880637846,
 "permission": null,
 "readOptionsModel": null,
 "schemaModel": {
 "schemaColList": [
 {
 "colName": "Timestamp",
 "colType": "STRING",
 "colFormat": "",
 "colMLType": "TEXT"
 },
 {
 "colName": "UserId",
 "colType": "INTEGER",
 "colFormat": "",
 "colMLType": "NUMERIC"
 },
 {
 "colName": "IP Address",
 "colType": "STRING",
 "colFormat": "",
 "colMLType": "TEXT"
 },
 {
 "colName": "Product Id",
 "colType": "INTEGER",
 "colFormat": "",
 "colMLType": "NUMERIC"
 }
]
 },
 "sampleData": {
 "headers": [
 "Timestamp",
 "UserId",
 "IP Address",
 " Product Id"
],
 "cells": [
 [
 "9:03 AM",
 "275",
 "207.51.113.192",
 "1"
],
 [
 "12:57 AM",
 "586",
 "62.34.98.94",
 "2"
],
 [
 "2:45 AM",
 "508",
 "20.237.172.182",
 "3"
],
 [
 "2:13 PM",
 "378",
 "69.215.255.150",
 "4"
],
 [
 "9:27 AM",
 "965",
 "56.101.183.251",
 "5"
],
 [
 "8:18 AM",
 "263",
 "9.151.97.180",
 "6"
],
 [
 "9:40 AM",
 "670",
 "101.195.1.186",
 "7"
],
 [
 "7:14 AM",
 "447",
 "232.29.216.95",
 "8"
],
 [
 "12:57 AM",
 "33",
 "85.119.50.62",
 "9"
],
 [
 "12:56 AM",
 "589",
 "185.132.243.178",
 "10"
],
 [
 "11:04 PM",
 "22",
 "120.212.232.218",
 "11"
],
 [
 "8:29 PM",
 "504",
 "226.70.25.117",
 "12"
],
 [
 "5:18 PM",
 "228",
 "213.53.100.18",
 "13"
],
 [
 "2:56 PM",
 "536",
 "60.65.25.167",
 "14"
],
 [
 "3:57 AM",
 "46",
 "149.156.17.120",
 "15"
],
 [
 "8:05 AM",
 "812",
 "23.213.182.107",
 "16"
],
 [
 "12:02 PM",
 "980",
 "93.20.165.16",
 "17"
],
 [
 "12:53 PM",
 "915",
 "24.180.112.147",
 "18"
],
 [
 "11:32 AM",
 "814",
 "110.81.139.11",
 "19"
],
 [
 "11:01 PM",
 "429",
 "115.123.246.193",
 "20"
]
]
 },
"json": "{\"id\":65,\"userId\":33,\"uuid\":\"1e13ec2a-4094-405e-a6e7-ffed3bd027f7\",\"version\":0,\"name\":\"Test-dataset\",\"description\":\"Test\",\"header\":true,\"path\":\"/user/sparkflows/Clickthru.csv\",\"delimiter\":\",\",\"datasetType\":\"CSV\",\"datasetSchema\":\"{colNames:[\\\"Timestamp\\\",\\\"UserId\\\",\\\"IP Address\\\",\\\"Product Id\\\"],colTypes:[\\\"STRING\\\",\\\"INTEGER\\\",\\\"STRING\\\",\\\"INTEGER\\\"],colFormats:[\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\"],colMLTypes:[\\\"TEXT\\\",\\\"NUMERIC\\\",\\\"TEXT\\\",\\\"NUMERIC\\\"]}\",\"dateCreated\":\"Aug 27, 2019 4:37:17 AM\",\"dateLastUpdated\":\"Aug 27, 2019 4:37:17 AM\",\"schemaModel\":{\"schemaColList\":[{\"colName\":\"Timestamp\",\"colType\":\"STRING\",\"colFormat\":\"\",\"colMLType\":\"TEXT\"},{\"colName\":\"UserId\",\"colType\":\"INTEGER\",\"colFormat\":\"\",\"colMLType\":\"NUMERIC\"},{\"colName\":\"IP Address\",\"colType\":\"STRING\",\"colFormat\":\"\",\"colMLType\":\"TEXT\"},{\"colName\":\"Product Id\",\"colType\":\"INTEGER\",\"colFormat\":\"\",\"colMLType\":\"NUMERIC\"}]},\"projectId\":33}",
"projectId": 33
 },

REST API Reference

Fire Insights provides REST API for interacting with it.

Swagger is also enabled and is available at http://<machine-name>:8080/swagger-ui.html

There are various categories of REST API’s available. This document describes the details of the various REST API’s in Fire Insights.

	Dataset API
	Create

	Update

	GET List of Datasets by Application

	Delete Dataset

	GET Dataset by Id

	Workflow API
	Create

	Execute

	Update

	List

	Delete

	Workflow Execution API
	List all Executions

	List Executions of Workflow

	GET Status of Workflow Execution

	Stop Workflow Execution

	Kill Workflow Execution

	Delete Workflow Executions by days

	Get Latest Five Executions

	processor API
	Get Processors List by Engine

	Get Node Count

	GET Processor Details by Name

processor API

The Processors REST APIs, allow you to get the list of available Processors and details regarding each Processor.

Below are the various Processor APIs available in Fire Insights.They should be executed after you have logged into Fire Insights.

Get Processors List by Engine

	Endpoint

	HTTP Method

	/api/v1/nodes?engine=?

	GET

Request Structure

For Getting Processors List by engine, we need to add below parameters

	Parameter

	Description

	Value

	engine

	The canonical identifier for Getting Processors List by engine. This field is required

	scala, pyspark or empty-field for all

An example response for Getting Processors List by Engine for “scala”:

[
{
 "id": "3",
 "path": "/01-Connectors/",
 "name": "ReadCassandra",
 "iconImage": null,
 "description": "This node reads data from Apache Cassandra",
 "details": "",
 "examples": "",
 "type": "dataset",
 "nodeClass": "fire.nodes.cassandra.NodeReadCassandra",
 "x": null,
 "y": null,
 "fields": [
{
 "name": "storageLevel",
 "value": "DEFAULT",
 "widget": "array",
 "title": "Output Storage Level",
 "description": "Storage Level of the Output Datasets of this Node",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "DEFAULT",
 "NONE",
 "DISK_ONLY",
 "DISK_ONLY_2",
 "MEMORY_ONLY",
 "MEMORY_ONLY_2",
 "MEMORY_ONLY_SER",
 "MEMORY_ONLY_SER_2",
 "MEMORY_AND_DISK",
 "MEMORY_AND_DISK_2",
 "MEMORY_AND_DISK_SER",
 "MEMORY_AND_DISK_SER_2",
 "OFF_HEAP"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "table",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Table",
 "description": "Cassandra Table from which to read the data",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "keyspace",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Keyspace",
 "description": "Cassandra Keyspace",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "cluster",
 "value": "",
 "widget": "textfield",
 "title": "Cassandra Cluster",
 "description": "The group of the Cluster Level ",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
}
],
 "engine": "scala"
},

Get Node Count

	Endpoint

	HTTP Method

	/api/v1/nodes/count

	GET

An example response for Getting Node Count:

266

GET Processor Details by Name

	Endpoint

	HTTP Method

	/api/v1/nodes/names/{name}

	GET

Request Structure

For Getting Processor Details by Name, we need to add below parameters

	Parameter

	Description

	Value

	Name

	The canonical identifier for Getting Processor Details by Name. This field is required

	Node Name for which Details are required

An example response for Getting Processor details by Name for “ReadCSV Node”:

{
 "id": "17",
 "path": "/02-ReadStructured/",
 "name": "ReadCSV",
 "iconImage": null,
 "description": "It reads in CSV files and creates a DataFrame from it",
 "details": "",
 "examples": "",
 "type": "dataset",
 "nodeClass": "fire.nodes.dataset.NodeDatasetCSV",
 "x": null,
 "y": null,
 "fields": [
{
 "name": "storageLevel",
 "value": "DEFAULT",
 "widget": "array",
 "title": "Output Storage Level",
 "description": "Storage Level of the Output Datasets of this Node",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "DEFAULT",
 "NONE",
 "DISK_ONLY",
 "DISK_ONLY_2",
 "MEMORY_ONLY",
 "MEMORY_ONLY_2",
 "MEMORY_ONLY_SER",
 "MEMORY_ONLY_SER_2",
 "MEMORY_AND_DISK",
 "MEMORY_AND_DISK_2",
 "MEMORY_AND_DISK_SER",
 "MEMORY_AND_DISK_SER_2",
 "OFF_HEAP"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "path",
 "value": "",
 "widget": "textfield",
 "title": "Path",
 "description": "Path of the Text file/directory",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": true,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "separator",
 "value": ",",
 "widget": "textfield",
 "title": "Separator",
 "description": "CSV Separator",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "header",
 "value": "false",
 "widget": "array",
 "title": "Header",
 "description": "Does the file have a header row",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "true",
 "false"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "dropMalformed",
 "value": "false",
 "widget": "array",
 "title": "Drop Malformed",
 "description": "Whether to drop Malformed records or error",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": [
 "true",
 "false"
],
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "outputColNames",
 "value": "[]",
 "widget": "schema_col_names",
 "title": "Column Names for the CSV",
 "description": "New Output Columns of the SQL",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "outputColTypes",
 "value": "[]",
 "widget": "schema_col_types",
 "title": "Column Types for the CSV",
 "description": "Data Type of the Output Columns",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
},
{
 "name": "outputColFormats",
 "value": "[]",
 "widget": "schema_col_formats",
 "title": "Column Formats for the CSV",
 "description": "Format of the Output Columns",
 "optionsMap": null,
 "datatypes": null,
 "optionsArray": null,
 "required": false,
 "display": true,
 "editable": true,
 "disableRefresh": false
}
],
 "engine": "all"
},

Workflow API

The Workflow REST APIs, allow you to create, update, and delete workflows.

Below are the various Workflow APIs available in Fire Insights. They should be executed after you have logged into Fire Insights.

Create

	Endpoint

	HTTP Method

	/api/v1/workflows

	POST

Create a new workflow.

An example request for creating workflow:

{
 "analysisflowId": 1,
 "comment": "string",
 "projectId": 33,
 "workflow": {
 "category": "string",
 "dataSetDetails": [
{
 "datasetSchema": "string",
 "datasetType": "CSV",
 "delimiter": "string",
 "description": "string",
 "filterLinesContaining": "string",
 "header": true,
 "id": 0,
 "name": "string",
 "path": "string",
 "readOptions": "string",
 "uuid": "string",
 "version": 0
}
],
 "description": "string",
 "edges": [
{
 "id": 0,
 "source": "string",
 "target": "string"
}
],
 "engine": "string",
 "h2OWorkflow": true,
 "name": "string",
 "nodes": [
{
 "description": "string",
 "details": "string",
 "engine": "string",
 "examples": "string",
 "fields": [
{
 "datatypes": [
 "string"
],
 "description": "string",
 "disableRefresh": true,
 "display": true,
 "editable": true,
 "name": "string",
 "optionsArray": [
 "string"
],
 "optionsMap": {},
 "required": true,
 "title": "string",
 "value": "string",
 "widget": "string"
 }
],
 "iconImage": "string",
 "id": "string",
 "name": "string",
 "nodeClass": "string",
 "path": "string",
 "type": "string",
 "x": "string",
 "y": "string"
 }
],
 "parameters": "string",
 "uuid": "string"
 }
 },

An Example response:

193

Execute

	Endpoint

	HTTP Method

	/api/v1/workflows/execute

	POST

An example request to execute a specific workflow:

{
 "emailOnFailure": "string",
 "emailOnSuccess": "string",
 "libJars": "string",
 "programParameters": "string",
 "sparkConfig": "string",
 "workflowId": 1
},

Request Structure

For Executing specific workflow, we need to add below parameters

	Field Name

	Description

	workflowId

	The canonical identifier of the workflow to Execute. This field is required.

An Example response:

162

Update

	Endpoint

	HTTP Method

	/api/v1/workflows

	PUT

Update an existing workflow

An example request for updating a workflow:

{
 "analysisflowId": 1,
 "comment": "string",
 "projectId": 33,
 "workflow": {
 "category": "string",
 "dataSetDetails": [
{
 "datasetSchema": "string",
 "datasetType": "CSV",
 "delimiter": "string",
 "description": "string",
 "filterLinesContaining": "string",
 "header": true,
 "id": 0,
 "name": "string",
 "path": "string",
 "readOptions": "string",
 "uuid": "string",
 "version": 0
}
],
 "description": "string",
 "edges": [
{
 "id": 0,
 "source": "string",
 "target": "string"
}
],
 "engine": "string",
 "h2OWorkflow": true,
 "name": "string",
 "nodes": [
{
 "description": "string",
 "details": "string",
 "engine": "string",
 "examples": "string",
 "fields": [
 {
 "datatypes": [
 "string"
],
 "description": "string",
 "disableRefresh": true,
 "display": true,
 "editable": true,
 "name": "string",
 "optionsArray": [
 "string"
],
 "optionsMap": {},
 "required": true,
 "title": "string",
 "value": "string",
 "widget": "string"
 }
],
 "iconImage": "string",
 "id": "string",
 "name": "string",
 "nodeClass": "string",
 "path": "string",
 "type": "string",
 "x": "string",
 "y": "string"
 }
],
 "parameters": "string",
 "uuid": "string"
 }
 },

Request Structure

For updating en example workflow, required projectId & workflowId.

	Field Name

	Description

	workflowId

	The canonical identifier of the workflow to update. This field is required.

	projecId

	The canonical identifier of the workflow to update. This field is required.

An Example Response:

131

List

	Endpoint

	HTTP Method

	/api/v1/workflows

	GET

Response Structure

	Field Name

	Description

	workflow

	List all workflows

An Example response:

[
{
"id": 1,
"userId": 1,
"uuid": "f0cbdb0a-3415-487c-b7f0-593bf1397ef0",
"name": "Analyze Flights Delay",
"category": "Analytics",
"content": "{\"name\":\"Analyze Flights Delay\",\"uuid\":\"f0cbdb0a-3415-487c-b7f0-593bf1397ef0\",\"category\":\"Analytics\",\"description\":\"Find Flights which are delayed by more than 40 minutes.\",\"nodes\":[{\"id\":\"1\",\"name\":\"DatasetStructured\",\"type\":\"dataset\",\"nodeClass\":\"fire.nodes.dataset.NodeDatasetStructured\",\"x\":\"38.9492px\",\"y\":\"275.613px\",\"fields\":[{\"name\":\"dataset\",\"value\":\"2ff32692-9b3c-49de-91a7-401daf2590c1\",\"widget\":\"dataset\",\"title\":\"Dataset\",\"description\":\"Selected Dataset\",\"required\":false,\"display\":true,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"2\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"38.4336px\",\"y\":\"59.1094px\",\"fields\":[{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"3\",\"name\":\"CastColumnType\",\"description\":\"This node creates a new DataFrame by casting input columns with a new data type\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\"313.223px\",\"y\":\"61.8633px\",\"fields\":[{\"name\":\"inputCols\",\"value\":\"[\\\"CRS_DEP_TIME\\\",\\\"CRS_ARR_TIME\\\",\\\"CRS_ELAPSED_TIME\\\"]\",\"widget\":\"variables\",\"title\":\"Columns\",\"description\":\"Columns to be cast to new data type\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColType\",\"value\":\"DOUBLE\",\"widget\":\"array\",\"title\":\"New Data Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DOUBLE\",\"FLOAT\",\"INTEGER\",\"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"4\",\"name\":\"CastColumnType\",\"description\":\"This node creates a new DataFrame by casting input columns with a new data type\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeCastColumnType\",\"x\":\"322.949px\",\"y\":\"275.633px\",\"fields\":[{\"name\":\"inputCols\",\"value\":\"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_WEEK\\\"]\",\"widget\":\"variables\",\"title\":\"Columns\",\"description\":\"Columns to be cast to new data type\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColType\",\"value\":\"STRING\",\"widget\":\"array\",\"title\":\"New Data Type\",\"description\":\"New data type(INTEGER, DOUBLE, STRING, LONG, SHORT)\",\"optionsArray\":[\"BOOLEAN\",\"BYTE\",\"DATE\",\"DOUBLE\",\"FLOAT\",\"INTEGER\",\"LONG\",\"SHORT\",\"STRING\",\"TIMESTAMP\"],\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"5\",\"name\":\"StringIndexer\",\"description\":\"StringIndexer encodes a string column of labels to a column of label indices\",\"type\":\"ml-transformer\",\"nodeClass\":\"fire.nodes.ml.NodeStringIndexer\",\"x\":\"630.238px\",\"y\":\"272.879px\",\"fields\":[{\"name\":\"handleInvalid\",\"value\":\"skip\",\"widget\":\"array\",\"title\":\"Handle Invalid\",\"description\":\"Invalid entries to be skipped or thrown error\",\"optionsArray\":[\"skip\",\"error\"],\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"inputCols\",\"value\":\"[\\\"DAY_OF_MONTH\\\",\\\"DAY_OF_WEEK\\\",\\\"CARRIER\\\",\\\"TAIL_NUM\\\",\\\"FL_NUM\\\",\\\"ORIGIN_AIRPORT_ID\\\",\\\"ORIGIN\\\",\\\"DEST_AIRPORT_ID\\\",\\\"DEST\\\",\\\"CRS_DEP_TIME\\\",\\\"DEP_TIME\\\",\\\"DEP_DELAY_NEW\\\",\\\"CRS_ARR_TIME\\\",\\\"ARR_TIME\\\",\\\"ARR_DELAY_NEW\\\",\\\"CRS_ELAPSED_TIME\\\",\\\"DISTANCE\\\"]\",\"widget\":\"variables_map\",\"title\":\"Input Columns\",\"description\":\"Column containing labels\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputCols\",\"value\":\"[\\\"DAY_OF_MONTH_INDEX\\\",\\\"DAY_OF_WEEK_INDEX\\\",\\\"CARRIER_INDEX\\\",\\\"\\\",\\\"\\\",\\\"ORIGIN_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\"DEST_AIRPORT_ID_INDEX\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\",\\\"\\\"]\",\"widget\":\"variables_map_edit\",\"title\":\"Output Columns\",\"description\":\"Output columns\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"6\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"626.492px\",\"y\":\"63.1289px\",\"fields\":[{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"7\",\"name\":\"SQL\",\"description\":\"This node runs the given SQL on the incoming DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.etl.NodeSQL\",\"x\":\"954.219px\",\"y\":\"59.8711px\",\"fields\":[{\"name\":\"tempTable\",\"value\":\"fire_temp_table\",\"widget\":\"textfield\",\"title\":\"Temp Table\",\"description\":\"Temp Table Name to be used\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"sql\",\"value\":\"select fire_temp_table.* , case when fire_temp_table.DEP_DELAY_NEW \\u003e 40 then 1.0 else 0.0 END as label from fire_temp_table\",\"widget\":\"textarea_medium\",\"title\":\"SQL\",\"description\":\"SQL to be run\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColNames\",\"value\":\"[]\",\"widget\":\"schema_col_names\",\"title\":\"Output Column Names\",\"description\":\"Name of the Output Columns\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColTypes\",\"value\":\"[]\",\"widget\":\"schema_col_types\",\"title\":\"Output Column Types\",\"description\":\"Data Type of the Output Columns\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false},{\"name\":\"outputColFormats\",\"value\":\"[]\",\"widget\":\"schema_col_formats\",\"title\":\"Output Column Formats\",\"description\":\"Format of the Output Columns\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]},{\"id\":\"8\",\"name\":\"PrintNRows\",\"description\":\"Prints the specified number of records in the DataFrame\",\"type\":\"transform\",\"nodeClass\":\"fire.nodes.util.NodePrintFirstNRows\",\"x\":\"927.477px\",\"y\":\"291.137px\",\"fields\":[{\"name\":\"n\",\"value\":\"10\",\"widget\":\"textfield\",\"title\":\"Num Rows to Print\",\"description\":\"number of rows to be printed\",\"required\":false,\"display\":false,\"editable\":true,\"disableRefresh\":false}]}],\"edges\":[{\"source\":\"1\",\"target\":\"2\",\"id\":1},{\"source\":\"2\",\"target\":\"3\",\"id\":2},{\"source\":\"3\",\"target\":\"4\",\"id\":3},{\"source\":\"4\",\"target\":\"5\",\"id\":4},{\"source\":\"5\",\"target\":\"6\",\"id\":5},{\"source\":\"6\",\"target\":\"7\",\"id\":6},{\"source\":\"7\",\"target\":\"8\",\"id\":7}],\"dataSetDetails\":[]}",
"description": "Find Flights which are delayed by more than 40 minutes.",
"version": 0,
"dateCreated": 1566540807581,
"dateLastUpdated": 1566540807581,
"lockedByUserId": null,
"permission": null,
"workflow": null,
"projectId": 1,
"engine": scala
},

Delete

	Endpoint

	HTTP Method

	/api/v1/workflows/{workflowId}

	DELETE

An example request to delete the workflow:

Request Structure

For Deleting a workflow, No action occurs if the workflow has already been deleted. After the workflow is deleted, neither its details nor its run history is visible via the workflow UI or API

	Field Name

	Description

	workflowId

	The canonical identifier of the workflow to delete. This field is required.

An Example Response:

Workflow deleted successfully.

Saving and Loading Models

https://www.sparkflows.io/saving-and-loading-a-ml-model

Machine Learning

	Amazon SageMaker

Amazon SageMaker

Sparkflows is integrated with H2O. It has 8 processors for H2O which can be immediately used.

	Distributed Random Forest

	Gradient Boosted Machine (GBM)

	Generalized Linear Model (GLM)

	Isolation Forest

	K- Means

	Naive Bayes

	Neural Networks

	Principal Component Analysis (PCA)

The above processors include clustering, regression, classification and scoring.

 nav.xhtml

 Table of Contents

 		
 Getting Started with Fire Insights

 		
 Architecture & Deployment

 		
 Fire Architecture

 		
 Fire Deployment Options

 		
 Deployment on an Apache Hadoop/Apache Spark Cluster

 		
 Deployment on a Standalone Machine

 		
 Installation

 		
 Installer for laptop/desktop

 		
 Prerequisites

 		
 Download

 		
 Execute

 		
 Linux/Mac OS Installation Prerequisites

 		
 Downloading and Installing Java 8

 		
 Download OpenJDK

 		
 Linux/Mac OS Installation Steps

 		
 Quick Installation Steps of Fire with H2 DB

 		
 Detailed Installation Steps

 		
 Stopping Fire

 		
 Stopping the Fire Server

 		
 Connecting to Apache Spark Cluster

 		
 Windows Installation Prerequisites

 		
 Check JDK 1.8 is installed

 		
 Install JDK 1.8

 		
 winutils.exe

 		
 Troubleshooting

 		
 Windows Installation Steps

 		
 Installation Steps of Fire Insights with H2 DB

 		
 Stopping the Fire Server

 		
 Stopping Fire Helper Processes

 		
 Python Installation on Linux - Redhat/CentOS

 		
 Check if Python 3.7+ is Installed

 		
 Install Python 3.7 (if not installed)

 		
 Create Python virtual environment & Activate it

 		
 Upgrade pip version

 		
 Install dependency for fbprophet package (CentOS 7)

 		
 Reference

 		
 Install Other Packages

 		
 Reference

 		
 For Ubuntu

 		
 Python Installation on MacOS

 		
 Check if Python is Installed

 		
 Install Python 3 (if not already there)

 		
 Add below in .bash_profile

 		
 Install Other Packages

 		
 Python Installation on Windows

 		
 Click Next to confirm the installation

 		
 Agree to the License

 		
 Advanced Installation Options screen

 		
 Open the Anaconda Prompt from the Windows start menu

 		
 Reference Link

 		
 Create virtual environment using conda

 		
 Activate Virtual environment and Check list of python package

 		
 Install Other Dependent Packages

 		
 Install dependency for fbprophet package (Windows 10)

 		
 Enable PySpark Engine in Fire Insights

 		
 Removing Conda virtual Environment

 		
 Python Installation on Ubuntu

 		
 Check if Python 3.7+ is Installed

 		
 Install Python 3.7 (if not installed)

 		
 Create Python virtual environment & Activate it

 		
 Upgrade pip version

 		
 Install dependency for fbprophet package (Ubuntu 18.04)

 		
 Install Other Packages

 		
 Running Diagnostics

 		
 Linux

 		
 Mac OS

 		
 Windows

 		
 Configuration

 		
 Database Setup

 		
 H2 Database

 		
 MySQL Database

 		
 Microsoft SQL Server Database

 		
 Aurora MySQL Database

 		
 Connecting to Apache Spark Cluster

 		
 Overview

 		
 Fire User Setup

 		
 Infer Hadoop Configs

 		
 Fire Configurations for connecting to an Apache Spark Cluster

 		
 Create New Users in Fire

 		
 Setting up PySpark

 		
 Customizing Fire Installation

 		
 Configuring Max Upload File Size

 		
 Increasing Memory of Fire Server

 		
 Configuring HTTPS for Fire Server

 		
 HTTP

 		
 HTTPS

 		
 keystore.jks

 		
 Generating New Keystore

 		
 Copy the keystore into the Fire installation directory

 		
 Use keytool commands

 		
 HTTPS : Importing Self-Signed Certificates

 		
 Export the certificate to your machine

 		
 Add Certificate to Browser

 		
 Running on Another Port

 		
 Running Fire Server on Another Port

 		
 Running Fire on Another Port

 		
 YARN Configurations

 		
 Client Mode

 		
 Cluster Mode

 		
 Impersonation

 		
 Configuring HTTPS for Fire

 		
 Generate a Keystore

 		
 Copy the keystore into the Fire installation directory

 		
 Update the keystore password

 		
 Port Number

 		
 Finally restart the Fire Server

 		
 Configuring Kerberos

 		
 Steps for configuring Kerberos on Fire

 		
 Steps for generating the keytab for Fire

 		
 Verifying that the keytab file was correctly created

 		
 Configuring Pipelines

 		
 Airflow Installation

 		
 Different Default Values on Startup

 		
 Overview

 		
 Steps

 		
 Remove properties from conf/configuration.properties

 		
 Saving the new values into the DB

 		
 Configuring LDAP/OAuth Authentication

 		
 Database Authentication

 		
 LDAP Authentication

 		
 OAuth Authentication

 		
 HDInsight Integration

 		
 HDInsights and Ports

 		
 Port Configuration

 		
 Open the Port for access

 		
 Add proxy user

 		
 Connecting Fire Insights to the HDInsight Cluster

 		
 MapR Integration

 		
 Download Fire Insights

 		
 Turn off Impersonation

 		
 Update http port

 		
 Fire User

 		
 Upgrading Fire

 		
 Stop Fire if it is running

 		
 Download the new fire tgz file

 		
 Unpack it

 		
 Upgrade the H2 or MySQL database

 		
 Restart Fire

 		
 Running Apache Spark Standalone

 		
 Installing Spark Standalone

 		
 Install Scala

 		
 Install Apache Spark

 		
 Setup Spark Slave(Worker) Node

 		
 Start spark as slave

 		
 Installing Fire

 		
 Configuring Fire

 		
 configurations in spark

 		
 Now go to application and try to run any workflows

 		
 Running Fire as a Service

 		
 Authentication

 		
 Database Authentication

 		
 LDAP Authentication

 		
 LDAP Parameters

 		
 Note

 		
 LDAP Certificate

 		
 Importing a user from LDAP into Sparkflows

 		
 User Login

 		
 Search Order

 		
 Reference

 		
 What if I get locked out

 		
 Notes

 		
 OAuth Authentication

 		
 Create Users in Fire

 		
 Configuring OAuth

 		
 Fire OAuth URL

 		
 SSO

 		
 SAML OneLogin setup

 		
 Fire Insights SAML oneLogin Configuration

 		
 SAML okta setup

 		
 Fire Insights SAML Okta Configuration

 		
 Security

 		
 User Group Role Permission

 		
 Groups

 		
 Users

 		
 Permissions

 		
 Roles

 		
 Sharing Projects

 		
 Databricks Security

 		
 Viewing DB/Tables

 		
 Executing Workflows

 		
 Databricks Connections

 		
 Admin user

 		
 Permissions supported by Fire Insights

 		
 Permissions for Admin User

 		
 Admin User Rights

 		
 Superuser

 		
 Details on the Admin user rights

 		
 Operating Guide

 		
 Logs in Fire Insights

 		
 Logs for Fire Web Server

 		
 Logs for Fire Engine

 		
 Installing JDBC Drivers for Workflows

 		
 Download the JDBC jar file

 		
 Copy it into fire-user-lib

 		
 Stop Fire Processes

 		
 Running Workflows depending on the jars added

 		
 Downloading the JDBC jar files

 		
 JDBC Drivers

 		
 Example JDBC URL

 		
 Installing JDBC Drivers for Interactive Dashboard

 		
 Download the JDBC jar file

 		
 Copy it into fire-server-lib

 		
 Restart Fire Server

 		
 Downloading MySQL Connector

 		
 Running Tesseract in Fire

 		
 Download & Install the Tesseract Language Data files

 		
 Set TESSDATA_PREFIX as an Environment Variable and restart the Sparkflows server

 		
 Include TESSDATA_PREFIX in spark configs when submitting the job

 		
 Error if TESSDATA_PREFIX is not set correctly

 		
 Running Apache OpenNLP Model Jars in Fire Insights

 		
 When running locally

 		
 When running on a Spark cluster

 		
 Installing/Using OpenNLP model jars

 		
 When running locally

 		
 When running on a Spark cluster

 		
 Using OpenNLP model jars

 		
 Using Juypter

 		
 Overview

 		
 Maintenance Tasks

 		
 Cleaning H2 DB

 		
 Deleting old files

 		
 Installing MySQL

 		
 Steps for installing MySQL on Centos7

 		
 Install MySQL

 		
 Harden MySQL Server

 		
 Using MySQL

 		
 To Provide access from remote pcs

 		
 Create a New MySQL User and Database

 		
 Create a Sample Table

 		
 Reset the MySQL Root Password

 		
 MySQL JDBC Driver

 		
 Quickstart Guide

 		
 Step 1: Create Project

 		
 Step 2 : Upload Data Files

 		
 Step 3 : Create Dataset

 		
 Step 4 : Create Workflow

 		
 Application

 		
 Workflows Tab

 		
 Create Empty Workflow

 		
 Add Processors

 		
 Save Workflow

 		
 Step 5 : Execute Workflow

 		
 Application page

 		
 Workflows

 		
 Click on the Play Button

 		
 Execute workflow page

 		
 Execute Workflow

 		
 Step 6 : Create Dashboard

 		
 Dashboards

 		
 Create Dashboard

 		
 Name Dashboard

 		
 Build Dashboard

 		
 Save Dashboard

 		
 View Dashboard

 		
 User Guide

 		
 Datasets

 		
 Creating New Datasets

 		
 Workflows

 		
 Creating Workflows

 		
 Executing Workflows

 		
 Passing Parameters to Workflows

 		
 Workflow Execution Results

 		
 Visualizations

 		
 Visualization Processors

 		
 Batch Dashboards

 		
 Interactive Dashboard

 		
 Exporting Visuals

 		
 Scheduling

 		
 Scheduling Workflows

 		
 Notifications & Alerts

 		
 Triggering Workflows by Event

 		
 Export / Import of Applications

 		
 Exporting Applications

 		
 Importing Applications

 		
 Data profiling

 		
 Go to the Applications Page

 		
 Pipeline

 		
 Pipeline List

 		
 Creating a Pipeline

 		
 Executing a Pipeline

 		
 Pipeline Execution

 		
 OCR with Tesseract

 		
 Download & Install the Tesseract Language Data files

 		
 Include TESSDATA_PREFIX in spark configs when submitting the job

 		
 Error if TESSDATA_PREFIX is not set correctly

 		
 Analytical Apps User Guide

 		
 Creating Analytics App

 		
 Go to Analytics Apps

 		
 Click on Create Analytics App

 		
 Adding Stages

 		
 Examples for adding various Stages

 		
 Integrating with Databricks Notebook

 		
 Add wheel file to your Databricks Notebook

 		
 Outputing details to Fire Insights

 		
 Running Analytics App

 		
 Click on Analytics App Name

 		
 Go through the various Stages

 		
 Examples of the various Stage Pages

 		
 Machine Learning User Guide

 		
 Feature Generation

 		
 Feature Selection

 		
 Feature Selection Processors in Fire Insights

 		
 VectorSlicer

 		
 RFormula

 		
 ChiSqSelector

 		
 Clustering

 		
 Clustering Processors in Fire Insights

 		
 Clustering Algorithms in Apache Spark

 		
 Regression

 		
 Apache Spark

 		
 Scikit Learn

 		
 Classification

 		
 Apache Spark MLlib

 		
 Scikit Learn

 		
 Classification Algorithms in Scikit Learn

 		
 Prediction

 		
 What is Prediction?

 		
 Why are Predictions Important?

 		
 Predictor => Predicted

 		
 Usual Examples

 		
 Techniques

 		
 Model Evaluation

 		
 Evaluation Processors in Fire Insights

 		
 Model Evaluation Techniques

 		
 Holdout

 		
 Cross-Validation

 		
 Model Evaluation in Fire Insights

 		
 Model Persistence

 		
 Persisting SparkML Models

 		
 Persisting H2O Models

 		
 Persisting Scikit Learn Models

 		
 Model Serving

 		
 Scoring with Workflows

 		
 Serving Spark MLlib Models

 		
 Serving H2O Models

 		
 Serving AWS SageMaker models

 		
 Serving Scikit Learn Models

 		
 Serving Tensorflow Models

 		
 Integration with MLflow

 		
 Time Series Analysis

 		
 Time Series Feature Engineering

 		
 DateTimeFieldExtract

 		
 MovingWindowingFunctions

 		
 Time Series Visualizations

 		
 Charts : LineChart

 		
 Charts : BarChart

 		
 Charts : Scatter

 		
 Time Series Modeling

 		
 Prophet

 		
 ARIMA

 		
 H2OXGBoost

 		
 Tutorials

 		
 Reading - Writing Data

 		
 Creating Dataset for CSV Files

 		
 Creating Dataset for AVRO Files

 		
 Creating Dataset for JSON Files

 		
 Creating Dataset for Parquet Files

 		
 Creating Dataset from MySQL Table

 		
 Reading from RDBMS in Workflow

 		
 Read PDF File

 		
 Reading and Writing from ElasticSearch

 		
 Processing multiple files

 		
 Saving Data to HIVE

 		
 Writing to Parquet Files

 		
 Writing to JSON Files

 		
 Reading and Writing from MongoDB

 		
 Data Exploration

 		
 Telco Churn Data Exploration

 		
 Machine Learning

 		
 Telco Churn Prediction

 		
 Bike Rental Prediction

 		
 Farmers Market Prediction

 		
 Clustering Houses

 		
 TFIDF

 		
 Earthquake Prediction

 		
 Analytics

 		
 Analyze Flights Delays

 		
 Distribution Graphs

 		
 Farmers Markets On Geo Maps

 		
 General Payment Data Analysis

 		
 Jetrail Data Analysis

 		
 NYC Taxidata Analysis

 		
 Transaction Data Analytics

 		
 Data Preparation

 		
 Convert To Timestamps

 		
 Data Validation

 		
 Multi-Validation Workflow

 		
 Decision / JSON Parser / SortBy / Empty Dataset

 		
 Column Filter

 		
 Drop Columns

 		
 Drop Rows With Null

 		
 Dedup Customers

 		
 Handling Null Values

 		
 Remove Duplicate Rows

 		
 Removing Special Characters

 		
 Rename Columns

 		
 REST - CSV Reader & Parse

 		
 REST Read And Parse JSON

 		
 String To Date Timefunctions

 		
 Date-Time Field Extract

 		
 Concat Columns

 		
 Joining Multiple Datasets

 		
 Time Function

 		
 Split Dataset By Expression

 		
 String Functions

 		
 Data Preparation-1

 		
 Data Cleaning

 		
 Titanic Data Cleaning/Wrangling

 		
 Data Wrangling

 		
 Profiling-Correlation

 		
 Change Data Capture

 		
 Data Quality

 		
 Data Quality

 		
 Code

 		
 SQL Examples in Fire

 		
 Scala Examples in Fire

 		
 Jar File Execution Example in Fire

 		
 NLP

 		
 Name Finder

 		
 Streaming

 		
 Streaming Analytics Bike Sharing Dataset

 		
 OCR

 		
 OCR with Tesseract

 		
 REST API

 		
 Python - Infer Spark Cluster Configurations

 		
 Time Series

 		
 Stock Forecasting

 		
 Air Passengers Forecasting

 		
 Time Series Feature Engineering

 		
 Anamoly Detection for IOT Devices

 		
 Troubleshooting

 		
 Installation

 		
 Installation Pre-requisites

 		
 With which user should Fire be installed

 		
 I do not see anything in my browser after I start Fire

 		
 Fire UI does not get displayed when I go to :8080. Some other UI is displayed

 		
 LDAP

 		
 Testing LDAP connection with ldapsearch

 		
 Testing Getting User Details from LDAP

 		
 What if I get locked out

 		
 Upgrade

 		
 Missing column: application_id in FIREDB.PUBLIC.ANALYSIS_FLOW_EXECUTION

 		
 Dataset

 		
 I am getting an error when clicking â��Updateâ�� button on the Create/Update Dataset page

 		
 Running Workflows

 		
 Getting Exception : â��User: ec2-user is not allowed to impersonate ec2-user

 		
 When running the workflows on my Spark Cluster, results are not showing up in the Browser

 		
 Getting Exception: org.apache.hadoop.security.AccessControlException: Permission:denied : user=admin

 		
 When running the example workflows on the Spark Cluster it is not able to find the input files

 		
 Getting Exception : Server returned HTTP response code: 405 for URL: http://10.125.221.72:8080/ messageFromSparkJob

 		
 Getting Exception : java.lang.ClassNotFoundException: fire.execute.WorkflowExecuteFromFile

 		
 Getting Exception on HDInsight : No FileSystem for scheme: wasbs

 		
 Fire Server & Workflow Execution Logs

 		
 Where do I find the logs of the Fire Server

 		
 Where do I find the logs of the workflows when running on my Cluster

 		
 Dashboards

 		
 When viewing the Dashboard the cells are showing up empty

 		
 Kerberos

 		
 My cluster is Kerberised. How do I setup Sparkflows for it

 		
 Python Installation

 		
 showing warning message with missing package while restarting pyspark server

 		
 Possible Solution

 		
 FAQ

 		
 Scheduling Workflows

 		
 How can I schedule the workflows I create ?

 		
 Custom Nodes

 		
 Does Fire Insights allow me to create my own custom nodes?

 		
 Distributions Supported

 		
 What distributions or platforms are supported with Sparkflows?

 		
 Can I run Sparkflows on my Amazon AWS cluster or Microsoft Azure or Google Cloud?

 		
 Workflow Export - Import

 		
 How does one export/import workflows between instances?

 		
 Submit Apache Spark Jobs

 		
 When running on a Apache Spark cluster how does Sparkflows submit the spark jobs?

 		
 Multi User Support

 		
 How does the Sparkflows platform handle multi-user support (i.e. Can user 1 see or edit user 2â��s data sources, pipelines, etc)

 		
 Data Sources

 		
 How does one define a new data source and establish a connection?

 		
 Hadoop Installation Pre-Requisites

 		
 Linux

 		
 JDK

 		
 Disable IPV6

 		
 Selinux

 		
 Steps Involved in Installing Hadoop

 		
 After Installation of Cloudera Manager

 		
 Add proxy user in HDFS

 		
 Create HDFS directory

 		
 Install Spark2

 		
 Login Again into Cloudera Manager

 		
 In YARN increase Container memory to 8GB

 		
 AFTER INSTALLATION GET CDH TO USE JAVA 8

 		
 Install Sparkflows

 		
 Upload the Fire Insights example data directory onto HDFS

 		
 Log into Fire Insights

 		
 Administration Guide

 		
 User Administration

 		
 Users

 		
 Groups

 		
 Roles

 		
 Permissions

 		
 Databricks Guide

 		
 Databricks Prerequisites

 		
 Databricks Integration Steps

 		
 Install Fire Insights

 		
 Upload Fire Core Jar to Databricks

 		
 Configure the Uploaded Library in Fire Insights

 		
 Configure app.postMessageURL in Fire Insights

 		
 Install Databricks JDBC Driver

 		
 Create your REST API token in Databricks

 		
 Create Databricks Connection in Fire Insights

 		
 Databricks Python Integration Steps

 		
 Install Fire Insights

 		
 Upload Fire wheel file to Databricks

 		
 Install Python dependencies

 		
 Install dependency for AWS

 		
 Upload Fire workflowexecutedatabricks.py file to DBFS

 		
 Configure the Uploaded Library in Fire Insights

 		
 Job Submission using Pyspark Engine

 		
 Databricks User Guide

 		
 Browsing Databricks Tables

 		
 Running DDL Commands

 		
 Viewing Databricks Clusters

 		
 Browse DBFS

 		
 Reading Databricks Tables

 		
 Writing to Databricks Tables

 		
 Reading S3 files

 		
 Writing to S3 files

 		
 Troubleshooting Fire/Databricks Integration

 		
 When the workflow is executed, nothing shows up in Fire

 		
 When the workflow is executed, nothing shows up in Fire

 		
 When accessing most Databricks pages in Fire, it gives Simba JDBC error

 		
 In the workflow editor, it shows â��Cannot connect to Fireâ��

 		
 Checking the cluster logs in Databricks

 		
 Databricks Cluster Versions Support

 		
 AWS Guide

 		
 Introduction

 		
 Pre-requisites and Requirements

 		
 Architecture

 		
 Planning Guide

 		
 Security

 		
 Costs

 		
 Sizing

 		
 Deployment Guide

 		
 Steps

 		
 Loading Example Workflows

 		
 Install and Running Example Workflows

 		
 Adding a new user

 		
 Extra configuration for running PySpark

 		
 S3 Integration

 		
 Installing aws cli

 		
 Configuring AWS access key and password

 		
 Access S3 in fire-ui

 		
 Protecting Data Using Server Side Encryption

 		
 REFERENCE : Creating Access Key & Secret Key

 		
 Testing Fire Insights on AWS

 		
 Log into the System

 		
 View the Sample Applications

 		
 Execute a workflow on EMR

 		
 Operational Guide

 		
 Onboarding New Users

 		
 Health Check

 		
 Backup and Recovery

 		
 Routing Maintenance

 		
 Support

 		
 Copying files to S3 with aws-cli

 		
 Installing aws-cli on mac

 		
 Configure AWS Credentials

 		
 View S3 Buckets

 		
 View S3 Directory

 		
 Copy files to S3

 		
 Delete All Files in Directory

 		
 Setting Roles and Policies for EMR

 		
 REFERENCE : Creating Access Key & Secret Key

 		
 Reading/Writing from S3

 		
 Dataset Processors

 		
 Reading from S3

 		
 Writing to S3

 		
 Saving ML Model to S3

 		
 Saving Spark ML Model

 		
 Saving H20 ML Model

 		
 Fire Integration with HIVE

 		
 Overview

 		
 Details

 		
 Writing to HIVE

 		
 Fire Integration with Redshift

 		
 Redshift Processors

 		
 Fire Integration with SageMaker

 		
 Spark Sagemaker Examples

 		
 Fire SageMaker Processors

 		
 AWS Provided Policies

 		
 Launching EMR

 		
 Create New Role

 		
 Use ARN of the new Role in the Workflow

 		
 AWS Instance Types

 		
 Dataset Column Names for Training with Sagemaker

 		
 Flow with Sparkflows and AWS

 		
 XGBoost Sagemaker Workflow

 		
 XGBoost Configuration

 		
 Executing the Workflow

 		
 Fire Integration with Kinesis

 		
 Install AWS CLI

 		
 Create an access key and secret key

 		
 Configure AWS CLI

 		
 Create AWS Kinesis Stream

 		
 Send message to AWS Kinesis from AWS CLI

 		
 Update EMR_EC2_Default_Role

 		
 Or Create an IAM policy for accessing Amazon Kinesis

 		
 Create EMR Cluster with the above Role

 		
 Pushing data to Kinesis

 		
 Kinesis Workflow in Fire

 		
 REFERENCE : Creating Access Key & Secret Key

 		
 File Watcher with AWS & Sparkflows

 		
 Overview

 		
 Design

 		
 Create an SQS Queue

 		
 Configure AWS S3 bucket to generate events

 		
 Create the AWS Lambda function

 		
 CloudFormation Template with Embedded H2 DB

 		
 Overview

 		
 Relevant Files

 		
 Ports

 		
 Download Files and Upload to your S3 Bucket

 		
 Update Cloudformation template based on your environment

 		
 Steps to Create EMR Cluster and Deploy Fire

 		
 Connect Fire to the New Cluster

 		
 Load Examples

 		
 Create hadoop user

 		
 Start running the Examples

 		
 Summary

 		
 CloudFormation Template with MySQL

 		
 Overview

 		
 Relevant Files

 		
 Ports

 		
 Download Files and Upload to your S3 Bucket

 		
 Update Cloudformation template based on your environment

 		
 Steps to Create EMR Cluster and Deploy Fire

 		
 Connect Fire to the New Cluster

 		
 Load Examples

 		
 Create hadoop user

 		
 Start running the Examples

 		
 Summary

 		
 AZURE Guide

 		
 Introduction

 		
 Deployment Guide

 		
 prerequisite:

 		
 Steps

 		
 Loading Example Workflows

 		
 Install and Start Running Example Workflows

 		
 Azure Databricks Integration Steps

 		
 Install Fire Insights

 		
 Upload Fire Core Jar to Databricks

 		
 Configure the Uploaded Library in Fire Insights

 		
 Configure app.postMessageURL in Fire Insights

 		
 Install Databricks JDBC Driver

 		
 Create your REST API token in Databricks

 		
 Create Databricks Connection in Fire Insights

 		
 ADLS Integration

 		
 System identity need to be enabled

 		
 In storage account, add the role to provide the access

 		
 login to Fire Insights

 		
 Save Configuration

 		
 Click on Data browser

 		
 Load Balancer

 		
 AWS Network Load balancer

 		
 Route 53

 		
 Superset

 		
 Installation

 		
 Steps involved in installing apache superset (centos7)

 		
 Connecting Superset with Databricks

 		
 Install the Python dependencies

 		
 Python Integration

 		
 PySpark Processor

 		
 Interface

 		
 WorkflowContext

 		
 Example 1

 		
 Example 2

 		
 Jython Processor

 		
 Example Jython Code

 		
 Pipe Python Processor

 		
 Input DataFrame Schema

 		
 Simple Example

 		
 Output Schema of the Python Script

 		
 Program Execution Output

 		
 Pipe Python2 Processor

 		
 Input DataFrame Schema

 		
 Reading in Data in Python into a Pandas DataFrame

 		
 Transform the Pandas DataFrame

 		
 Writing the Pandas DataFrame schema back to Spark

 		
 Writing the Pandas DataFrame back to Spark

 		
 Output Schema of the Python Script

 		
 Performance Tuning

 		
 Caching Level

 		
 When to use Caching

 		
 Executor Memory, vcores

 		
 Repartioning

 		
 When saving to JDBC/File etc.

 		
 Debug Mode

 		
 Developer Guide

 		
 Custom Node Development in Browser

 		
 Click on CREATE PROCESSORS

 		
 Execute Code

 		
 Schema Update Code

 		
 Testing the custom processor

 		
 Using the new Processor

 		
 Export Custom Processors

 		
 Import Custom Processors

 		
 Custom Node Development & Deployment (Java/Scala)

 		
 Step 1 : Start by cloning the github repo: writing-new-node

 		
 Step 2 : Install the Fire core jar to the local maven repository

 		
 Step 3 : Code the new custom node

 		
 Step 4 : Create the node JSON file

 		
 Step 5 : Deploy the Custom Node in the Fire Server

 		
 Use the custom node in Spark submit when running on the Spark cluster

 		
 Databricks Custom Node Example JSON

 		
 Execution Code

 		
 Schema Propagation Code

 		
 Building and Running Custom Node

 		
 Install the scorecardpy dependencies

 		
 Go to Custom Processors

 		
 Click on CREATE PROCESSORS

 		
 Execute Code

 		
 Schema Update Code

 		
 Using the new Processor

 		
 Processors

 		
 16-Utilities

 		
 03-Execution

 		
 02-Data-Partition

 		
 01-Spark-Performance

 		
 09-DataProfiling

 		
 ColumnsCardinality

 		
 SummaryStatistics

 		
 SkewnessAndKurtosis

 		
 HistoGram

 		
 FlagOutlier

 		
 DistinctValuesInColumn

 		
 NullValuesInColumn

 		
 CrossTab

 		
 GraphWeekDayDistribution

 		
 Correlation

 		
 GraphYearDistribution

 		
 GraphMonthDistribution

 		
 05-FeatureEngineering

 		
 WordCount

 		
 MovingWindowFunctions

 		
 DateToAge

 		
 01-IO

 		
 02-ReadStructured

 		
 03-ReadUnstructured

 		
 03-Save

 		
 01-Connectors

 		
 11-ML-SparkML

 		
 12-FreqPatternMining

 		
 04-FeatureTransformers

 		
 03-FeatureExtraction

 		
 11-CollaborativeFiltering

 		
 09-Regression

 		
 08-Clustering

 		
 05-DimensionalityReduction

 		
 02-FeatureScaler

 		
 17-Util

 		
 07-SplitDataset

 		
 10-Classification

 		
 13-EvaluatePredict

 		
 06-FeatureSelection

 		
 ML-TS

 		
 ARIMA

 		
 Prophet

 		
 02-Parse

 		
 FieldSplitter

 		
 RegexTokenizer

 		
 Fixed Length Fields

 		
 ApacheLogs

 		
 ParseJSONCol

 		
 OCR

 		
 MultiRegexExtractor

 		
 06-Filter

 		
 FilterByDateRange

 		
 FilterByNumberRange

 		
 ColumnFilter

 		
 RowFilter

 		
 FilterByStringLength

 		
 NodeRowFilterByIndex

 		
 DropColumns

 		
 18-OpenNLP

 		
 OpenNLPNameFinder

 		
 OpenNLPSentenceDetector

 		
 NodeOpenNLPDocumentCategorizer

 		
 15-ScoreCardPy

 		
 Binning Scorecard

 		
 VariableSelection Scorecard

 		
 03-Prepare

 		
 13-Others

 		
 10-Condition

 		
 09-Split

 		
 11-AddColumn

 		
 12-CastDataType

 		
 06-Math

 		
 03-DateTime

 		
 07-String

 		
 05-DataCleaning

 		
 04-DataValidation

 		
 ValidateFieldsAdvanced

 		
 CompareDatasets

 		
 ValidateAddress

 		
 ValidateFieldsSimple

 		
 CustomProcessors

 		
 pyspark

 		
 17-Documentation

 		
 StickyNote

 		
 Notes

 		
 12-ML-H2O

 		
 H2OWord2Vec

 		
 H2OScore

 		
 H2OModelSave

 		
 H2OPCA

 		
 H2OGLM

 		
 H2OScore

 		
 H2OMojoLoad

 		
 H2OXGBoostScore

 		
 H2O Model Load

 		
 H2OXGBoostWithGridSearch

 		
 H2OXGBoost

 		
 H2OXGBoost

 		
 H2O Model Save

 		
 H2ONeuralNetwork

 		
 H2ONaiveBayes

 		
 H2OGLRM

 		
 H2OGBM

 		
 H2OKMeans

 		
 H2OIsolationForest

 		
 H2ODRF

 		
 H2OMojoSave

 		
 H2OModelLoad

 		
 13-ML-AWSSagemaker

 		
 KMeansSageMakerEstimator

 		
 XGBoostSageMakerEstimator

 		
 PCASageMakerEstimator

 		
 SageMakerLinearLearnerBinaryClassifier

 		
 SageMakerLinearLearnerRegressor

 		
 SaveSageMakerFormat

 		
 14-ML-Sklearn

 		
 SklearnPredict

 		
 SklearnRegressionEvaluator

 		
 Sklearn Model Load

 		
 CustomMetrics

 		
 SkLearnRidgeRegression

 		
 SklearnRandomForestClassifier

 		
 SklearnRandomForestRegression

 		
 SklearnGradientBoostingRegression

 		
 SklearnGradientBoostingClassifier

 		
 SkLearnLassoRegression

 		
 SklearnLogisticRegression

 		
 Sklearn Model Save

 		
 Sklearn Model Load From S3

 		
 SklearnClassificationEvaluator

 		
 Sklearn Model Save To S3

 		
 CategoryEncoders

 		
 08-Group

 		
 GroupBy

 		
 Cube

 		
 Rollup

 		
 PivotBy

 		
 06-Code

 		
 SQLExecuter

 		
 PipePython2

 		
 ScalaUDF

 		
 Jython

 		
 UnixShellCommands

 		
 SQL

 		
 Scala

 		
 PipePython

 		
 PySpark

 		
 RunHIVEQL

 		
 10-Visualization

 		
 GraphRegionGeo

 		
 PrintNRows

 		
 GraphValues

 		
 GraphGroupByColumn

 		
 Sample PrintNRows

 		
 19-Deprecated

 		
 StringToDate

 		
 15-Streaming

 		
 StreamingSocketTextStream

 		
 StreamingKafka

 		
 StreamingTextFileStream

 		
 15-StructuredStreaming

 		
 StructuredStreamingCSV

 		
 StructuredStreamingHiveSink2

 		
 StructuredStreamingFileSink

 		
 StructuredStreamingSocket

 		
 StructuredStreamingHiveSink

 		
 StructuredStreamingKinesis

 		
 StructuredStreamingKafka

 		
 StructuredStreamingConsoleSink

 		
 14-DL

 		
 KerasModelFit

 		
 KerasPredict

 		
 KerasModelCompile

 		
 DenseLayer

 		
 KerasModelSequential

 		
 07-JoinUnion

 		
 UnionAll

 		
 GeoJoin

 		
 JoinOnCommonColumns

 		
 JoinOnColumns

 		
 JoinUsingSQL

 		
 UnionDistinct

 		
 JoinOnCommonColumn

 		
 Release Notes

 		
 Upcoming Features

 		
 Installer

 		
 Aug 2020

 		
 New Features

 		
 UI Improvements

 		
 May 2020

 		
 New Features

 		
 UI Improvements

 		
 April 2020

 		
 New Features

 		
 UI Improvements

 		
 March 2020

 		
 New Features

 		
 UI Improvements

 		
 February 2020

 		
 New Features

 		
 UI Improvment

 		
 January 2020

 		
 New Features

 		
 September 2019

 		
 New Processors Added For Scala Engine

 		
 New Processors Added For Pyspark Engine

 		
 Improvement of RESTAPI

 		
 New Features

 		
 Upgrades for Security Vulnerabilties

 		
 UI Improvement

 		
 August 2019

 		
 New Processors Added For Scala Engine

 		
 New Processors Added For Pyspark Engine

 		
 UI Improvements

 		
 July 2019

 		
 Integration of H2O

 		
 Improvements in UI

 		
 Improvements to HDFS Browser

 		
 Improvements in Home Dashboard Page

 		
 Added New Features

 		
 Upgradation of Running Server on Ports

 		
 June 2019

 		
 Improvements in UI

 		
 Improvements to HDFS Browser

 		
 Support Of Authentication Using Token

 		
 Improvements in Dataset

 		
 Running Applications Locally

 		
 Node Updates

 		
 May 2019

 		
 PySpark Engine

 		
 New Processors

 		
 Improvements to HDFS Browser

 		
 Applications

 		
 Datasets

 		
 Workflow Editor

 		
 April 2019

 		
 New Processors Added For Scala Engine

 		
 New Processors Added For Pyspark Engine

 		
 Improvement of RESTAPI

 		
 New Features

 		
 Upgrades for Security Vulnerabilties

 		
 UI Improvement

 		
 February 2019

 		
 Correlation Node Output

 		
 Scheduled Workflow Edit

 		
 Multiple users in a Group

 		
 SaveMongoDB Node

 		
 Interactive Dashboard Improvements

 		
 January 2019

 		
 Interactive Dashboards

 		
 Workflow Wizard

 		
 Pipelines

 		
 Charts Improvements

 		
 Processor Improvements

 		
 Support for Uploading Large Files

 		
 November 2018

 		
 Support for Applications

 		
 Structured Streaming

 		
 3.1.0 Release Notes

 		
 Contents of this release

 		
 2.1.0 Release Notes

 		
 Contents of this release

 		
 1.4.0 Release Notes

 		
 Contents of this release

 		
 1.3.0 Release Notes

 		
 Contents of this release

 		
 REST API Authentication

 		
 Acquire Session Cookie Using CURL

 		
 Acquire Session Cookie in Python

 		
 Get List of Processors

 		
 Acquire Token Using CURL

 		
 Acquire Token using Postman and Grant Type - Password

 		
 Overview of Grant Type â�� Password

 		
 Form the Post Request

 		
 Click on Authorization tab and select Type - Basic Auth

 		
 Example

 		
 Now use access_token from previous step to access the REST API

 		
 Acquire token using Postman - Authorization code

 		
 Get the access token

 		
 Click on Authorization tab

 		
 Click on Request Token

 		
 Fill the username and password and click on signIn

 		
 OAuth Approval

 		
 Click on Use token

 		
 Using tokens for accessing REST API

 		
 Acquire Token in Python - Grant Type Password

 		
 Get Processor Count

 		
 Infer Hadoop Cluster Configurations

 		
 REST API Examples using Python

 		
 Accessing REST API using Python & Session

 		
 Get List of Processors

 		
 Create a New Workflow

 		
 Accessing REST API using Python & Tokens

 		
 Get Processor Count

 		
 Infer Hadoop Cluster Configurations

 		
 REST API Examples using Java

 		
 REST API Examples using curl

 		
 Processors REST APIâ��s

 		
 Overview

 		
 GET Processors List

 		
 GET Node Count

 		
 GET Processors list for Engine

 		
 GET Processor Details by Name

 		
 Node Rules

 		
 Datasets REST API

 		
 Overview

 		
 GET List of Datasets by Application

 		
 Create / Update Dataset

 		
 Delete Dataset

 		
 Get Dataset by Id

 		
 Get Dataset Count

 		
 Get sample data

 		
 Returns schema of the files in the given path using the given delimiter

 		
 Get Latest Five Datasets

 		
 Get the list of files/directories in the given path

 		
 Workflow REST API

 		
 Create Workflow

 		
 Execute Workflow

 		
 Update Workflow

 		
 Get workflow by Id

 		
 Delete Workflow

 		
 Get Latest WorkFlows

 		
 Get Workflow Count

 		
 Get Workflow Versions

 		
 Workflow Execution REST API

 		
 Overview

 		
 List all the Executions

 		
 List Executions of a Workflow

 		
 GET Status of Workflow Execution

 		
 Stop the Execution of workflow

 		
 Kill the Execution of workflow

 		
 Delete Workflow Executions by days

 		
 Get Executed Task Count

 		
 Get Latest Executions

 		
 Dashboard REST API

 		
 Overview

 		
 Get List of Dashboards for the user

 		
 Create New Dashboard / Save Dashboard

 		
 Get Dashboard by Id

 		
 Get dashboard results

 		
 update dashboard

 		
 Delete Dashboard

 		
 HDFS REST API

 		
 Overview

 		
 Get List of Files in Directory

 		
 Create HDFS directory

 		
 Get list of files in HDFS in the specified directory

 		
 Get list of all the files on hdfs in the users home directory in sorted order

 		
 Upload file

 		
 Deletes a file from HDFS

 		
 Download HDFS file

 		
 Rename HDFS File

 		
 Get first X bytes of content of a file

 		
 HIVE REST API

 		
 Overview

 		
 Get all Hive Databases

 		
 Get Table for a given Database

 		
 Get all Hive Databases

 		
 Scheduler REST API

 		
 Overview

 		
 Get list of all Workflows Scheduled

 		
 Schedule new Workflow

 		
 Delete Scheduled Workflow

 		
 Third Party Acknowledgements

 		
 Server Libraries

 		
 Frontend Libraries

 		
 Definitions

_images/mlmodelload.png
re Insights) DATA BROWSERS APPLICATIONS ~ @ SCHEDULED XECUTIONS - (7) MODELS. €21 DATA QUALITY) ADMINISTRATION

| Edit Workflow oD
NAME: | Read Model - Type of fault in steel plates CATEGORY: | Model Persistence n
©ADD NODE save | savewmicomment | ciear | mack | execure [worcriowsromy | compare | cuanceuun | seaume
All Nodes Datasets Hive Databases n

Q | Search Nodes

e o
. =»
om0 s
rocessed_faults.cs fectorassemblor

& 02-Parse < preceses Voclorkssemb Stringindorer
e o

& 03-Prepare < arn
o v e

4 04-DataVaiidation < Print\Rows

4 05-Featurengineering <

h 06-Code < ML Model Load

b 06-Filter <

& 07-JoinUnion <

h 08-Group <

4 09-DataProfiing <

& 10-Visuolization <

a4 11-ML-SporkML <

& 12-MLH2O <

b 13-ML-AWSSagemaker «

_images/mlmodelsave.png
° Fire Insighfs %] DATABROWSERS ~ APPLICATIONS ~ O SCHEDULER ~ ® EXECUTIONS > & MODELS TA QUALITY ~ © ADMINISTRATION ~ PROCESSORS ~ #f~

| Edit Workflow © HELP
NAME: Save Model - Type of fault in steel plates CATEGORY: Model Persistence
© ADD NODE ' SAVE SAVE WITH COMMENT CLEAR BACK EXECUTE WORKFLOW HISTORY COMPARE CHANGE UUID BEAUTIFY 4+
All Nodes Datasets Hive DB €

Q | Search Nodes

(2] o
h 01-10 < =

e 1 0

processed_faults.cs VectorAssembler StringIndexer
- <
s 02-Parse Y
a0 03-Prepare <
& 04-DataValidation <
& 05-FeatureEngineering <
s 06-Code <
o 06-Filter <
aa 07-JoinUnion <
a0 08-Group <
ML Model Save MulticlassClassificat

a8 09-DataProfiling < ionEvaluator

& 10-Visualization <

_images/mlmodelload1.png
re Insights) DATA BROWSERS APPLICATIONS ~ @ SCHEDULED XECUTIONS - (7) MODELS. €21 DATA QUALITY) ADMINISTRATION

| Edit Workflow oD
NAME: | Read Model - Type of fault in steel plates CATEGORY: | Model Persistence n
©ADD NODE save | savewmicomment | ciear | mack | execure [worcriowsromy | compare | cuanceuun | seaume
All Nodes Datasets Hive Databases n

Q | Search Nodes

e o
. =»
om0 s
rocessed_faults.cs fectorassemblor

& 02-Parse < preceses Voclorkssemb Stringindorer
e o

& 03-Prepare < arn
o v e

4 04-DataVaiidation < Print\Rows

4 05-Featurengineering <

h 06-Code < ML Model Load

b 06-Filter <

& 07-JoinUnion <

h 08-Group <

4 09-DataProfiing <

& 10-Visuolization <

a4 11-ML-SporkML <

& 12-MLH2O <

b 13-ML-AWSSagemaker «

_images/moving_output.png
date
DateType
2013-01-08
2013-01-10
2013-01-05
2013-01-07
2013-01-02
2013-01-06
2013-01-09
2013-01-01
2013-01-04

2013-01-03

store
IntegerType
1

1

item
IntegerType
1

1

sales

IntegerType

9

mean_sales
DoubleType

2.0
9.333333333333334
9.666666666666666
10.333333333333334
1.0
11.666666666666666
12.333333333333334
12.666666666666666
13.333333333333334

135

7_mean_sales
DoubleType
10.75

1.0

n3

n3

n3

n3

n3

n3
11.555555555555555

n.875

_images/mlmodelsave1.png
° Fire Insighfs %] DATABROWSERS ~ APPLICATIONS ~ O SCHEDULER ~ ® EXECUTIONS > & MODELS TA QUALITY ~ © ADMINISTRATION ~ PROCESSORS ~ #f~

| Edit Workflow © HELP
NAME: Save Model - Type of fault in steel plates CATEGORY: Model Persistence
© ADD NODE ' SAVE SAVE WITH COMMENT CLEAR BACK EXECUTE WORKFLOW HISTORY COMPARE CHANGE UUID BEAUTIFY 4+
All Nodes Datasets Hive DB €

Q | Search Nodes

(2] o
h 01-10 < =

e 1 0

processed_faults.cs VectorAssembler StringIndexer
- <
s 02-Parse Y
a0 03-Prepare <
& 04-DataValidation <
& 05-FeatureEngineering <
s 06-Code <
o 06-Filter <
aa 07-JoinUnion <
a0 08-Group <
ML Model Save MulticlassClassificat

a8 09-DataProfiling < ionEvaluator

& 10-Visualization <

_images/okta_addapp.png
(%) Dashboard

Stats

‘ Search People

@ No notifications to view!

‘ Search Applications.

Usage - Last 30 Days

Shortcuts

25 Assign Applications
eople
;. Add Peopl
ctivate People
L A Peopl

3, Deactivate People
C Reset Passwords
8, Unlock People
@ Healthinsight

Reports

Okta Usage
Application Usage
Suspicious Activity
Current Assignments
App Password Health
SMS Usage

MFA Usage

System Log

SAML Capable Apps

_images/okta_add_app.png
«— Back to Applications

CATEGORIES

API Management

Apps

Apps for Good

casB

Directories and HR Systems
Security Applications.

Okta Applications

VPN

'+ Add Application

‘ Q search

1 Featured Integrations

1348 -
[
B 1] Active Directory
2 R
Active Directory
10 Provisioning
255
9
"

at slack

Slack
SAML, Provisioning

Fastest Growing

AWS

A ATLASSIAN

Atlassian Cloud
SAML, Provisioning

N

workday.

‘Workday
SAML, Provisioning

Seeall

DocuSign.

DocuSign
SAML, Provisioning

zoom

Zoom SAML
SAML, Provisioning

Seeall

_images/okta_app.png
zation Upgrade

hps:/dev-51441l.okta.com

ailed Logins

Total Users Authentications
187 (0]

4
Mo

(%) Dashboard

_images/okta_admin.png
Q Launch App MHome A~ Lviitr

Work +

@ WL Marketing V @

sparkfows.o WL Merketing ‘OKla_Buid_machine

_images/okta_config.png
o General Settings. a Configure SAML ° Feedback

o General Settings

App name ‘ FIRE-INSIGHT|

App logo (optional) @ @

\ =

Requirements

* Must be PNG, JPG or GIF
* Less than IMB

For Best Results, use a PNG image with

« Minimum 420px by 120px to prevent upscaling
« Landscape orientation
« Transparent background

App visibility Do not display application icon to users

Do not display application icon in the Okta Mobile app

_images/jdbc-workflow.png
o Read)DBC

_images/jdbc-subquery.png
JDBC @

URL: @ jdbe:mysql/ocalhostemployees?user=root&password=sparkflows
DB Table: @ (select first_name from employees.employees) emp
Driver: @

com.mysal.jdbe. Driver

_images/join_schema.png
General Schema

SCHEMA COLUMNS : @ P

COLUMN NAMES FORTHE CSV @

forecast_date
sales_pred_mean
sales_pred_lower
date

store

item

sales

COLUMN TYPES FORTHE CSV @

DATE

DOUBLE

DOUBLE

DOUBLE

INTEGER

INTEGER

INTEGER

COLUMN FORMATS FOR THE CSV @

format

format

format

format

format

format

format

o) Lo] o) (o] Le] [=] o]

_images/join_general.png
JoinUsingSQLz @ Nodesoinusingsar

NAME forecast_date
TYPE date

FORMAT

NAME date

TYPE date

FORMAT

General Schema

OUTPUT STORAGE LEVEL : @

TEMP TABLE NAMES : ©

SQL:©

sales_pred_mean

double

store

integer

sales_pred_lower

double

item

integer

DEFAULT

tempTablel

tempTable2

sales_pred_upper

double

sales

integer

1 select

2 forecast_date,

3 sales_pred_mean,
4 sales_pred_lower,
5 sales_pred _upper
6 date,

7 store,

8 item,

9 sales

10 from tempTablel a LEFT JOIN tempTable2 b ON(a.forecast date

= b.date)

_images/kinesis-data-generator-1.png
Services v Resource Groups v * [\ jayant@sparkflows.io @ 0043-... v Oregon v Support v

@ CloudFormation v Stacks

(%)
@ The redesigned AWS CloudFormation console is available now
We’ve completely redesigned the console to improve the overall look and feel. Try it out now and provide us feedback.

(%]

O Drift detection now available

Drift detection lets you detect whether a stack’s actual configuration has been changed outside of CloudFormation. To detect drift on a stack, select the stack, and then select Detect drift for current stack
from the Actions menu. Learn more.

Create Stack | ~ Actions ¥ Design template (~ &

Filter: Active ~ Showing 1 stack

Stack Name Created Time Status Drift Status Description

Kinesis-Data-Generator-Cognito-User 2018-12-29 08:21:35 UTC-0800 CREATE_COMPLETE NOT_CHECKED This template creates an Amazon Cognito User Pool an...

_images/json-workflow.png
View JSON Workflow

Analysis Flow Json
Analysis Flow Fire Json

«
“éixe.uorkelovengine orkelon”,

50
i tnodes”
s Java.util Arraysist”,
¢ t
t
e ‘Fire.nodes. dacaset. odeDatasecstructured”,
5 «
“Datasetstructured,
“data/bike_sharing_sarple_dataset.cov
s astasertypes CU”,
. *separator™: °,",
s “EiltorLinescontaining™s “seoson’,
“achena’: |
*ire.uorkelouengine. Fizeschema®,
«
20 "eolumnanes®s |
2 datecine,
2 noviday”,

_images/lag1.png
PARTITIONBY : @

ORDERBY : ©@

WINDOW FUNCTION : @

ANALYTICS COLUMN :

WINDOW OFFSET: @

store

date

lag

sales: integer

_images/kinesis-data-generator-2.png
Kinesis-Data-Generator-Cognito-User Other Actions ~ | Update Stack

Stack name: Kinesis-Data-Generator-Cognito-User
Stack ID: arn:aws:cloudformation:us-west-2:004331324847:stack/Kinesis-Data-Generator-Cognito-User/cf51a0e0-0b85-11e9-9a6e-028572da108e
Status: CREATE_COMPLETE
Status reason:
Termination protection: Disabled
Drift status: NOT_CHECKED View details
Last drift check time:
1AM role:

Description This template creates an Amazon Cognito User Pool and Identity Pool, with a single user. It assigns a role to authenticated users in the identity pool to enable the users to use the Kinesis
Data Generator tool.

v Outputs

Key Value Description Export Name

https://awslabs.github.io/amazon-kinesis-data-gen
erator/web/producer.html?upid=us-west-2_pBGPv

KinesisDataGeneratorUrl C2sR&ipid=us-west-2:62243857-eceb-4d61-b6ef- The URL for your Kinesis Data Generator.
14a60da643c4&cid=7g98rfkihbjr8jdmk0dIi6jskb&r=
us-west-2

_images/ma1.png
WINDOW START : ©@
WINDOW END : ©
PARTITION COLUMN NAME : @

ORDER COLUMN NAME : @

VARIABLES LIST :‘ ° ‘
INPUT COLUMNS ©

sales

store: integer

sales:integer

FUNCTIONS @

avg

_images/ldap-order.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/logo.png
Afire

_images/tsf_workflow.png
Time Series Feature Engineering

Feature engineering is the process of transforming raw data into features that better represent the underlying problem
to the predictive models, resulting in improved model accuracy on unseen data. Feature engineering tries to come up
with the right set of predictors for a model. We can do some feature engineering for time series data as:

+ Rolling mean, min, max, etc. statistics

- Bollinger bands and statistics

- Rolling entropy, or rolling majority, for categorical features

Moving average (MA) is one of the most
popular technical analysis tools for checking
target movements over a given period. It is
utilized to determine support and resistance
levels, as well as identify the trend direction. A
moving average can help to smooth out target
action bv filterina out the "noise" from random#

] e ©))) (-]
Pe——0— BPs— 0 —) >pr———O0—> >
() e o © 0 [oﬂ o

store_item_stock_train 7step_moving_avg sQL step_maling_avg
osv

Lag is essentially delay. Just as
correlation shows how much two) o
timeseries are similar,

X autocorrelation describes how
Break date and get the year, month, similar the time series is with itself Lah7
week of year, day of the month, hour, or with other lags P
minute, second, etc. 4

» o o
>u—0— 0BFs
& e o

sQL

e o e o .
Qrt—0— AP u—@——
e © e o o

PrintNRows DateTimeFieldExtract Lagl

_images/user-permissions.png
@users.manage
@groups.manage
@roles.manage
@configurations.manage
@datasets.view
@datasets.modify
@workflows.view
@workflows.modify

@workflows.execute

_images/user-list.png
| USERLIST

Search Q ADD USER EXPORT ALL USERS « »

ID FIRST NAME LAST NAME USER NAME E-MAIL ROLE GROUP LAST LOGIN SUPER USER ACTIVE/INACTIVE ACTION
1 admin admin admin ADMIN DEFAULT 2020/12/29 23:31:17 PDT true L @ 4
ANALYST DEFAULT 2020/07/14 03:16:30 PDT false L @ 4

2 test test test

_images/workflow-execute.png
o Fire Insights % DATABROWSERS v = DATASETS & WORKFLOW~ OSCHEDULED € WORKFLOW EXECUTIONS v GJDASHBOARD (] ADMINISTRATION ~ PROCESSORS »

| Execute Workflow

BACK EDIT
Workflow Id: @ 32 EXECUTE

Workflow Name: @ ETL Customer

Spark-submit-conf: @

eg: --executor-memory 2g --num-executors 5 --executor-cores 2 --driver-memory 2g

Choose jar files: @

Workflow Results

| Workflow

FLOW ID: 32

DESCRIPTION: ETL Workflow

NODES: Nodes

ReadCsV

ReadCsV

ReadCsV

ReadCsV

_images/user-role-list.png
| USER ROLES LIST

Search Q ADD ROLE

ID ROLE EDIT DELETE
1 ADMIN EDIT DELETE
EDIT DELETE

2 ANALYST

_images/workflow-execution.png
@) Administration ~

8 Users
(& Groups ons
& Roles

& Configuration

_images/workflow-execution-result.png
Summary

summary

count

mean

min
25_percentile
50_percentile
75_percentile
max

stdev

variance

number_vmail_messages

5000
7.755
0.0
0.0
0.0
17.0
52.0
13.546

183.505

today_day_minutes

5000
180.289
0.0
143.7
180.1
216.2
351.5
53.895

2904.639

today_day_calls

5000

100.029

0.0

87.0

100.0

13.0

165.0

19.831

393.276

today_day_change

5000

30.65

0.0

24.43

30.62

36.75

59.76

9.162

83.944

total_eve_minutes total_eve_call

5000

200.637

0.0

166.3

201.0

2341

363.7

50.551

2555.435

5000

100.191

0.0

87.0

100.0

14.0

170.0

19.826

393.09

total_eve_charge

5000

17.054

0.0

14.14

17.09

19.9

30.91

4.297

18.463

total_night_minutes

5000

200.392

0.0

166.9

200.4

234.7

395.0

50.528

2553.057

total_night_call

5000
99.919
0.0
87.0
100.0
13.0
175.0
19.959

398.349

_static/ajax-loader.gif

_images/workflow-execution1.png
I—————ERRRRRRRRRRRRRRR.
Workflow Executions

_images/store_top_10.png
date

2013-01-01

2013-01-02

2013-01-03

2013-01-04

2013-01-05

2013-01-06

2013-01-07

2013-01-08

2013-01-09

2013-01-10

store

item

sales

13

n

14

13

10

12

10

12

_images/stock_workflow1.png
Safety Stock Calculations for Inventory Management

Periodically, we need to order product to replenish our inventory. When we do this, we have in mind a future period for which we are attempting to address
demand along with an estimate the demand in that period.

When actual demand exceeds our forecasts, we run the risk of a stockout (out of stock) situation with its associated potential loss of sales and reduced

customer satisfaction. To avoid this, we often include additional units of stock, above the forecasted demand, in our replenishment orders. The amount of
this safety stock depends on our estimates of variability in the demand for this upcoming period and the percentage of time we are willing to risk an out of

stock situation.

e x
00083 Prophet is a procedure TS
- for forecasting time
({ondltlon pased series data based on an query to fetch
filterobloneloy additive model where predicted
pore)alieslofa non-linear trends are fit data =

specific column

(2} (]

(] (2] (=]
>°r—~0~——} ar ar .
e 4 ©
© 1 e ° 2 0 Prophet sQL
store_item_stock_train RowfFilter
csv
ooy
Read
"store_item_sto
ck_train" csv
fila “ (2] [x}
ar.
o 6 O
JoinUsingSQL SaveCSV
e e X

Save final output data
obtained from join
node 4

SQL query to join
predicted and
History data P

_static/plus.png

_static/up-pressed.png

_static/up.png

_images/prophet_general.png
General Future Data

OUTPUT STORAGE LEVEL : @ DEFAULT

DS COLUMN: @ Datetime : timestamp
Y: 0 Bearing_1: double
GROWTH: @

linear

YEARLY SEASONALITY : @ auto

WEEKLY SEASONALITY : @ auto

DAILY SEASONALITY : @ auto

SEASONALITY MODE : @ additive

INTERVAL WIDTH : @ 095

_images/prophet_future1.png
General Future Data

FUTURE PERIOD : @ \ 30 ‘

FREQUENCY: @ D |

INCLUDE HISTORY : ©@

<

o

_images/prophet_out.png
ds
TimestampType
2004-02-1312:02:39
2004-02-1412:02:39
2004-02-1512:02:39
2004-02-1612:02:39
2004-02-17 12:02:39
2004-02-18 12:02:39
2004-02-1912:02:39
2004-02-2012:02:39
2004-02-2112:02:39

2004-02-2212:02:39

trend

DoubleType
0.0065570403065542335
-0.04765893255461476
-0.10187490541578374
-0.15609087827695273
-0.2103068511381217
-0.2645228239992907
-0.3187387968604597
-0.37295476972162867
-0.42717074258279764

-0.4813867154439667

trend_lower
DoubleType
-0.4314989436380987
-1.2551897482733552
-2.4618087335060457
-3.7689904345524265
-5.3647822962412555
-6.981627822573064
-8.94688944368949
-10.606858671880655
-12.637549731463602

-14.90960174003428

trend_upper
DoubleType
0.443870248355367
1235643745446955
2188138763682763
3.35756280566189
4.605712801394639
61714043515849175
7.832083459560579
10.032112103876145
11.838283845322355

14.331184407396112

yhat

DoubleType
0.0065570403065542335
-0.04765893255461476
-0.10187490541578374
-0.15609087827695273
-0.2103068511381217
-0.2645228239992907
-0.3187387968604597
-0.37295476972162867
-0.42717074258279764

-0.4813867154439667

yhat_lower
DoubleType
-0.4314334302089222
-1.2552038753818562
-2.4616337516841176
-3.7689098347803065
-5.3638858389282635
-6.98272353061758
-8.947444893896066
-10.606690639862599
-12.636874299933673

-14.909209104192312

yhat_upper
DoubleType
0.44348778316922943
12358456648999048
2187445509713839
3.357621979300829
4.605428933121821
6171796066104398
7.832509699896468
10.032533196920488
11.838282437376805

14.331133324256857

_images/prophet_general1.png
NAME date
TYPE date
FORMAT

General Future Data

OUTPUT STORAGE LEVEL : @

DS COLUMN: @

Y:@

GROWTH : ©

YEARLY SEASONALITY : ©

WEEKLY SEASONALITY : @

DAILY SEASONALITY : ©

SEASONALITY MODE : ©

INTERVAL WIDTH : ©@

store item

integer integer

DEFAULT

date : date

sales:integer

linear

auto

auto

auto

additive

0.95

sales

integer

_images/random_forest_regression2.png
NUM TREES : @

SUBSAMPLING RATE : @

SEED: @

CACHE NODE IDS : ©

CHECKPOINT INTERVAL : @

MAX MEMORY : @

20

1.0

false

10

256

_images/random_forest_regression.png
FEATURES COLUMN : @

LABEL COLUMN: @

PREDICTION COLUMN : @

FEATURE SUBSET STRATEGY : @

IMPURITY : @

MAXBINS : @

MAX DEPTH : @

MIN INFORMATION GAIN : @

MIN INSTANCES PER NODE : @

feature_column : vectorudt

time_to_failure_label : double

auto

variance

32

0.0

_images/pipeline.png
pipeline Name:

Example Pipeline

Q| Search Nodes

&t Workflow

& Workflow_1

Category:

Enter Category

Description:

Enter Description

Parameters:

Enter parameters

m CLEAR BACK EXECUTE

_images/pipeline-list.png
| Application Dashboard - Analytics

Workflows Datasets Dashboard Workflow Executions Scheduled Share App Credentials Pipeline Pipeline Executions
| Plplellne List Q | Search Pipelines
Filter By Category O o NAME DESCRIPTION CATEGORY LAST UPDATED ACTION
[Example Pipeline 01/07/2019 at 9:37PM @ &P w

= Show All Categories

_images/project-shared-permission.png
| SHARE PROJECT - DATASCIENCEAPPLICATION

Workflow
Dataset

Report

SAVE CANCEL

Read
Read

Read

Write
Write

Write

Execute

Execute

GROUPS :

DEFAULT

v

Admin

_images/project-permission.png
GROUP NAME

Owner: admin admin

'WORKFLOW PERMISSION

DATASET PERMISSION

REPORT PERMISSION

ACTIONS

SHARE

40

DEFAULT

READ WRITE EXECUTE

READ WRITE

READ WRITE EXECUTE

S W

_images/prophet_future.png
General Future Data
FUTURE PERIOD : @ 2%
FREQUENCY: @ D

INCLUDE HISTORY : @ false

_images/pipe-python-schema-1.png
Pipe Python =

(2]

SCHEMA COLUMNS : ©@ n

OUTPUT COLUMN NAMES ©

cl

c2
c3
c4

c5

OUTPUT COLUMN TYPES @

DOUBLE

DOUBLE

DOUBLE

DOUBLE

DOUBLE

<

<

<

<

OUTPUT COLUMN FORMATS ©

format

format

format

format

format

_images/pipe-python-workflow.png

_images/pipe-python-schema-2.png
OUTPUT COLUMN NAMES @ OUTPUT COLUMN TYPES @ OUTPUT COLUMN FORMATS @
cl STRING 5 format n
c2 STRING 5 format n
c3 STRING 5 format n
c4 STRING 5 format n

_images/pipeline-execution.png
| Pipeline Task List Q | Search by TaskName

D TASK NAME VIEW CATEGORY DESCRIPTION START TIME LAST UPDATED DURATION(SEC) STATUS
193 Clickstream Data Analysis e = 54 %k Analytics Fired By Pipeline - Airfl... 01/13/2018 at 6:08:15PM 01/13/2018 at 6:08:15PM 0 STARTING
194 Farmers Markets on Geo ... e = 54 %k Analytics Fired By Pipeline - Airfl... 01/13/2018 at 6:08:15PM 01/13/2018 at 6:08:15PM 0 STARTING

195 DistributionGraphs ¢ o %k Analytics Fired By Pipeline - Airfl... 01/13/2018 at 6:08:15PM 01/13/2018 at 6:08:15PM 0 STARTING

_images/pipeline-execute.png
| Execute Pipeline

Lot [o

Pipeline Id: @
Pipeline Name: @
Email on success:

Email on failure:

Pipeline Result

Pipeline Details

Pipeline Id:

Description:

Pipeline Nodes:

PIPELINE NODES

Clickstream Data Analysis
Farmers Markets on Geo Map

DistributionGraphs

Example Pipeline

EXECUTE

_images/passing-parameters-3.png
| Configurations

SAVE CONFIGURATIONS | INFER HADOOP CLUSTER CONFIG

D

35

NAME

app.runOnCluster

app.impersonateUsers

app.postMessageURL

app.sparksubmitjar

app.nodesDir

app.allowExecutioninEditor

app.vars

TITLE

Run on Spark Cluster

Impersonate Users

Fire ui postback URL

Spark Submit Jar File

Nodes Directory

Allow Execution in
Workflow Editor

Exira variables fo be
passed

VALUE!

false

true

http://localhost:8080/messageFromSparkjob

Juser/centos/fire-1.4.2/fire-lib/fire-core r-with-

dependencies jar

nodes

true

@

@

@

@

@

Search:

DESCRIPTION

Whether to submit the Spark Jobs fo the Spark
Cluster or Run Locally

Whether fo impersonate the logged in user, or
run everything as the user Fire is running with

Fire ui postback URL for the messages of
executing jobs

Absolute path of the Fire jor file fo be used for
submitfing the spark jobs.

Directory which contains the nodes json

Whether fo allow execution in the Workflow Editor
or not

Exira voriables fo be passed fo spark-submit with
~var. Format : namel=valuel name2=value2
name3=value3

_images/passing-parameters-2.png
x,

Parameters = o
NodeParameters 8

<«

OUTPUT STORAGE LEVEL : @ DEFAULT

KEY VALUE ARRAY : @ n
PARAMETER NAMES © PARAMETER VALUES ©
low 15 n
high 78 n
output transactions n

n CANCEL

_images/personal-machine.png
Sparkflows

Standalone Machine

_images/performance_matrix.png
OUTPUT STORAGE LEVEL : @ DEFAULT

LABEL COLUMN : @ time_to_failure_label : double

PREDICTION COLUMN : @ prediction : double

METRIC NAME : @ rmse

_images/pipe-python-output-1.png
(o]
DoubleType
1.0
2.0
3.0
4.0
5.0
6.0
1.0
2.0
3.0

4.0

Cc2
DoubleType
0.0
1.0
0.0
0.0
0.0
1.0
0.0
1.0
0.0

0.0

c3
DoubleType
2.3
3.0
11
4.1
31
2.1
2.3
3.0
11

4.1

Cca
DoubleType
3.0
2.0
1.0
5.0
6.0
2.0
3.0
2.0
1.0

5.0

C5
DoubleType
1.0
3.0
3.0
4.0
5.0
7.0
1.0
3.0
3.0

4.0

_images/pipe-python-dialog-1.png
Pipe Python =

(2]

SCHEMA :
COLUMN NAME cl
COLUMN TYPE double

COLUMN FORMAT

PIPE PYTHON : @

1
2
3
4
5
6
7
8

9
10
11
12
s
14
13
16
17

#1/usr/bin/python

import sys

for line in sys.stdin:
line = line.strip()
if not line:

continue

fields = line.split(",")

total = str(float(fields[0]) + float(fields[1]))

result = ",".join(fields) + "," + total

print result

c2

double

c3

double

c4

double

_images/smtp-configuration.png
o Fire Insights) DATA BROWSERS ~ © APPLICATIONS ~ © SCHEDULED ~ @ WORKFLOW EXECUTIONS ~ (2] ADMINISTRATION ~ ROCESSORS ~

| Configurations

SAVE CONFIGURATIONS INFER HADOOP CLUSTER CONFIG Q

APP SPARK HDFS HADOOP YARN HIVE KERBEROS LDAP ALERT

NAME TITLE VALUE DESCRIPTION

alert.mailFrom Mail From (# Email address from which to send email alerts
alert.mailSmtpHost Mail SMTP Host (& SMTP Host to be used for sending emails
alert.mailSmtpPort Mail SMTP Port (& SMTP Port to be used for sending emails
alert.mailSmtpAuthUser Mail SMTP Auth User (& SMTP Auth Username for sending emails
alert.mailSmtpAuthPassword ~ Mail SMTP Auth Password (# SMTP Auth Password for sending emails

SAVE CONFIGURATIONS

_images/service_provider_entity_id.png
Authentication Security Settings Develo|

Applications /
SAML Test Connector (Advanced)

More Actions v

Info
| Configuration Audience (EntityID)

https://localhost:8443/sparkflow/saml/metadata

Parameters

Rules Recipient
https://localhost:8443/saml/SSO

SsO

S ACS (Consumer) URL Validator*
*

Users

- *Required.
Privileges
Setup ACS (Consumer) URL*

https://localhost:8443/saml/SSO

‘ *Required

Single Logout URL

https://localhost:8443

Login URL

_images/sparkflows-fire-architecture.png
Browser

Spark Cluster

Storage

_images/sparkflow_loginpage.png
& - C & EEEggEAs443/login

0 Fire Insights

USERNAME

I

PASSWORD

|
I R

_images/sql_general.png
A
SQL@ © NodesaL Note: Whenever the table is changed, go to Schema tab and Refresh the Schema «

NAME ds trend trend_lower trend_upper yhat yhat_lower yhat_upper L
TYPE timestamp double double double double double double
FORMAT

General Schema

OUTPUT STORAGE LEVEL : @ DEFAULT v

TEMP TABLE: @ fire_temp_table

SQL:©

1 SELECT CAST(to_date(ds) as STRING) as forecast date, "
2 yhat as sales_pred_mean,

3 yhat_lower as sales_pred lower,

4 yhat_upper as sales_pred upper from fire temp table

_images/sparkflows-fire-architecture1.png
Browser

Spark Cluster

Storage

_images/stock_graph_workflow1.png
Graphical Representation of Stock Forecasted Output

We now have access to forecasted and actual demand store-item(1-1) combinations. Lets quickly visualize forecasted and actual demand
for the combination of item 1in store 1. We will limit the visualization to data in calendar year 2013 for ease of interpretation: the forecast is
not expected to perfectly predict demand. Instead, it provides a mean estimate around which actual demand varies.

4
(2] ©
°) o %) (x]
Er—@—) Ary—— 00— ﬂ"/—e_/)oﬂ:e.
(i] 1 0 e 3 @ e 4 0
output_forecast RowFilter SortBy GraphValues
X X e x
Read saved condition based filter Sort column plotting line chart with X LABEL as
output of stock on one or more values values on year Y LABEL as sales & X COLUMN as
forecasting of a specific column ascending/descen forecast_date and Y COLUMNS as
P P ding order "sales_pred_mean, sales_pred_lower,

4 sales_pred_upper & sales"

_images/sql_schema.png
General Schema

SCHEMA COLUMNS : ©

OUTPUT COLUMN NAMES @ OUTPUT COLUMN TYPES @ OUTPUT COLUMN FORMATS @
forecast_date DATE v format ‘ -] ‘
sales_pred_mean ‘ DOUBLE V‘ format ‘ -] ‘
sales_pred_lower ‘ DOUBLE V‘ format ‘ -] ‘
sales_pred_upper ‘ DOUBLE V‘ format ‘ -] ‘

_images/searchApp.png
onelogin

Find Applications

o

SAML Test Connector (Advanced)

@ o e

_images/scheduler-workflows-scheduled.png
o Fire Insights (%) DATABROWSERS ~ © APPLICATIONS ~ @ SCHEDULED ~ @ WORKFLOW EXECUTIONS ~ (2] ADMINISTRATION ~

PROCESSORS ~

Workflows Scheduled

D USERNAME 'WORKFLOW ID 'WORKFLOW NAME LAST UPDATED SCHEDULED AT SPARK SUBMIT OPTIONS PROGRAM PARAMETERS LIB JARS ACTION
193 ge n Farmers Markets on Geo Map 07/28/2019 at 6:23PM Hourly At --:08 Y A}
194 ge 3 Clickstream Data Analysis 07/28/2019 at 6:23PM Daily At 02:05 Y A}

_images/selimp.png
Upload File

Choose File

CUSTOM PROCESSORS IN THE ZIP FILE

* FDS
o testl

VTN CANCEL

_images/saml_metadata_url.png
« C @ sparkflows-dev.onelogin.com/apps/1330317/edit/#configuration o

onelogin Users Appl

Applications /
SAML Test Connector (Advanced)

More Actions v

Vendor Homepage

Info Reapply entitlement r
| Configuration Audience (EntityID) SAML Metadata
https://localhost:8443/sparkflow/saml/metadata
Parameters Delete
RES Recipient
https://localhost:8443/saml/SSO
SsO
s ACS (Consumer) URL Validator*
*
Users
*Required.
Privileges a

Setup ACS (Consumer) URL*

_images/saveApp.png
onelogin Users Applications Devices Authentication Activity Security Settings. Developers.

AppListing /
Add SAML Test Connector (Advanced) Cancel

| Configuration Portal

rm

sparkflows

_images/saml_signature.png
onelog n Users Applications Authentication Security Settings Developers

Applications /
SAML Test Connector (Advanced)

More Actions v

SAML2.0
Info
X.509 Certificate
Configuration Standard Strength Certificate (2048-bit)
Change View Details
Parameters
SAML Signature Algorithm
Rules
SHA-1 v
| sso
Issuer URL
Access
https://app.onelogin.com/saml/metadata/5f5d16a1-07d1-4167-a305-489d2ee0b18b [&)
Users
SAML 2.0 Endpoint (HTTP)
Privileges
https://sparkflows-dev.onelogin.com/trust/saml2/http-post/sso/5f5d16a1-07d1-4167-a305-489d2ee(IFy
Setup

SLO Endpoint (HTTP)

https://sparkflows-dev.onelogin.com/trust/saml2/http-redirect/slo/1330317 &)

_images/scater_graph.png
Sales_pred_mean

Row Values
Row Values
forecast_date
DateType
2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06
2013-01-07

2013-01-08

25

20

15

10

2,012.0

2,012.2 2,012.4

sales_pred_mean
DoubleType

15322

15328

15335

15341

15347

15354

1536

15.366

2,012.6 2,012.8 2,013.0 2,013.2
Year
® sales_pred_mean ® sales ® sales_pred_lower

sales
IntegerType
13

n

14

13

10

12

10

9

2,013.4 2,013.6 2,013.8

sales_pred_lower
DoubleType

2487

277

36

3121

3235

2.803

3.949

32739

2,014.0

_images/save_output_forecast.png
NAME forecast_date
TYPE date
FORMAT

OUTPUT STORAGE LEVEL : @

PATH*:@

SAVE MODE : @

HEADER: ©

PARTITION COLUMN NAMES : ©

sales_pred_mean

double

DEFAULT

/tmp/data/output_demandforecast/output_forecast

Overwrite

true

Available

forecast_date : date
sales_pred_mean : double
sales_pred_lower : double
date : double

store :integer

item :integer
sales:integer

sales_pred_lower

double

date

double

store item

integer integer

BROWSE HDFsS

Selected

VIEW FILE

sales

integer

_images/scheduler-workflow-executions.png
@ Firelnsights () DATABROWSERS~ #5 DATASETS da WORKFLOW~= OSCHEDULED | € WORKFLOW EXECUTIONS - | (IDASHBOARD GADMINISTRATION~ 5 PROCESSORS ~

| Workflow Executions

DELETE OLD WORKFLOW EXECUTIONS Search:

EXECUTION WORKFLOW USER view VEW VEWFUL sTop

) » D NAME CATEGORY DESCRIPTION START TIME LASTUPDATED DURATION STATUS EXECUTIONS RESULTS RESULTS EXECUTION LOGS

a7s 2 3 Dedup Customers e Finding the simiar users in two. wisom ot 002518026300 COMPLETED | View View | ViewFal Logs
difforont dato sefs. 103:00PM. Exocutions | Resulls | Resulls

a7 2 3 DedupCustomers e Finding the simiar users in two. naanon o 002517882300 COMPLETED | View View | ViewFal Logs
difforont dato sef. 103:00M, Exocuions | Results | Resulls

a5 2 3 Dodup Customers e Finding the simiar users in two a0 o 002517862100 COMPLETED | View View | ViewFal Logs
aifforent dota sets. 10100 Exccutions | Results | Results

945 2 3 Dodup Customers e Finding the simiar users in two w401 a1 00257676100 COMPLETED View View | ViewFal Logs
different dota sets. 100:00PM Executions | Results | Resuls

944 2 3 Dodup Customars e Finding tho similar usors n two 42017 o1 002517670100 COMPLETED View Vew | ViewFal Logs
different dota sets. :0100PM Executions | Results | Resuls

943 2 3 Dodup Customars e Finding tho simiar usors in two w2017 o1 002517864100 COMPLETED View Vw | ViewFal Logs
different dota sets. 0100PM Executions | Results | Results

o4 2 3 Dodup Customors e Finding tho similar usors n two 42017 o1 002517856100 COMPLETED View. Viow Full Logs
different dota sets. 70100PM Executions Resuls

_images/scheduler-schedule-job.png
Schedule Job

SPARK SUBMIT OPTIONS:

Spark Submit Optior

[®/HOURLY

© DAILY

© WEEKLY

© MONTHLY

© CUSTOM CRON PATTERN

MINUTE:

a
v

Cancel

_images/sagemaker-xgboost-configuration-1.png
OUTPUT STORAGE LEVEL : @ DEFAULT

«

ROLEARN *: @ arn:aws:iam::004331324847:role/aws-segmaker-full-access

TRAININGINSTANCETYPE *: ©@ ml.c4.xlarge

TRAININGINSTANCECOUNT *: @ 1

ENDPOINTINSTANCETYPE *: @ ml.c4.xlarge

ENDPOINTINITIALINSTANCECOUNT *: @ 1

BOOSTER *: @ gbtree v

SILENT *: @ 1 :
v

NTHREAD *: @ 2

OBJECTIVE*: @ multizsoftmax v

NUM TREES *: @ 2

NUM CLASSES *: @ 10

ﬂ CANCEL

_images/read_csv.png
ReadCSV# © NodeDatasetcsv Note: Whenever the file is changed, Refresh the Schema

OUTPUT STORAGE LEVEL : ©@
PATH*: @

SEPARATOR : ©

HEADER:©

DROP MALFORMED : ©

SCHEMA COLUMNS : @ ‘ ° ‘

COLUMN NAMES FORTHE CSV @

date
store
item

sales

DEFAULT

/tmp/data/store_item_stock_train.csv

true

false

COLUMN TYPES FORTHE CSV @

DATE

INTEGER

INTEGER

INTEGER

BROWSE HDFS

COLUMN FORMATS FOR THE CSV @

format

format

format

format

VIEW FILE

_images/sagemaker-xgboost-workflow-1.png
(2] (x)

(2} o = m

= [m] XGBoostSageMake
ReadLibsvm rEstimator

(i) 1 (<) (i) 2 (<]

()

> o ‘ (2] > (*]
is [m] 2 (]
ReadLibsvm & # Predict

(i) 4 e‘

o (]

> o
PrintNRows

o 5

_images/sagemaker-xgboost-execute-1.png
Executing Node fire.nodes.dataset.NodeDatasetLibsvm : 1 Dec 30, 2018 7:27:42 AM

e ReadLibsvm

Reading LibSVM File

(3 Output Schema

Executing Node fire.nodes.sagemaker.NodeXGBoostSageMakerEstimator : 2 Dec 30, 2018 7:27:42 AM

0 Input Schema

e XGBoostSageMakerEstimator

Endpoint Name is endpoint-df4c1966a59a-2018-12-30T07-27-42-915

_images/11.png

_images/12.png

_images/1.png

_images/1a.png
L

_images/2.png
ReadCSVE o

OUTPUT STORAGE LEVEL : @ DEFAULT

PATH *: ©@

SEPARATOR: ©

HEADER: ©

true
DROP MALFORMED : © false
SCHEMA COLUMNS : @
COLUMN NAMES FOR THE CSV © COLUMN TYPES FOR THE CSV ©

id DOUBLE
name STRING
gender STRING
senior_citizen STRING

<«

<«

<«

<«

<«

/user/ec2-user/data/data-with-nulls.csv BROWSE HDFS

<«

<«

COLUMN FORMATS FOR THE CSV ©

format

format

format

format

x,

_images/13.png

_images/14.png
(2] [}
= on

Read in ner-person
text file

(i) 1 (<)

_images/21.png
DatasetStructured @ @ Details
NodeDatasetStructured

OUTPUT STORAGE LEVEL : @ DEFAULT

-

-

Housing

n CANCEL

_images/22.png
Read in ner-person text file @

OUTPUT STORAGE LEVEL : @

PATH:©

OUTPUT COLUMN NAME : @

(]

DEFAULT

data/ner-person

lines

Ald

BROWSE HDFS

_images/2a.png
DatasetStructured @ @ Details

NodeDatasetStructured

OUTPUT STORAGE LEVEL : @ DEFAULT N
DATASET: ©

-

n CANCEL

_images/2a3.png
ReadCsV

Executing Node fire.nodes.dataset.NodeDatasetCSV : 4 Nov 11, 2018 1:16:51 PM

Row Values

id
DoubleType
1.0

2.0

3.0

4.0

5.0

NaN

6.0

NaN

name
StringType
ABC

DEF

GHR

JKL

RIT

PQR

ORT

gender

StringType

< Z

senior_citizen
StringType
Y

N

resident
StringType
Y

N

family
StringType

N

_images/2a4.png
lines

StringType

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .

Mr . Vinken is chairman of Elsevier N.V., the Dutch publishing group .

Rudolph Agnew , 55 years old and former chairman of Consolidated Gold Fields PLC , was named

a director of this British industrial conglomerate .

_images/2a1.png
ReadCSVE o
NodeDatasetCSV

OUTPUT STORAGE LEVEL : @

PATH*: @

SEPARATOR : @
HEADER: @

DROP MALFORMED : @

DEFAULT

data/validation.csv

false

false

-

-

-

BROWSE HDFS

_images/2a2.png
ReadCSVE o
NodeDatasetCSV

OUTPUT STORAGE LEVEL : @

PATH*: @

SEPARATOR : @
HEADER: @

DROP MALFORMED : @

sccoums o [EEIY

DEFAULT

/user/ec2-user/data/data-with-nulls.csv

true

false

-

-

-

VIEW FILE

BROWSE HDFS

_images/2b1.png
ReadCsV

Executing Node fire.nodes.dataset.NodeDatasetCSV : 1 Nov 15, 2018 12:04:27 PM

Row Values

f
StringType
1

6

2
IntegerType
2

7

3
IntegerType
3

8

4
IntegerType
4

9

email
StringType
aa@bb.com
bb@bb.com
cc@bb.com
«<@®
try@abc.com

try@nc.com

dt
StringType
2018-05-05
2018-05-05
2018-05-05
2018-05-05
2018/12/23

23-12-2018

_images/2b2.png
COLUMN NAMES FOR THE CSV @

id

name

gender

senior_citizen

resident

Family

CCOLUMN TYPES FOR THE CSV @

DOUBLE

STRING

STRING

STRING

STRING

STRING

-

-

-

-

-

COLUMN FORMATS FOR THE CSV @

format

format

format

format

format

format

CANCEL

_images/2aa.png
COLUMN NAMES FOR THE CSV @

fl

f2

fa

‘email

dt

CCOLUMN TYPES FOR THE CSV @

STRING

INTEGER

INTEGER

INTEGER

STRING

STRING

-

-

-

-

-

COLUMN FORMATS FOR THE CSV @

format

format

format

format

format

format

CANCEL

_images/2b.png
DatasetStructured

Executing Node fire.nodes.dataset.NodeDatasetStructured : 3 Nov 14, 2018 12:14:20 PM

Row Values

Passengerld Survived Pclass Name Sex Age sibSp
IntegerType IntegerType IntegerType Stringlype StringType StringType IntegerType

1 0 3 Braund, Mr. male 22 1
Owen Harris

2 1 1 Cumings, female 38 1
Mrs. John
Bradley
(Florence
Briggs
Thayer)

3 1 3 Heikkinen, female 26 0
Miss. Laina

Parch
IntegerType

0

Ticket
StringType

A/8 21171

PC 17599

STON/O2.
3101282

Fare Cabin Embarked

DoubleType StringType StringType

7.25 S
71.2833 c8s C
7.925 S

_images/opennlp-1.png
OpenNLPNameFinder @

Schema :

Column Name

Column Type

Model : @
Input Text Column :

Output Column : @

lines

string

/user/centos/opennlp-models-1.5/en-ner-person.bin

lines : string

ner

<>

_images/one_login_recipient.png
onelogln Users Applications Authentication Security Settings Develo|

Applications /
SAML Test Connector (Advanced)

More Actions v

Info
| Configuration Audience (EntityID)

https://localhost:8443/sparkflow/saml/metadata

Parameters

Rules Recipient
https://localhost:8443/saml/SSO

SsO

S ACS (Consumer) URL Validator*
*

Users

- *Required.
Privileges
Setup ACS (Consumer) URL*

https://localhost:8443/saml/SSO

‘ *Required

Single Logout URL

https://localhost:8443

Login URL

_images/passing-parameters-1.png
| Execute Workflow

Coce [o
'WORKFLOW ID: © 1505 EXECUTE

'WORKFLOW NAME: © TESTING HIVE PARAMETERS

SPARK-SUBMIT-CONF: @

EG: --EXECUTOR-MEMORY 2G --NUM-EXECUTORS 5 --EXECUTOR-CORES 2 --DRIVER-MEMORY 2G

PROGRAM PARAMETERS: @ _-var doctor=1

_images/opennlp.png
OpenNLPNameFinder @

Schema :

Column Name

Column Type

Model : @
Input Text Column :

Output Column : @

lines.

string

luser/centos/opennlp-models-1.5/en-ner-person.bin

lines : string

ner

o«

_images/okta_issuer.png
Settings

SIGN ON METHODS

The sign-on method determines how a user signs into and manages their credentials for an application. Some sign-
on methods require additional configuration in the 3rd party application

Application username is determined by the user profile mapping. Configure profile mapping

SAML 20
Defauit Relay State
e SAML 2.0 is not configured until you complete the setup instructions.

View Setup Instructions

Identity Provider metadata is available if this application supports dynamic configuration

CREDENTIALS DETAILS

_images/okta_identifier_url.png
How to Configure SAML 2.0 for FIRE-INSIGHT Application
The following is needed to configure FIRE-INSIGHT

@ 1dentity Provider Single Sign-On URL

https://dev-514411 okta. com/app/dev-514411_fireinsight_1/exk6269h8x1g2HeHZ35T/ss0/saml

@ 1dentity Provider Issuer

http://www.okta. com/exk6z69h8x1g2HeHZ3ST

_images/okta_saml.png
UIY Q Search pe v.kumar - nmbrsy: Help and Support

okta EEETS ‘ s r s U My Apps @

«— Back to Applications

% Add Application

CATEGORIES
Featured ‘
API Management ‘ Web

Apps

Apps for Good Sign on method @® sAmML20

@ED Uses the SAML protocol to log users into the app.

Directories and HR Sy (O OpenlD Connect

Uses the OpenID Connect protocol to log users into an app

Security Applications
R you've built

Okta Applications

VPN

SAML, Provisioning SAML, Provisioning SAML, Provisioning

_images/okta_metdata.png
« Back to Applications

@ 7 FIREINSIGHT

E] View Logs

General Sign On Mobile Import Assignments

Settings

SIGN ON METHODS

The sign-on method determines how a user signs into and manages their credentials for an application. Some sign-
on methods require additional configuration in the 3rd party application

Application username is determined by the user profile mapping. Configure profile mapping

SAML 2.0
Defaut Relay State
e SAML 2.0 s not configured until you complete the setup instructions.

View Setup Instructions

Identity Provider metadatas available if this application supports cynamic configuration.

_images/oneLoginSignIn.png
onelogin

To sign in...

Enter your company’s OneLogin Domain.

f A

COMPANYNAME ONELOGIN.COM

CONTINUE

NEED HELP?

1 g

_images/okta_signin_url.png
Enter your sign-in URL

mycompany . okta.com v

Next

_images/one_login_entity_id.png
Authentication Security Settings Developers

Applications /

More Actions v
SAML Test Connector (Advanced)
SAML2.0
I X.509 Certificate
Configuration Standard Strength Certificate (2048-bit)
Change View Details
Parameters
SAML Signature Algorithm
Rules
SHA-1 v
| sso
Tssuer URL
Access
https://app.onelogin.com/saml/metadata/5f5d16a1-07d1-4167-a305-489d2ee0b18b [&)
Users
SAML 2.0 Endpoint (HTTP)
Privileges
https://sparkflows-dev.onelogin.com/trust/saml2/http-post/sso/5f5d16a1-07d1-4167-a305-489d2ee(IFy
Setup

SLO Endpoint (HTTP)

https://sparkflows-dev.onelogin.com/trust/saml2/http-redirect/slo/1330317 &)

Login Hint

Enable login hint
o s e e 0 oooameBec L oo ceers an i e S . o e SR S i R G e S e

_images/3.png
Handle Null Values @

SCHEMA :

COLUMN NAME

COLUMN TYPE

COLUMN FORMAT

OUTPUT STORAGE LEVEL : ©

COLUMNS

id

name

gender
senior_citizen
resident

family

[}

id name

double string

DEFAULT

CONSTANTS (2]
(]

TEMP_NAME

F

gender

string

senior_citizen

string

«

resident

string

x,

family

string

_images/31.png
DatasetStructured

Executing Node fire.nodes.dataset.NodeDatasetStructured : 1 Nov 12, 2018 1:16:59 PM

Row Values

id
IntegerType
1

2

price
DoubleType
42000.0
38500.0
49500.0
60500.0
61000.0
66000.0

66000.0

lotsize
IntegerType
5850
4000
3060

6650

6360

4160

3880

bedrooms
IntegerType
3

2

bathrms
IntegerType
1

1

stories.

IntegerType

2

1

driveway

StringType

recroom
StringType
no

no

no

yes

no

yes

no

fullbase
StringType
yes

no

no

no

no

yes

yes

gashw
StringType
no
no
no
no
no
no

no

airco
StringType
no

no

no

no

no

no

garagepl

profas

IntegerType String

1

0

no
no
no
no
no
no

no

_images/2c.png
ReadCsV

Executing Node fire.nodes.dataset.NodeDatasetCSV : 5 Nov 13, 2018 11:16:16 AM

Row Values
id name gender senior_citizen resident Family
DoubleType StringType StringType StringType StringType StringType
10 ABC F Y Y N
20 DEF M N N
3.0 GHR M Y Y Y
40 JKL F N Y N
50 RIT M Y Y
NaN F Y Y N
6.0 PQR Y Y

_images/3a1.png
Validationz @
NodeValidation

SCHEMA:
COLUMN NAME f1
‘COLUMN TYPE string

COLUMN FORMAT

OUTPUT STORAGE LEVEL : @

DESCRIPTION: @

VARIABLES LIST : n

2

integer

DEFAULT

3

integer

f4

integer

-

email

string

dt

string

_images/3a2.png
DropRowsWithNull =
NodeDropRowsWithNull

SCHEMA :
COLUMN NAME
COLUMN TYPE

COLUMN FORMAT

OUTPUT STORAGE LEVEL : @

2]

id name gender
double string string
DEFAULT

senior_¢

string

izen

-

resident

string

Family

string

n CANCEL

_images/32.png
Extract names from text using OpenNLP = @ Details
SCHEMA :

COLUMN NAME

COLUMN TYPE

COLUMN FORMAT

OUTPUT STORAGE LEVEL : @ DEFAULT

MODEL: @ opennlp-models-1.5/en-ner-person.bin

INPUT TEXT COLUMN : © lines : string

OUTPUT COLUMN : @ ner

lines

string

Ald

Ald

_images/3a.png
ConcatColumnsz @
NodeConcatColumns

SCHEMA:
COLUMN NAME Passengerld
‘COLUMN TYPE integer

COLUMN FORMAT

OUTPUT STORAGE LEVEL : @

COLUMNS : @

Survived

integer

Pclass Name Sex Age SibSp

infeger siring siring string integer

DEFAULT

Passengerld : infeger
Survived : infeger

Parch

integer

Ticket

string

-

Fare

double

Cabin

string

Embarked

string

_images/3aa1.png
COLUMNS @

‘email

dt

-

-

-

-

FUNCTION @

IS_VALID_EMAIL_ADDRESS

IS_VALID_DATE_FORMAT

VALUE_GREATER_THAN

VALUE_LESS_THAN

-

-

-

VALUES ©

Yyyy-MM-dd

CANCEL

_images/3a3.png
id
DoubleType
1.0

2.0

3.0

4.0

5.0

0.0

6.0

0.0

name
StringType
ABC

DEF

GHR

JKL

RIT
TEMP_NAME
PQR

ORT

gender

StringType

< Z

senior_citizen
StringType
Y

N

resident
StringType
Y

N

family
StringType
N

N

_images/3aa.png
(CONCATENATED COLUMN NAME : @

SEPARATOR : @

Fare : double
Cabin : string
Embarked : string

NameSexAge

m CANCEL

_images/okta_finish.png
Get Started

'+ Create SAML Integration

n General Settings a Configure SAML

e Help Okta Support understand how you configured this application

Are you a customer or partner? (® I'm an Okta customer adding an internal app

(O I'm a software vendor. I'd like to integrate my app with Okta

n The optional questions below assist Okta Support in understanding your app integration.

App type @ [V] This is an internal app that we have created

Why are you asking me this?

This form provides Okta Support with useful
background information about your app.
Thank you for your help—we appreciate it

_images/okta_identifier.png
SAML Settings

GENERAL

Single Sign On URL https/localhost:8443/saml/SSO

Recipient URL https?/localhost 8443/sami/SSO

Destination URL nipslocalhost3443/samisso. Saml2.sp.entity

Audience Restriction I https/localhost: 8443/ sparkflow/saml/metadata

Default Relay State

Name ID Format Unspecified

Response Signed

[aseronSignenie) SIoned e T e Tt
Signature Algorithm RSA_SHA256

Digest Algorithm SHA256

Assertion Encryption Unencrypted

SAML Single Logout Disabled

_images/okta_general_settings.png
GENERAL

Single Sign On URL hitps://localhost:8443/saml/SSO
Recipient URL hitps://localhost:8443/saml/SSO
Destination URL hitps://localhost:8443/saml/SSO
Audience Restriction https://localhost:8443/sparkflow/saml/metadata

Default Relay State

Name ID Format Unspecified
Response Signed

Assertion Signature Signed

Signature Algorithm RSA_SHA256

Digest Algorithm SHA256

Assertion Encryption Unencrypted

SAML Single Logout Disabled
authnContextClassRef PasswordProtectedTransport
Honor Force Authentication Yes

SAML Issuer ID http://www.okta.com/${org.externalKey)

_images/applications_menu.png
onelogin Applications Authenti Activity y Settings Developers

Applications

Portal Tabs

Custom Connectors:

Administration

_images/arima_predicted_result.png
Forecast_ARIMAX
DoubleType
467.573805910366
490.49456508436225
509.1369442565889
492.55476914877306
495.3059691093772
475.94780369392686
476.3398372576565
475.5521380450703
472.35382516685223

483.8896762403088

Index
LongType
o

1

_images/ambari-hdfs-configuration.png
HDFS Summary Heatmaps Configs Quick Links~ Service Actions

© YARN
© MapReduce2 Group Default(8) ~ Manage Config Groups -
Q Tez
internal admin
© Hive abouta day ago about a day ago
HDP-26 HDP-2.6
o Pig
© ZooKeeper ternal authored on Thu, Jun 22, 2017 00:19 Save
© Ambari Infra
© Ambari Metrics Settings | Advanced
© Ranger 1]
© SmartSense ~ Custom core-site
© Spark2
) hadoop.proxyuserHTTP. users a © o
© Zeppelin groups
Notebook
O Kerberos hadoop.proxyuserHTTR. * a © 2 o ¢
hosts
Actions ~ X
hadoop.proxyuser.livy. = a o o
groups
hadoop.proxyuserlivy. B a o o
hosts
hadoop.proxyuser.yarn. - a © o

groups

_images/application.png
| Applications
O o USER NAME
D 36 sparkflows
D 38 sparkflows
D 39 sparkflows
0 =« sparkflows
D 43 sparkflows
D 65 sparkflows
D 1 admin
D 2 admin
3 admin
4 admin
D 5 admin
D 6 admin
D 7 admin
J s admin
D 9 admin
10 admin
D n admin

APPLICATIONS ~ O SCHEDULED ~

NAME

RR_Test

Telco_Enterprise_Feasibility _UseC...

SCHOOL
Treatment
testapp

Banking

Analytics
Connectors
CreditCardFraudDetection
DataPreparation
Demo

ETL

FileFormats
Financials
Languages
MachinelLearning

MarketingAnalytics

© WORKFLOW EXECUTIONS ¥ &) MODELS

DESCRIPTION

Telco_Enterprise_Feasibility_UseCasel
Testing

Test

Banking Application

Analytics Application

Connectors Application
CreditCardFraudDetection Application
DataPreparation Application

Demo Application

ETL Application

FileFormats Application

Financials Application

Languages Application
Machinelearning Application

MarketingAnalytics Application

DATE CREATED

10/24/2019 at 11:53:18AM

10/31/2019 at 4:24:00AM

11/12/2019 at 8:59:23AM

11/14/2019 at 11:36:53PM

11/15/2019 at 10:20:11PM

12/06/2019 at 12:26:49AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:35AM

LAST UPDATED

10/24/2019 at 11:53:18AM

10/31/2019 at 4:24:00AM

11/18/2019 at 2:00:23AM

11/14/2019 at 11:36:53PM

11/15/2019 at 10:20:11PM

12/06/2019 at 12:26:49AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:34AM

10/11/2019 at 3:54:35AM

IMPORT EXPORT CREATE

ACTIONS

LN R N N N SR SR S S A A N N N SR
B 5 &5 8 8 6 86 86 58 6 8 6 5 & &

Q,

_images/arima_printnrows.png
PrintNRows®z = © NodeprintFirstNRows

NAME Forecast_ARIMAX
TYPE double
FORMAT

OUTPUT STORAGE LEVEL : ©@

TITLE:

NUM ROWS TO PRINT: @

DEFAULT

Row Values

10

Index

long

_images/aws-architecture-1.png
AWS Integration g2 ng ez

1

sparkflows

Access S3 Spqiz
l Submit Jobs MLlib

— i
H . H Amazon SageMaker

Deep Learning

- amazon
REDSHIFT

_images/alert-2.png
Schedule Job

SPARK SUBMIT OPTIONS:

Spark Submit Options

eg: --executor-memory 2g --num-executors 5 --executor-cores 2 --driver-memory 2g

PROGRAM
PARAMETERS:

CHOOSE LIBJARS:

EMAIL ON SUCCESS:
EMAIL ON FAILURE:

© HOURLY
O DAILY

© WEEKLY
© MONTHLY

CANCEL m

_images/all_lags.png
date
DateType
2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06
2013-01-07
2013-01-08
2013-01-09

2013-01-10

store
IntegerType
1

1

item
IntegerType
1

1

sales
IntegerType
13

n

14

13

10

12

10

9

2

lag
IntegerType

None

7_lag
IntegerType
None
None
None
None
None
None
None
13

n

14

_images/addAppButton.png
onelogin users Applications Devices Authen

Activity Security Settings Developers Vinit

Applications

_images/alert-1.png
o Fire Insights &) DATABROWSERS ~ © APPLICATIONS ~ © SCHEDULED ~ € WORKFLOW EXECUTIONS ~ (2] ADMINISTRATION ~ ROCESSORS ~

BACK EDIT

Workflow Id: @ 27 [)Debug

Workflow Name: @ Dedup Customers

Spark-submit-conf: @

eg: --executor-memory 2g --num-executors 5 --executor-cores 2 --driver-memory 2g

Program Parameters: @

Choose jar files: @

Email on success:

Email on failure:

_images/3b2.png
DropRowsWithNull

Executing Node fire.nodes.etl.NodeDropRowsWithNull : 2 Nov 13, 2018 11:19:14 AM

@ Input Schema

© Row Values

id
DoubleType
1.0

3.0

40

name.
StringType
ABC
GHR

JKL

gender
StringType
F

M

senior_citizen
StringType
Y

Y

resident
StringType
Y

Y

Family
StringType
N

Y

_images/4.png
Convert String to Integer Indexes = @

SCHEMA :

COLUMN NAME

COLUMN TYPE

COLUMN FORMAT

OUTPUT STORAGE LEVEL : ©

HANDLE INVALID : ©

INPUT COLUMNS
id

name

gender
senior_citizen
resident

family

id name
double string
DEFAULT
skip
OUTPUT COLUMNS (2]

gender_index
senior_citizen_index
resident_index

family_index

gender

string

senior_citizen

string

«

«

resident

string

family

string

_images/3b.png
ConcatColumns

rid

ype

Survived
IntegerType

0

Pclass
IntegerType

3

Name
StringType

Braund,
Mr. Owen
Harris

Cumings,
Mrs. John
Bradley
(Florence
Briggs
Thayer)

Heikkinen,
Miss.
Laina

Futrelle,
Mrs.
Jacques
Heath

Sex
StringType

male

female

female

female

Age
StringType

22

38

26

35

sibSp
IntegerType

1

Parch

IntegerType

0

Ticket
StringType

A/5 21171

PC17599

STON/O2.
3101282

13803

Fare

DoubleType StringType

7.25

71.2833

7.925

531

Cabin

C85

ci23

Embarked NameSexAge
StringType StringType

S Braund, Mr.
Owen
Harrisimale|22

c Cumings, Mrs.
John Bradley
(Florence Briggs
Thayer)lfernalel38
s Heikkinen, Miss.

Lainalfemale|26

s Futrelle, Mrs.
Jacques Heath
(Lily May
Peel)lfernalel35

_images/3b1.png
Validation

Executing Node fire.nodes.etl.NodeValidation : 2 Nov 15, 2018 12:06:12 PM

Input Schema

Row Values
f f2
StringType IntegerType
6 7

3
IntegerType

8

4
IntegerType

9

email
StringType

bb@bb.com

dt
StringType

2018-05-05

_images/4a.png
id name gender senior_citizen resident family gender_index senior_citizen_index resident_index family_index

DoubleType = StringType StringType StringType StringType StringType DoubleType DoubleType DoubleType DoubleType
1.0 ABC F Y Y N 0.0 0.0 0.0 0.0
2.0 DEF M N N N 1.0 1.0 1.0 0.0
3.0 GHR M Y Y Y 1.0 0.0 0.0 1.0
4.0 JKL F N Y N 0.0 1.0 0.0 0.0
5.0 RIT M Y Y N 1.0 0.0 0.0 0.0
0.0 TEMP_NAME F Y Y N 0.0 0.0 0.0 0.0
6.0 PQR F Y N Y 0.0 0.0 1.0 1.0

0.0 ORT F Y Y N 0.0 0.0 0.0 0.0

_images/5.png
x,

Convert Gender to Integer Values@ o 4

8
SCHEMA :
COLUMN NAME id name gender senior_citizen resident family
COLUMN TYPE double string string string string string

COLUMN FORMAT

OUTPUT STORAGE LEVEL : @ DEFAULT

«

OUTPUT COLUMN NAME : @ gender_new

KEY VALUE ARRAY : @

WHEN CONDITION © VALUE ©
gender =="F' 1 a
gender =="'M' 0 a
ELSE: @ 0

_images/41.png
‘COLUMN NAME id price lotsize bedrooms bathrms stories driveway recroom fullbase gashw airco garagepl prefarea
COLUMN TYPE integer double integer integer integer integer string string string string string integer string

COLUMN FORMAT

OUTPUT STORAGE LEVEL : @ DEFAULT

-

DESCRIPTION: @

VARIABLES LIST : n

COLUMNS @ FUNCTION © REPLACE EXISTING COLS @
driveway 4 | upper n n a
gashw 4 |trim n n a

n CANCEL

_images/42.png
Print Few Records @

SCHEMA :

COLUMN NAME

COLUMN TYPE

COLUMN FORMAT

OUTPUT STORAGE LEVEL : @

TITLE :

NUM ROWS TO PRINT : ©

(2}

lines

string

DEFAULT

Row Values

10

Ald

ner

string

_images/51.png
StringFunctionsMultiple “

oom fullbase gashw airco garagepl prefarea driveway_upper gashw_trim
\gType StringType StringType StringType InfegerType StringType ~StringType StringType

yes no no 1 no YES no

no no no 0 no YES no

no no no 0 no YES no

no no no 0 no YES no

no no no 0 no YES no

yes no yes 0 no YES no

yes no no 2 no YES no

no no no 0 no YES no

yes no no 0 no YES no

no no yes 1 no YES no

_images/5a.png
id name gender senior_citizen resident family gender_new

DoubleType StringType StringType StringType StringType StringType IntegerType
1.0 ABC F Y Y N 1
2.0 DEF M N N N 0
3.0 GHR M Y Y Y 0
4.0 JKL F N Y N 1
5.0 RIT M Y Y N 0
0.0 TEMP_NAME F Y Y N 1
6.0 PQR F Y N Y 1

0.0 ORT F Y Y N 1

_images/ARIMA_readcsv.png
ReadCSV@ = © NodeDatasetcsv

OUTPUT STORAGE LEVEL : ©@
PATH*: @

SEPARATOR : ©

HEADER:©

DROP MALFORMED : ©

SCHEMA COLUMNS : @ ‘ ° ‘

COLUMN NAMES FORTHE CSV @

Month

Passengers

Note: Whenever the file is changed, Refresh the Schema

DEFAULT

/tmp/data/AirPassengers.csv

true

false

COLUMN TYPES FORTHE CSV @

STRING

INTEGER

COLUMN FORMATS FOR THE CSV @

format

format

BROWSE HDFS

VIEW FILE

_images/ARIMA_summary.png
Summary:

SARIMAX Results

Dep. Variable: y No. Observations: 144

Model: SARIMAX(4, 1, 3) Log Likelihood -674.913

Date: Fri, 30 Oct 2020 AIC 1365.825

Time: 12:33:24 BIC 1389.528

Sample: 0 HQIC 1375.457
- 144

Covariance Type: opg

ar.L1 -0.5582 0.117 -4.782 0.000 -0.787 -0.329
ar.L2 0.4935 0.113 4.375 0.000 0.272 0.715
ar.L3 0.1238 0.128 0.970 0.332 -0.126 0.374
ar.L4 -0.5213 0.085 -6.136 0.000 -0.688 -0.355
ma.L1l 0.9069 0.094 9.657 0.000 0.723 1.091
ma.L2 -0.5590 0.145 -3.866 0.000 -0.842 -0.276
ma.L3 -0.7385 0.109 -6.778 0.000 -0.952 -0.525
sigma2 724.1724 85.616 8.458 0.000 556.369 891.976
Ljung-Box (Q): 256.02 Jarque-Bera (JB): 14.59
Prob(Q): 0.00 Prob(JB): 0.00
Heteroskedasticity (H): 5.66 Skew: 0.74

0.00 Kurtosi.

Prob(H) (two-sided

warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).

_images/6a.png
id
DoubleType
1.0

2.0

3.0

4.0

5.0

0.0

6.0

0.0

name
StringType
ABC

DEF

GHR

JKL

RIT
TEMP_NAME
PQR

ORT

senior_citizen
StringType
Y

N

resident
StringType
Y

N

gender
StringType
1

0

family
StringType
0

0

_images/ARIMA_model.png
pA ARIMAZ NodeAutoARIMA

NAME Month
TYPE string
FORMAT

OUTPUT STORAGE LEVEL : ©@

Y:©

SEASONAL:©

STEPWISE : ©

TRACE:©

SUPPRESS WARNINGS : @

ERRORACTION : ©

SCORING: @

FORECAST : @

Passengers

integer

DEFAULT

Passengers : integer

true

true

true

true

ignore

mse

15

_images/Capture11.png
1 iR
.L
(SO
bad_data_string. To Remove Any Rowfilter -
csv Special character Remove the rows
In data with empty space
X
It finds and replaces the Creates new DataFrame
special characters with empty containing the required rows

space in the columns 4

PrintNRows

_images/Capture12.png
This workflow reads in the Transaction

Dataset. It then saves it in JSON Format

1 2).7

4

80 d

Transaction
Dataset

This node creates Dataframe by
reading Transaction dataset

+

SaveJSON

Saves DataFrame into the specified path
in JSON Format

X

4

_images/Anamoly_workflow.png
ColumnFilter Prophet

ColumnFilter

e X

Prophet is a procedure for

o y forecasting time series e ¢
ColumnFilter data based on an additive :
i) SQL - read predicted
o ke o model where linear or non- data from prophet 4
univariate x as linear trends are fit with
Bearing_est_2.csv timeyas

yearly, weekly, and daily
seasonality, plus holiday
effects.

bearing data

Prophet

ColumnFilter p. JoinOnCommonColu
mn

Prophet
ColumnFilter

JoinOnCommonColu
mn

e X

Join_common_column
Join All predicted table
based on common

column Future date |

_images/Capture1.png
v

This workflow reads in dataset. It then filters
specified columns from the original dataset
and prints the results.

4
1 E 2 @b 3 @p
" o) | o (]
8 0 [SNG] [SNG]
Housing ColumnFilter PrintNRows
% e X
It reads in the input It filters the selected columns It prints first few records onto
Dataset file the screen

4 4 4

_images/Capture13.png
This workflow reads in the Transaction
Dataset. It then saves it in Parquet Format

2 @

1 ar
8 8
Transaction SaveParquet

Dataset

This node creates Dataframe by reading Saves the Dataframe in the specified

Transaction dataset p location in Parquet Format.

_images/6.png
Replace Gender and Family with 0/1 = e

SCHEMA :
COLUMN NAME id name
COLUMN TYPE double string

COLUMN FORMAT

OUTPUT STORAGE LEVEL : @

VARIABLES LIST : n

DEFAULT

INPUT COLUMNS @ FIND®
gender B M
gender B F
family B N
family B Y

gender senior_citizen
string string
REPLACE ©
0
1
0

resident family

string string

Ald

_images/Capture3.png
DatasetStructured

Executing Node fire.nodes.dataset.NodeDatasetStructured : 1: Jan 5, 2021 8:23:26 AM

Row Values

Row Values

price lotsize bedrooms bathrms driveway recroom fullbase gashw airco garagepl prefarea
IntegerType DoubleType IntegerType IntegerType IntegerType IntegerType StringType StringType StringType StringType StringType IntegerType StringType
42000.0 5850 yes no yes no no no
38500.0 4000 yes no no no no no
49500.0 3060 yes no no no no no
60500.0 6650 yes yes no no no no

_images/Capture31.png
ReadCSV

Executing Node fire.nodes.dataset.NodeDatasetCSV : 1: Jan 5, 2021 8:43:04 AM

€ ReadCSV

Input Path: hdfs://sparkflows—demo.c.sparkflows-168107.internal:8020/tmp/data/bad_data_string.csv

° Row Values
Row Values
cO_str cl_str c2_date
StringType StringType StringType
abc def abc 04/25/2013

_images/Capture22.png
n DatasetStructured@ = © Nodedataseisiructured ~ Details

OUTPUT STORAGE LEVEL : © DEFAULT v

DATASET *: @ Transaction Dataset v

_images/Capture23.png
n DatasetStructured@ © NodeDatasetStructured Details

OUTPUT STORAGE LEVEL : @

DATASET *: @

DEFAULT

Transaction Dataset

_images/Capture4.png
ColumnFilter@ © NodeColumnfilter

NAME id price lotsize bedrooms bathrms stories driveway recroom fullbase gashw airco
TYPE integer double integer integer integer integer string string string string string
FORMAT
OUTPUT STORAGE LEVEL : @ DEFAULT “
COLUMNS : ©@ Available Selected
id : integer

bedrooms : integer

price : double Lo
stories : infeger

lotsize : integer
bathrms : infeger
driveway : string
fullbase : string
garagepl : infeger

prefarea : string

recroom : string
gashw : string
airco : string

garagepl

integer

prefarea |

string

_images/Capture41.png
To Remove Any Special character In data@ = @ nogerindandreplaceusingregex

NAME cO_str cl_str c2_date
TYPE string string string
FORMAT

FIND: @ \W+

REPLACE : @

_images/Capture32.png
Save|SONE @ NodeSavejSON

NAME id chain
TYPE infeger integer
FORMAT

OUTPUT STORAGE LEVEL : @

PATH *: @

SAVE MODE : @

PARTITION COLUMN NAMES : @

dept

infeger

category company
infeger infeger
DEFAULT
json
Append
Available
id : integer

chain : integer

dept : infeger

category : integer
company : integer

brand : integer

date : string

productsize : double
productmeasure : string
purchasequantity : integer
purchaseamount : double

brand

infeger

date

string

productsize

double

productmeasure

string

Selected

purchasequantity

infeger

BROWSE HDFS

‘ﬁ
purchaseamount 1,
double
VIEW FILE
1+ L 4

_images/Capture33.png
SaveParquet@ = @ nodssaveparquet

NAME id chain dept
TYPE integer integer integer
FORMAT

OUTPUT STORAGE LEVEL : @

PATH *: @

SAVE MODE : @

PARTITION COLUMN NAMES : @

category company
integer integer
DEFAULT
parquetdir
Overwrite
Available
id : integer

chain : integer

dept : integer

category : integer
company : integer

brand : integer

date : string

productsize : double
productmeasure : string
purchasequantity : integer
purchaseamount : double

brand

integer

date

string

productsize

double

productmeasure purchasequantity
string integer
v

BROWSE HDFS

Selected

II

s X
purchaseamount 4+
double

VIEW FILE
1+ L 2

_images/Capture2.png
n DatasetStructured = @ Nodebatasetsiructured ~ Details

OUTPUT STORAGE LEVEL: © DEFAULT

DATASET *: @ Housing

_images/Capture21.png
n ReadCSVe © NodeDatasetCsv

Note: Whenever the file is changed, Refresh the Schema

OUTPUT STORAGE LEVEL : @

DEFAULT v
PATH *: @ /tmp/data/bad_data_string.csv BROWSE HDFS VIEW FILE
SEPARATOR : © ,
HEADER : @ true v
DROP MALFORMED : @ false v

COLUMN NAMES FOR THE CSV @ COLUMN TYPES FOR THE CSV @ COLUMN FORMATS FOR THE CSV @

cO_str STRING v format

cl str STRING v format

_images/Graph_output.png
30

25
<
3 20
g
<
o 15
Q
3|
= 10
%]
5 WM/MV«MW\,_/\A_\/__\/—/\/\’_\/\/
0
e e R g R R e g i i i
O S M OSSO S
Year
Row Values
Row Values
forecast_date sales_pred_mean sales_pred_lower sales_pred_upper sales
StringType DoubleType DoubleType DoubleType IntegerType
2013-01-01 15.322 3134 27.892 13
2013-01-02 15.328 293 27395 1
2013-01-03 15.335 2465 28.491 14
2013-01-04 15.341 3.331 27969 13
2013-01-05 15.347 2615 27.744 10
2013-01-06 15.354 1388 28307 2

2013-01-07 15.36 2.891 27539 10

_images/Graphvalues.png
TITLE:

X LABEL:

Y LABEL:

MAX VALUES TO DISPLAY : @

CHART TYPE :

IS STREAMING? : ©

X COLUMN :

Y COLUMNS:

Available

store : integer
item : integer

Graph

year

sales

10000

Line Chart

false

forecast_date : string

Selected

sales_pred_mean : double
sales_pred_lower : double
sales_pred_upper : double
sales:integer

_images/Capture7.png
RowfFilter - Remove the rows with empty space

Executing Node fire.nodes.etl.NodeRowfFilter : 4 : Jan 5, 2021 8:44:43 AM

Input Schema

Row Values

Row Values
cl_str c2_date cO_str
StringType StringType StringType
abc 04/25/2013 abcdef
abc 04/25/2013 123abc

_images/ExecutingJarFile.png
UnixShellCommands @

OUTPUT STORAGE LEVEL : © DEFAULT

SHELL COMMAND : ©

1 aws s3 cp s3://bucket-name/example-application.jar /tmp;

2 java -cp /tmp/example-application.jar MainClass;

_images/SparkMLModelScore.png
E=Ere—9@—)) Obn

Spam Split

(2] o
ar-
O 1@

ML Model Load Predict PrintNRows

_images/Row_filter.png
RowFilterz | © NodeRowFilter Details

NAME date
TYPE date
FORMAT

OUTPUT STORAGE LEVEL : ©@

CONDITIONAL EXPRESSION : @

1 store == 1 and item ==

store

integer

DEFAULT

item

integer

sales

integer

_images/SparkMLModelSave.png
1 e
Spam

Tokenizer HashingTF

LogisticRegression VectorAssembler

(2] o
g > m

 un @

ML Model Save

_images/Capture51.png
To Remove Any Special character In data

Executing Node fire.nodes.etl.NodeFindAndReplaceUsingRegex : 2 : Jan 5, 2021 8:44:22 AM

Input Schema

Row Values
Row Values
cl_str c2_date cO_str
StringType StringType StringType
abc 04/25/2013 abcdef

abc 04/25/2013 123abc

_images/Capture6.png
RowFilter - Remove the rows with empty space@ = @ noderowsiter Details s X

NAME cO_str cl_str c2_date L
TYPE string string string
FORMAT
OUTPUT STORAGE LEVEL : @ DEFAULT
v

CONDITIONAL EXPRESSION * : @

1 c0_str<>""

_images/Capture5.png
ColumnFilter

Executing Node fire.nodes.etl.NodeColumnfFilter : 2 : Jan 5, 2021 8:24:07 AM

Input Schema

Row Values
Row Values
bedrooms stories recroom gashw airco
IntegerType IntegerType StringType StringType StringType
3 2 no no no
2 1 no no no

_images/earthquake_flow.png
https://www.kaggle.com/c/LANL-Earthquake-Prediction

i=ha
(i} ©

LANL—Ear*hquake-
Prediction.csv

2) Then create features per segment basis. - Achieved by feature engineering node.
3) Train the RandomForest regression model. (check the feature importance metrics)

© 1) Split the train data into segments = num_rows_test_data/rows_in_each_segment=150000 - Done via the node ZipWithindex and group the data

The idea while doing feature engineering is to split the data into segments and create features per segment basis. Why do we do this? This is one way of

creating features which seems to be working. There can be many other ways to create more features, run the model and check back if there is a boost in

accuracy and re-iterate.

(2} o
(2] o (] () (2] (%}
Grs—0 > Grs—9— @r—0— 8>
e © e o (<) :
ZipWithIndex group the data i PrintNRows

(2]

Create new column as id

Group data on id divided by length
of data as key

Create features per segment basis
Create feature vector from input

o

(i} ©
Split train data into 80-
20

Create feature vector

°
BRI m
()

RandomForestRegress

ion

Random Forest Regression is a supervised
learning model that uses ensemble
learning method for regression. Ensemble
learning method is a technique that
combines predictions from multiple
models to make prediction accurately than
a single model.

1- pick random k points from training data
2 - Create models on picked k points

3 - For new data create multiple trees and
select average for predicted value from
multiple trees

(2] (] (2] (%}
#rs— O OPs
(i) e o ()

Predict on 20% of the

Evaluate on the 20% of
the training data

train data

PrintNRows

X

_images/employee-data-profiling-sample-data.png
Employee Data sX
Executing Node fire.nodes.dataset.NodeDatasetCSV : 1: Jan 7, 2020 5:47:17 PM
@ Row Values
Row Values
Mother's
Name Middle Father's Mother's Maiden Dateof Timeof Date of Que
Emp ID Prefix FirstName Inifial LastName Gender EMail Name Name Name Birth Birth Age_in_Yrs Weight_in_Kgs Joining Join
IntegerType | StringType StringType | StringType StringType | StringType | StringType StringType | StringType | StringType | DateType | StringType DoubleType IntegerType | StringType | Stril
850297 Ms. Shawna W Buck F shawna.buck@gmail.com Rosario | Keisha Hendricks | 1971-12- 06:34:47 45.66 44 12/18/2010 Q4
Buck Buck 12 AM
304721 Mr. Nathaniel Z Burke M nathaniel.burke@walmart.com | Derrick | Phoebe | Pugh 1993-10- 02:02:38 23.76 52 4/25/2017 | Q2
Burke Burke 3 AM
412317 Drs. Elisabeth W Foster F elisabeth.foster@gmail.com | Irwin Janie Delaney ~ 1994-1- 03:48:27 22.68 42 3/27/2017 | Q1
Foster Foster 26 PM
621375 Mrs. Briana c Lancaster | F briana.lancaster@yahoo.com | Jeffrey Shelby | Weiss 1975-1- | 09:4416 417 43 2/25/2003 | QI
Lancaster | Lancaster 24 PM
787549 Hon. Estella L Potter F estella.potter@gmail.com Booker Katelyn | Pate 1995-03- 09:30:28 22.39 58 10/1/2016 | Q4
Potter Potter 3 PM
520092 Mr. Lamont L Woods M lamontwoods@hotmail.com | Ignacio | Beulah | Trujillo 1991-10- 25.81 59 1/27/2014 | Q4
Woods | Woods 3
795934 Ms. Melinda | L Lopez F melinda.lopez@hotmail.com | Leroy Edna Carter 1984-09- 013134 32.89 55 11/22/2005 Q4
Lopez Lopez 15 PM

_images/employee-data-profiling-correlation.png
Correlufiomz @ Nox <X

NAME Emp Name First Middle Last Gender E Father's Mother's Mother's Date of Bith ~ Time Age_in_Yrs Weight_in_Kgs Date Quarter Halfof Yearof Month Month Short O
D Prefix Name Initial Name Mail Name Name Maiden of of of Joining Joining of Name Month 4
Name Birth Joining ' Joining Joining of
Joining

TYPE infeger string siring string string sting string string string sting date string double integer sting sfring sfring infeger integer string string i

FORMAT MM/dd/YYYY

OUTPUT STORAGE LEVEL: @ DEFAULT

Correlation Matrix

INPUT COLUMN FOR CORRELATION : ©@ Available Selected

Emp ID : infeger Age in Company (Years) : double
Year of Joining : infeger Salary : integer

Month of Joining : infeger Age_in_Yrs : double

Day of Joining : integer Weight_in_Kgs : infeger

Zip : integer

_images/employee-data-profiling-workflow.png
Fire Insights (] DATA BROWSERS ~ APPLICATIONS ~ O SCHEDULED ~ @ EXECUTIONS - (2] MODELS ~ (2]DATAQUALITY ~ (2] ADMINISTRATION ~ PROCESSORS ~

NAME: Employee - Data Profiling CATEGORY: -
© ADD NODE SAVE | SAVEWITHCOMMENT | CLEAR m EexecuTe | workFLow HisTorY | cHanGeuup | BeauTiFy n
All Nodes Datasets Hive Databases u
Q | Search Nodes
& 010 <
& 02-Parse <
& 03-Prepare <
& 04-DatoValidation <
&% 05-FeatureEngineering <
& 06-Code <
L
<& 0B-Filter < e o
ar» -
& 07-JoinUnion < L) 5 e
GraphGroupByColumn
& 08-Group <
& 09-DataProfiling <
&& 10-Visualization <
e)
& T-SparkML < a» -
L 6 0
& 12-H20 < e Y o GraphGroupByColumn
|
& 12-StructuredStreaming < ar
e 7 o
I GraphYearDistribution

_images/employee-data-profiling-summary.png
Summaryz [CIERESE Details sOX

NAME Emp Name First Middle Last Gender E Father's Mother's Mother's Date of Birth Time Age_in_Yrs Weight_in_Kgs Date Quarter Halfof Yearof Month Month Short |
D Prefix Name Inifial Name Mail Name Name Maiden of of of Joining Joining of Name Month |
Name Birth Joining Joining Joining of
Joining

TYPE infeger string string string string string string string string sting date string double integer string sftring string integer integer string string |
FORMAT MM/dd/YYYY
OUTPUT STORAGE LEVEL: @ DEFAULT s
TITLE: Summary
COLUMN NAMES : @ Available Selected

Emp ID : infeger Age_in_Yrs : double

Year of Joining : infeger Salary : infeger

Month of Joining : infeger Weight_in_Kgs : infeger

Day of Joining : infeger Age in Company (Years) : double

Zip : integer

_images/employee-dp-dq-page.png
& > C ® NotSecure | 137.117.83.79:8080/#/data-quality # @0 @O0

@ Fire Insights 1 DATABROWSERS - S APPLICATIONS ~ O SCHEDULED - @ EXECUTIONS - @) MODELS - GIDATAQUALTY - (2 ADMINISTRATION

707 sparkflows 259 Telco Churn Predicfion - ... 1858 20975d5b-8943-4bd2-9f34-8797e4d3e3le 01/06/2020 at 8:

:42

706 sparkflows 65 Employee - Data Cleanin... 1859 181fa79f-8b88 -4b2e-91da-ecbe95ell9Ng 01/06/2020 at 8:52:40

| Data Quality a ‘ Search |
o | useRnave | apmucToND | woRKOwNAME exccurionio | oA uALTY LD oare o execurion oarA UATY STATUS caresorr |
m sparkflows 65 Employee - Data Profiling 1987 6e094afl-5cab-46c7-a7ae-5feb5b53998d 01/07/2020 at 23:14:42 v
770 sparkflows 65 Employee - Data Profiling 1986 6018222f-54bd-446d-8bfb-7aclIbed332f 01/07/2020 at 21:06:58 v
769 sparkflows 259 Transaction Data Analytics 1985 9cdaBBab-b287-412a-8bac-699976bab7bl 01/07/2020 at 20:21:41 v
737 sparkflows 269 Bike Sharing Analysis 1889 a545849a-2694-4950-937c-2dab0e04af46 01/06/2020 at 12:51:21 v
709 sparkflows 269 Bike Sharing Analysis 1863 ffa59ba9-0da0-4985-8c6b-b67c65a10562 01/06/2020 at 11:07:37 v
708 sparkflows 259 Telco Churn Prediction - ... 1861 34f0b45f-a554-42ff-bf9c-efbb33eff35d 01/06/2020 at 1 22 v
v
x
.,

- e . L

aca e et e A e i e g e A ot e

_images/employee-dp-dq-correlation.png
@ Fire Insights @1 oATa BRowsERs © scHepuLED

EXECUTIONS) MODELS £2] DATA QUALITY

Details HEAT MAP

Correlation Matrix
DATA PROFILING

Dataset Summary

Correlation

DATA QUALITY

Age in Company (¥ears)
Records
SCHEMA

salary
Data Schema

Age_in_yrs

weight_in_Xgs

_images/exportcomp.png
Export Application Components

WORKFLOWS DATASETS

EXPORT CANCEL

_images/employee-dp-dq-summary.png
@ Fire Insights & oata srowsers

© SCHEDULED

EXECUTIONS

€3] MODELS

€2] ADMINISTRATION

Details
DATA PROFILING

Dataset Summary

Correlation
DATA QUALITY
Records

SCHEMA

Data Schema

DATASET SUMMARY

'COLUMNNAME
Age_in_Yrs

Salary

Weight _in_Kgs

Age in Company (Years)

COUNT
1000
1000
1000
1000

MEAN
40.38
120288.53
59.41
10.09

MIN
21.04
40040.00
40.00
0.00

25_PERCENTILE
30.91
82080.00
49.00

313

50_PERCENTILE
40.72
119388.00
57.00

7.81

75_PERCENTILE MAX STDEV
49.85 59.98 nn
159071.00 199943.00 45178.34
68.00 90.00 13.90
15.44 37.57 8.57

VARIANCE
123.38
2041082397.52
193.22

73.43

_images/earthquake_data.png
acoustic_data time_to_failure

IntegerType DoubleType
12 469
6 469
8 469
5 469
8 469
8 469
9 469
7 469
-5 469
3 469
5 469
2 469
2 469
3 469

_images/db_details.png
Cluster Details

SPARK CONTEXT ID :

SPARK VERSION

NODE TYPE ID

DRIVER NODE TYPE ID :

AUTOTERMINATION MINUTES

ENABLE ELASTIC DISK:

STATE MESSAGE

JDBC URL

MIN WORKERS
MAX WORKERS
JDBC PORT

CCREATOR USER NAME

6133712372202850000
6.4.x-scala2.n
malarge

malarge

15

_images/dashboard-view.png
o Fire Insighfs €21 DATA BROWSERS ~ APPLICATIONS ~ O SCHEDULED ~ & EXECUTIONS ¥ 1 MODELS ~ %] DATA QUALITY ~ %] ADMINISTRATION ~ PROCESSORS ~

| Dashboard: Bike Sharing Dashboard Grid Component Size Controls:

Correlation between various Columns Bike Sharing Dataset Summary
Count of Rentals per Hour
summary season holiday wot
COLUMN CHART BAR CHART LINE CHART count 10886 10886 L
mean 2.5066139996325556 0.02856880396839978 0.6¢
III I III
noliday min 1.0 0.0 0.0
250,000 workingday 25_percentile 2.0 0.0 0.0
weather N
50_percentile 3.0 0.0 1.0
200,000 .
humidity
75_percentile = 4.0 0.0 1.0
casual
150,000
% e max 4.0 1.0 1.0
o
o
100,000 count stdev 1.116174309344325 0.16659885062470958 0.4
) variance 1.2458450888402808 0.027755177029474297 0.21

e — I
..~

0 2 4 6 8 10 12 14 16 18 20 22 L [[[B [[|

13 656 7 9 1 13 15 17 19 21 23 = -0.352 -0.23= -0.10= 0.02 = 0.14 = 0.26 = 0.39 = 0.51 = 0.63 = 0.75 = 0.88
X axis

B count

_images/dashboard-edit.png
o Fire Insights (2] DATA BROWSERS ~ APPLICATIONS ~

@ SCHEDULED ~ @ EXECUTIONS ¥ 1 MODELS ~ %] DATA QUALITY ~ %] ADMINISTRATION ~ ROCESSORS ~

| Edit Dashboard

Workflows

‘ Q | bike|

% Bike Sharing Analysis

DatasetStructured Extract Hour from Time

Cast Count to Double Assemble Features for ..

Vectorindexer Split 80-20

GBTRegression

RegressionEvaluator Count of Rentals per H...

Graph Count of Rentals Workflow Notes

Correlation

’ SAVE VIEW

DASHBOARD NAME: Bike Sharing Dashboa ’ CATEGORY;‘ Enter Category DESCRIPTION: Enter Description
:) (<})) o)) (]
Workflow : Bike Sharing Workflow : Bike Sharing Workflow : Bike Sharing
Analysis Analysis Analysis
Name: Graph Count of Name: Correlation Name: Summary
Rentals
Type: transform Type: transform

Type: transform

© HELP

_images/databricks-api.png
Databricks
Cluster
REST API
; . 443 =
Fire Insights 44
Cluster
Messages
(443)

Table 1

e |
(s

Table 3

e Jobs are submitted to Databricks via REST API
e They post back messages to Fire Insights

e Jobs read from and write to the Databricks tables

_images/data-profiling-workflow.png
(X
Calculate Summary Statistics
of various columns

()
Plot chart of churned column

SummaryStatistics

PrintNRows

GraphGroupByColu
mn

8 3 @

churn_pfediction

GraphValues

SQL
(X
Find statistics for churned and not churned
users. A
(X

Find correlation between different columns

DropRowsWithNull

Correlation

_images/databricks-integration1.png
» Fire Insights

Get DB, Table Info
Get sample data

Submit Jobs
Get DBFS details

_images/databricks-integration.png
Spark Cluster

Databricks
Endpoint

k Cluster

_images/date_field_extraction.png
COLUMN: @

EXTRACT YEAR: ©

EXTRACT MONTH : ©@

EXTRACT DAY OF MONTH : @

EXTRACT HOUR: @

EXTRACT MINUTE : @

EXTRACT SECOND : @

EXTRACT WEEKOFYEAR : ©

date : date

true

true

true

true

true

true

true

_images/date_extrected_output.png
date
DateType
2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06
2013-01-07
2013-01-08
2013-01-09

2013-01-10

store
IntegerType
1

1

item
IntegerType
1

1

sales
IntegerType
13

n

14

13

10

12

10

9

2

date_year
IntegerType
2013
2013
2013
2013
2013
2013
2013
2013
2013

2013

date_month
IntegerType
1

1

date_dayofmonth

IntegerType
1

2

10

date_hour
IntegerType
o

0

date_minute
IntegerType
o

0

date_second
IntegerType
o

0

date_weekofyear
IntegerType
1

1

_images/configuration.png
onelogin Users Applications Devices

Security Settings Developers

Applications /
SAML Test Connector (Advanced)

Info

| Configuration Audience (EntityID)

hitps://localhost:8443/sparkflow/sami/metadata

Parameters
G Recipient

https://localhost:8443/saml/SSO
ss0
e ACS (Consumer) URL Validator*
Users

| *Required.

Privileges
Setup ACS (Consumer) URL*

hitps://localhost:8443/saml/SSO

| *Required

Single Logout URL

hitps://localhost:8443

Login URL

hitps://localhost:8443

Only required if you select Service Provider as the SAML Initiater.

More Actions

_images/column_filter.png
COLUMNS: @ Available Selected

Bearing_2: double
Bearing_3: double
Bearing_4 : double

Datetime : timestamp
Bearing_1: double

_images/countsby-churned-columns.png
The counts by column: churned

COLUMN CHART BAR CHART LINE CHART

5,000
4,000

3,000

Counts

2,000

1,000

null False. True.
Churned
I Counts

_images/group_data.png
Input Schema

acoustic_data time_to_failure id
IntegerType DoubleType LongType
Row Values

Row Values

acoustic_data time_to_failure id key
IntegerType DoubleType LongType DoubleType
12 469 0] 0.0
6 469 1 0.0
8 469 2 0.0
5 469 3 0.0
8 469 4 0.0
8 469 5 0.0
9 469 6 0.0
7 469 7 0.0
-5 469 8 0.0
3 469 9 0.0

_images/importapplication.png
Upload a file

Choose File Applications_0417.zip

BANKING

DATAPREPARATION
CREDITCARDFRAUDDETECTION
MACHINELEARNING

IMPORT TO A NEW APPLICATION
IMPORT TO AN EXISTING APPLICATION

IMPORT TO:| Machine Learning Application

CREATE NEW WORKFLOWS AND DATASETS IF MATCHING UUID’S FOUND
OVERWRITE DATASETS AND WORKFLOWS IF SAME UUID FOUND
DELETE ALL WORKFLOWS AND DATASETS IN THE SELECTED APPLICATION AND CREATE NEW ONES

IMPORT CANCEL

_images/h2osaveandload.png
| Edit Workflow

NAME: H20 Model Save and Load CATEGORY: H20
© ADD NODE [SAVE SAVE WITH COMMENT CLEAR BACK EXECUTE WORKFLOW HISTORY
All Nodes Datasets Hive DB €
(2} Q
[ofa]
S h Nodes a
Q earc e 2 ¢
H20KMeans H20ModelSave
o 01-10 <
s 02-Parse <
a0 03-Prepare <
(2} [}
=] N @ @ © ©
«a 04-DataValidation < e '-1 e | 2 .——-e-—-) Gt
]) o 5 @ ® 1 @
. . ‘ Bike Sharing split H20:

& 05-FeatureEngineering dataset core H20OModelload
o 06-Code <
h 06-Filter <

(2] Q
aa 07-JoinUnion < ar -

e 4 90

& 08-Group < PrintNRows

_images/infer-hadoop-configs.png
o Fire Insights) DATA BROWSERS ~ DATASETS & WORKFLOW~ @ WORKFLOW EXECUTIONS ~ CIDASHBOARD (2] ADMI

| Configurations

SAVE CONFIGURATIONS | INFER HADOOP CLUSTER CONFIG

D NAME TITLE VALUE1

1 app.runOnCluster Run on Spark Cluster false

3 app.impersonateUsers Impersonate Users irue

4 app.postMessageURL Fire ui postback URL hitp://localhost:8080/messagefromSparkjob

5 app.sparksubmitjar Spark Submit Jar File Juser/centos/fire-1.4.2/fire-lib/fire-core-1.4.2-jar-with-depende

6 P Ty Nodas Eiractars .

_images/importinfo.png
Import Information!

COMPONENTS SUCCESS FAILURE

PROJECTS 1 0
WORKFLOWS 48 0

DATASETS

_images/iot_final_out.png
Future_time

TimestampType

2004-02-1312:02:39
2004-02-1412:02:39
2004-02-1512:02:39
2004-02-1612:02:39
2004-02-17 12:02:39
2004-02-18 12:02:39
2004-02-1912:02:39
2004-02-2012:02:39
2004-02-2112:02:39

2004-02-2212:02:39

Bearing_3_pred
DoubleType
0.12892150390232607
0.17377822690500572
0.21863494990768537
0.263491672910365
0.3083483959130447
0.3532051189157243
0.39806184191840394
0.4429185649210836
0.48777528792376323

0.532632010926443

Bearing_4_pred
DoubleType
0.018985275825913313
-0.00595058722291632
-0.030886450271745948
-0.05582231332057558
-0.08075817636940523
-010569403941823484
-013062990246706446
-0.15556576551589413
-018050162856472377

-0.2054374916135534

Bearing_2_pred
DoubleType
010739056982158202
0.1394695544580692
0.17154853909455636
0.2036275237310435
0.2357065083675307
0.2677854930040179
0.299864477640505
0.33194346227699223
0.3640224469134794

0.3961014315499666

Bearing_1_pred
DoubleType
0.0065570403065542335
-0.04765893255461476
-010187490541578374
-015609087827695273
-0.2103068511381217
-0.2645228239992907
-0.3187387968604597
-0.37295476972162867
-0.42717074258279764

-0.4813867154439667

_images/input-dataset.png
state

StringType

account_length area_code

DoubleType
128.0
107.0
137.0
84.0
75.0
18.0
121.0
147.0
17.0
141.0

65.0

DoubleType
415.0
415.0
415.0
408.0
415.0
510.0
510.0
415.0
408.0
415.0

415.0

phone_number
StringType
382-4657
371-7191
358-1921
375-9999
330-6626
391-8027
355-9993
329-9001
335-4719
330-8173

329-6603

intl_plan
StringType
no

no

no

yes

yes

yes

no

yes

no

yes

no

voice_mail_plan
StringType
yes

yes

no

no

no

no

yes

no

no

yes

no

number_vmail_messages
DoubleType
25.0

26.0

0.0

0.0

0.0

0.0

24.0

0.0

0.0

37.0

0.0

today_day_minutes
DoubleType
265.1

161.6

243.4

299.4

166.7

223.4

218.2

157.0

184.5

258.6

129.1

today_day_calls today_day_change

DoubleType
110.0
123.0
14.0
71.0
13.0
98.0
88.0
79.0
97.0
84.0

137.0

DoubleType
45.07
27.47
41.38
50.9
28.34
37.98
37.09
26.69
31.37
43.96

21.95

total_eve_minutes
DoubleType
197.4

195.5

121.2

61.9

148.3

220.6

348.5

103.1

351.6

222.0

228.5

_images/jdbc-read-results.png
Read)DBC

Executing Node fire.nodes.dataset.NodeDataset)DBC Apr 29, 2018 1:49:16 AM

©) ROW VALUES

product_id product_name product_description
IntegerType StringType StringType

1 Husky Rope 50 Rope

2 Husky Rope 60 Rope

3 Husky Rope 100 Rope

4 Husky Rope 200 Rope

5 Granite Climbing Helmet Safety

6 Husky Harness Safety

7 Husky Harness Extreme Safety

8 Granite Signal Mirror Safety

9 Granite Carabiner Climbing Accessories

10 Granite Belay Climbing Accessories

_images/jdbc-dialog.png
Read|DBC @ .

URL: © jdbc:mysgl://localhost:3306/LZ

USER: © root

PASSWORD : @
DB TABLE : @ dm_product

DRIVER : @

com.mysq|l.jdbc.Driver

s o TN

COLUMN NAMES OF THE TABLE @ COLUMN TYPES OF THE TABLE © COLUMN FORMATS @
product_id INTEGER 5 format
product_name STRING 5 format
product_description STRING 5 format

acs

_images/jdbc-subquery-output.png
JDBC

© Row Values

StringType

Georgi

Bezalel

Parto

Chirstian

Kyoichi

Tavetan

saniya

Sumant

Duangkaew

_images/feature_vector.png
Selected

segment : double
max_a : integer
min_a : integer
avg_a: double
std_a: double
var_a :double
p_50: double
p_25: double
p_75: double

INPUT COLUMNS : @ Available
time_to_failure_label : double

OUTPUT COLUMN *: @ feature_column

_images/feature_eng.png
Input Schema

acoustic_data time_to_failure id key
IntegerType DoubleType LongType DoubleType
Row Values
Row Values
segment max_a min_a avg_a std_a var_a p_50 p_25 p_75 time_to_failure_label
DoubleType IntegerType IntegerType DoubleType DoubleType DoubleType DoubleType DoubleType DoubleType DoubleType
0.0 14 -5 5.28 3.344 1185 5.0 3.0 7.75 1.469
1.0 13 -4 5.88 3.612 13.047 6.0 4.0 8.75 1.469

_images/file-watcher-1.png
uuuuu

_images/featuredoutput.png
date
DateType
2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06
2013-01-07
2013-01-08
2013-01-09

2013-01-10

store

IntegerType
1

1

1

item
IntegerType
1

1

sales

IntegerType

date_year
IntegerType
2013
2013
2013
2013
2013
2013
2013
2013
2013

2013

date_month
IntegerType
1

1

date_dayofmonth
IntegerType
1

2

date_hour
IntegerType
o

0

date_minute
IntegerType
o

0

date_second
IntegerType
o

0

date_weekofyear
IntegerType
1

1

lag
IntegerType

None

7_lag
IntegerType
None
None
None
None
None
None

None

mean_sales
DoubleType
12.666666666666666
1.0

135
13.333333333333334
9.666666666666666
11.666666666666666
10.333333333333334
2.0
12.333333333333334

9.333333333333334

7_mean_sales
DoubleType

n3

n3

1.875
11.555555555555555
n3

n3

n3

10.75

n3

1.0

_images/file-watcher-s3-events.png
Events

+ Add notification Delete | Edit

Name Events Filter Type

Name ©

‘ file-watcher-events ‘

Events ©
[puT (| Permanently deleted
[]posT (| Delete marker created
[copy [] All object delete events
("] Muttipart upload completed ("] Restore initiated

Il object create events: (| Restore completed
(| Object in RRS lost

Prefix €

[omsr \

Suffix @

‘ _SUCCESS ‘

Sendto &

‘ SQS Queue - ‘

sas

‘ sf-workflow-file-watcher-ql-dev " ‘

@ 1 Active notifications

_images/file-watcher-lambda-2.png
sf-file-watcher-workflow-execute-handler

Function code info

Throttle

Qualifiers v

Actions v v

Test

@ The deployment package of your Lambda function "sf-file-watcher-workflow-execute-handler" is too large to enable inline code editing. However, you can still invoke your function.

Upload a .zip or .jar file v Java 8

Upload a .zip or .jar file

Upload a file from Amazon S3

I

For files larger than 10 MB, consider uploading using Amazon S3.

Code entry type Runtime

Handler Info

com.sf.handler.WorkflowExecuteHandler::handleF

Environment variables

You can define environment variables as key-value pairs that are accessible from your function code. These are useful to store configuration settings without the need to change function code. Learn more

SPARKFLOWS_TOKEN 60efbdd9-089c-4dff-a12d-2c82a7c08413
SPARKFLOWS_URL http://ec2-54-158-230-0.compute-1.amazonaws.com:8083
WORKFLOW_ID 225

» Encryption configuration

Remove

Remove

Remove

_images/file-watcher-sqs-queue-2.png
@ st-workflow-file-watcher-gl-dev

Standard NA
150S Queue selected
Details Permissions. Redrive Policy Monitoring Tags Encryption Lambda Triggers
Edit Policy Document (Advanced) | What's an SQS Queue Access Policy?
Effect Principals Actions Conditions
Alow e Everybody () » SQS:SendMessage * AmEquals £ R
o aws:SourceArn: “am;aws:s3:: AN
Alow e Everybody () o sqs:SendMessage » AmEquals s R

* sqs:GetQueueUr o aws:SourceArn: “am:aws:lambda:us-east-1: GSEENENM7function:sf-workflow-file-watcher-lambda-dev"

2019-08-26 17:19:24 GMT+06:30

_J-N=]

_images/file-watcher-sqs-queue-1.png
uoun strs - oo

quvnypmﬂx:[Q sf-w X] 1€ € 1w202items 3 3]

Name. ~ Queue Type ~ Content-Based Deduplication~ Messages Available~ Messages in Flight~ Created
st-workflow-file-watcher-dal-dev. Standard NA 0 0 2019-08-26 17:19:21 GMT+05:30

sf-workflow-file-watcher-gl-dev Standard NiA 0 1 2019-08-26 17:19:24 GMT+05:30

_images/group-list.png
| GROUPS LIST

ID NAME USERS FIRST NAME LAST NAME ACTION

1 DEFAULT admin admin admin & W
test test test

33 GROUP-A USER-A-1 USER-A-1 f @
USER-A-2 USER-A-2

34 GROUP-B USER-B-1 USER-B-1 f @
USER-B-2 USER-B-2

_images/graph_readcsv.png
ReadCSVz © NodeDatasetCsV
PATH*:©

SEPARATOR: @

HEADER: ©

DROP MALFORMED : ©

Note: Whenever the file is changed, Refresh the Schema

/tmp/data/output_demandforecast/output_forecast

true

false

SCHEMA COLUMNS : @ ‘ ° ‘

COLUMN NAMES FORTHE CSV @

forecast_date

sales_pred_mean

sales_pred_lower

sales_pred_upper

date

store

item

COLUMN TYPES FORTHE CSV @

STRING

DOUBLE

DOUBLE

DOUBLE

STRING

INTEGER

INTEGER

COLUMN FORMATS FOR THE CSV @

format

format

format

format

format

format

format

BROWSE HDFsS

o) Lo] Lo o] Le] [=] L]

_images/exportinfo.png
Export Information! X

TOTAL PROJECTS TOTAL WORKFLOWS TOTAL DATASETS

5 90 30

_images/capture2.png
n ReadCSVe © NodeDatasetCsv

OUTPUT STORAGE LEVEL : @
PATH *: @

SEPARATOR : @

HEADER : @

DROP MALFORMED : @

SCHEMA COLUMNS : @

COLUMN NAMES FOR THE CSV @

ID

name

Note: Whenever the file is changed, Refresh the Schema

DEFAULT

/tmp/data/ks-projects.csv

true

true

COLUMN TYPES FOR THE CSV @

INTEGER

STRING

v

v

COLUMN FORMATS FOR THE CSV @

format

format

BROWSE HDFS VIEW FILE

—

_images/capture22.png
DatasetStructured

Executing Node fire.nodes.dataset.NodeDatasetStructured : 1: Jan 5, 2021 9:56:36 AM

Row Values
Row Values
Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
IntegerType IntegerType IntegerType StringType StringType StringType IntegerType IntegerType StringType DoubleType StringType StringType
1 0 3 Braund, Mr. Owen Harris male 22 1 0 A/5 21171 7.25 S
2 1 1 Cumings, Mrs. John Bradley (Florence female 38 1 0 PC 17599 71.283 Cc8s5 C
Briggs Thayer)
3 1 3 Heikkinen, Miss. Laina female 26 0 0 STON/O2. 7.925 S
3101282
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May female 35 1 0 113803 53.1 C123 S

Peel)

_images/capture21.png
n URLSingleRecord|SONReader# © NodeDatasetURLSingleRecordjsonReader

OUTPUT STORAGE LEVEL : @

DEFAULT
URL: @ http://vimeo.com/api/v2/video/38356.json
SCHEMA COLUMNS : © .
COLUMN NAMES @ COLUMN TYPES @

description STRING

duration LONG

embed_privacy STRING

height LONG

id LONG

I a ATAIA~

COLUMN FORMATS @

format

format

format

format

format

_images/capture31.png
DatasetStructured

Executing Node fire.nodes.dataset.NodeDatasetStructured : 1: Jan 5, 202110:20:08 AM

Row Values

Row Values
Datetime Count
TimestampType IntegerType
2012-08-25 00:00:00.0 8
2012-08-25 01:00:00.0 2
2012-08-25 02:00:00.0 6
2012-08-25 03:00:00.0 2

2012-08-25 04:00:00.0 2

_images/capture3.png
ReadCSV

ReadCsV
Input Path: hdfs://sparkflows—-demo.c.sparkflows-168107.internal:8020/tmp/data/ks-projects.csv
Row Values
Row Values
usd
ID name category main_category currency deadline goal launched pledged state backers country pledged u
IntegerType StringType StringType StringType StringType StringType DoubleType StringType DoubleType StringType IntegerType StringType DoubleType C
1000002330 The Songs of Poetry Publishing GBP 2015-10- 1000.0 2015-08-1 0.0 failed 0 GB 0.0 0
Adelaide & 09 12:12:28
Abullah
10000033930 Greeting From Narrative Film Film & Video usb 2017-11-01 30000.0 2017-09- 2421.0 failed 15 us 100.0 2
Earth: ZGAC 02
Arts Capsule 04:43:57
For ET

_images/capture11.png
e

Josairon OoTimerister fn——

*

Creote o new DotaFrame by exiracting the year, month,
oy of month, hour, minute, second, wesk of the year from
the fimestomp column. .

_images/capture101.png
Get Rows of Interest

Execuing Node fire nodes s NodeRowFiller - 5 - Dec 24, 2020 72559 PM

© input schema

© RowValues
Row Values

Passengerld Survived Pelass Name Sex SibSp. Parch Ticket Fare Cabin Embarked Age
Itegertype Inegefype IntegerTyps StingType Svinglyps Iniageype Iniegedype Siinglype DousleType Swinglype Siinglype Inegertype
2 ' ' Cumings, s, John Brodley (Florence Sriggs Thayer) fomale. ' o pcwsss mam ces c B
. ' ' Futrele, M. Jacauss Heath (Liy May Pa) famale ' o 303 s on s s
2 ' ' Bonnel Miss Eizobeth fomale. o o a3 255 o s s
s ' ' Horper, Mrs. Henry Siesper (Myna Hosur) fomale. ' o pcysn2 7e7s on c .

_images/capture12.png
Do Err

“x
It joins the incoming
Dataframes on o Comman
Colurn ‘State’ .

Itis used for the problems ke eniity
resolution or data matching which s
reloted 1o finding and linking different

mentions of the same eniity in a single dota

source or across multple data sources

_images/capture111.png
Dedup

first_name last_name id arror_first_name. error_last_name error_id levenshtsinScoreFirstName. levenshtsinScorslastName confidenceScore
StingType StingType. Inegeype StingType. StingType. Inegeiype DoubleType DoubleType DoubleType
Nathan Cordona e Natnan Cordona e 10 10 10

Nathan Cordona e Jesse an 00 o 005

Lue Quick 57 erecdss rCnarrs a5 o 00 005

Josi Saiine 90 Rasgon Menesly " 00 00 00

Guas Shen 28 Koityn Young o7 o 02 s

Guas Shen 28 Kiona Cyoagang ES 00 o 005

Guas Shen 28 Lenvka Reyna w 00 02 o

Guas Shen 28 Jacy Pranty it ss6 00 02 o
Varknny. Picazzo Banuelos sa s Rodriguez a0e 00 02 o
Varknny. Picazzo Banuelos sa Tiane Thompson o6 03 o 02
Varknny. Picazzo Banuelos EY Andraw Lotimer ass 02 o s

_images/capture14.png
x
This workflow performs the cleaning/wranging of the Titaric dataset

Frsysrnglang [—

_images/capture13.png
x

This workflow ilustrates how fo read in single racord
JSON from the given URL and craat the Dataframs
from i

i

[Srw— et

_images/barchart.png
25
20

15
10

ueaw paidssjes

Year

_images/b_vs_w.png
Air Passengers Forecasting

Time Series is a series of observations taken at specified time intervals, usually equal intervals. Analysis of the
series helps us to predict future values based on previous observed values. In the Time series, we have only 2
variables, time & the variable we want to forecast. ARIMA will predict future demand of air passengers which

helps Airline companies to make decisions on aircraft fleet management. 4
eat e
Read csv Make Index
file from as separate
HDFS 4 column
(2] (*])) (2} (%}
=» a»r—0— B8ra
(] 1 0 o 4 @ o 3 @
AirPassengers.csv ARIMA ZipWithindex PrintNRows
x ex
ARIMA(Auto Regressive Integrated Just print
Moving Average) is a combination few rows
of data

of 2 models AR(Auto Regressive) &
MA(Moving Average). It has 3 /]
hyperparameters - P(auto

regressive (order of

differentiation),Q(moving avg.)

which respectively comes from the

AR, | & MA components.
4

_images/capture10.png
Boccups | Omeoss | oo

ave it _pame [“ e eror_est_nama
e aring aring g arng arng
romr
OUTPUT STORAGE LEVEL:@ [oesaur vl
conFpence scove 0 [contncescore
s vamiaLes o/ mus vammies o nconmmrouse o waurs ourpuT coLumn o
- et _name v e v s IevenshtinScoreFirsiame
st _name [Ceror ot _rame v e v s IevenshsinScorsiatame
P [Ml <l
e [Ml <l
eror_tast _name [Ml <l
eror_ia [Ml

aror_id

integer

_images/capture1.png
This werkflow doss the following:
« Craotes Dataframs from fhe datast
+ Convert @ string column fo date using the given date/fims format.
« Sats valuss fo the column “Stote” based on conditions
+ Crastes a nsw DataFrame confaining only rows satifying given condition
« Prins the resultsof few racords

SRR) Y

]
o— a0

o

x

It converts o string calumn to
date using the given
date/tims format

Sets valuss for the required
column based on conditions,

_images/capture9.png
RowfFilter

Row Values

usd
stegory currency deadline goal launched pledged stafe backers country pledged usd_pledged_real usd_goal_real deadiine_dafe launched_ts failed_index
Svinglyps Svinglype DoubleType Siinglype DoubleType Svinglype Ingerype SiingType DoubleTyps DoubleType DoubleType DoreType TimestomgType IntegerType
w uso 701 300000 207-09-02 24210 faled 3 us 1000 2210 300000 207001 207-03-02 o
0su3s7 0s43570
w uso om0 450000 om-0eR 200 faled 3 us 200 200 450000 20m-02-26 20m-0012 o
s o0z2080 0020500
uso 20m-06- 50000 00037 10 faled ' us 10 10 s0000 202-00-16 202-03-17 o
% oz26m 032610
w uso 20508 195000 507 1830 canceled 14 us 2630 2630 195000 2005-08-29 2005-07-0 '
2 0e 0835030
083503
s 20604 500000 2060226 529750 cucesstd 220 us s250 s250 s00000 2006-04-01 2006-02-26 2

_images/capture92.png
B Get Rows of Inferesitz | @osmrae | o

e Possengerid Sunived Poass Name

OUTPUT STORAGE LEVEL: © FauT

CONDITIONAL EXPRESSION *: ©

2/ age > 30 and sex

Fensie

sisp

Parch

Tcket

_images/capture91.png
ColumnfFilter

first_name last_name id arror_first_name. error_last_name aror.
StingType StingType. Inegertype StingType. StingType. Inegertype
Nathan Cordona e Natnan Cordona e
Nathan Cordona e Jesse an
Lue Quick 57 erecdss rCnarrs a5
Josi Saiine 90 Rasgon Menesly w
Guas Shen 28 Koityn Young o
Guas Shen 28 Kiona Cyoagang ES
Guas Shen 28 Lenvka Reyna w
Guas Shen 28 Jacy Pranty it ss6
Varknny. Picazzo Banuelos sa s Rodriguez a06
Varknny. Picazzo Banuelos sa Tiane Thompson o6
Varknny. Picazzo Banuelos EY Andraw Latimer a5

_images/cloudera-manager-hdfs-configuration.png
Clusters ~ Hosts ~ Diagnostics Support~ admin

. HDFS (cluster 1) June 16, 2017, 2:37 AM UTC
Status Instances Configuration Commands Charts Library ~ Cache Statistics Audits NameNode Web Ul@ Quick Links v Actions ~
Configuration Switch to the classic layout Role Groups
Filters
core
v STATUS Show All Descriptions
O rror ° Shared Hadoop Group Name HDFS (Service:Wide) (2]
A warning o hadoop
Edited 1
Non-default
Cluster-wide Advanced Configuration HDFS (Service-Wide) C vewssxu (@)
Has Overrides 0 Snippet (Safety Valve) for core-site.xml
Name hadoop.proxyuser.sparkflows.hosts
v SCOPE
HDFS (Service-Wide) 4 fails .
Balancer 0 Description | Desoription
DataNode 0 O Final
0 =
HHPFS N Name hadoop.proxyuser.sparkflows.groups L
JournalNode 0 Value -
NFS Gatevia 0 .
teway Description Description
NameNode 0
O Final
SecondaryNameNode 0
Failover Controller 0 +

_images/churned-notchurned-customers.png
300,000

250,000

200,000

150,000

100,000

50,000

False.

N td

I te

True.

X axis

I tn

R

Il totalcharge

_images/col_filt_out.png
Datetime
TimestampType
2004-02-1210:32:39
2004-02-1210:42:39
2004-02-1210:52:39
2004-02-1211:02:39
2004-02-12 11:12:39
2004-02-1211:22:39
2004-02-12 1:32:39
2004-02-12 11:42:39
2004-02-12 11:52:39

2004-02-1212:02:39

Bearing_1
DoubleType
0.058332877581913
0.058995214610088
0.060236437326041
0.061455442160261
0.061360759802725
0.061664827384149
0.061943893744811
0.061230528834415
0.062279749987792

0.059890277845597

_images/co-relation-matrix.png
number_vmail_ messages
today_day_minutes
today_day_calls
today_day_change
total_eve_minutes
total_eve_call
total_eve_charge
total_night_minutes
total_night_calls
total night_charge
total_intl minutes
total_intl calls
total_intl charge

number_customer_ service calls

= -0.620.0% 0.1%* 0.2¢= 0.2% 0.34 0.42 0.4% 0.5& 0.64 0.7k 0.78& 0.8% 0.93

_images/capture71.png
B convert Age o Inttz | @ scocsrmine

nave Passengerid

integer

Survived

integer

Pelass

iteger | sring

Surived-integer
Peiass s nteger
Name - string
Sexcstring
Sespinteger
Paren -integer
Ticketsting
Fare: double
Cabin:string
Embarked:sting.

o ° INTEGER

REPLACE EXSTING COLS - @ -

SbSp Porch Tcket
imeger eger | ang
Age:sring

_images/capture7.png
CaseWhen

Row Values

usd
stegory currency deadline goal launched pledged stafe backers country pledged usd_pledged_real usd_goal_real deadiine_dafe launched_ts failed_index
Stinglyps Svinglype DoubleType Siinglype DoubleType Svinglype Ingerype SiingType DoubleTyps DousleType DoubleType DoreType TimestomgType Integeype
=3 200- 10000 2008 00 faled o = 00 00 153295 2015-10-09 2005-08-11 o
09 12228 1212280
w s 0701 300000 2070902 24210 faled 3 us 1000 2210 300000 207001 207-03-02 o
0su3s7 0s43570
w s om0 450000 om-0eR 200 faled 3 us 200 200 450000 20m-02-26 20m-0012 o
2 o0z2080 0020500
s 20m-06- 50000 20037 10 faled ' us 10 10 s0000 202-00-16 202-03-17 o
% oz26m 03260
w s 20508 195000 07 830 concelas 14 us 2630 2630 195000 2015-08-29 2015-07-04 '
2 e 08:35:030

083503

_images/capture81.png
Convert Age to Int

Executing Node fire.nodes.etl.NodeCastColumnType : 6 : Jan 5, 2021 9:59:29 AM

Input Schema

Row Values

Row Values

Passengerld Survived Pclass Name Sex SibSp Parch Ticket Fare Cabin Embarked Age
IntegerType IntegerType IntegerType StringType StringType IntegerType IntegerType StringType DoubleType StringType StringType IntegerType
2 1 1 Cumings, Mrs. John Bradley (Florence female 1 0 PC 17599 71.283 Cc8s5 C 38

Briggs Thayer)
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May female 1 0 113803 53.1 C123 S 35

Peel)
7 n 1 MeCarthvy Mr Timathy | male n n 174R3 A1 AR FAR] R4

_images/capture8.png
RowfFilter@z © NodeRowFilter Details > X

NAME ID name category main_category currency deadline goal launched pledged state backers country usd usd_pledged_real usd_goal_real deadline_date launched_ts 4
pledged
TYPE infeger | string = string string string string double ' string double string integer string double double double date timestamp in
FORMAT
OUTPUT STORAGE LEVEL : @ DEFAULT
v

CONDITIONAL EXPRESSION * : @

1 usd_pledged_real > 0

_images/capture51.png
DateTimeFieldExtract

Executing Node fire.nodes.etl.NodeDateTimeFieldExtract : 2 : Jan 5, 202110:20:53 AM

o Input Schema

° Row Values
Row Values

Datetime Count Datetime_year Datetime_month Datetime_dayofmonth Datetime_hour Datetime_minute Datetime_second Datetime_weekofyeai
TimestampType IntegerType IntegerType IntegerType IntegerType IntegerType IntegerType IntegerType IntegerType
2012-08-25 8 2012 8 25 0 0 0 34
00:00:00.0
2012-08-25 2 2012 8 25 1 0 0 34
01:00:00.0
2012-NR-25 A 2012] 725 2 n n LVl

_images/capture5.png
MultiStringToDate & X
Executing Node fire.nodes.etl.NodeMultiStringToDate : 4 : Jan 5, 2021 10:24:41 AM
Input Schema
Row Values
Row Values
usd
y deadline goal launched pledged state backers country pledged usd_pledged_real usd_goal_real deadline_date launched_ts
e StringType DoubleType StringType DoubleType StringType IntegerType StringType DoubleType DoubleType DoubleType DateType TimestampType
2015-10- 1000.0 2015-08-1 0.0 failed 0 GB 0.0 0.0 1533.95 2015-10-09 2015-08-1
09 12:12:28 12:12:28.0
2017-11-01 30000.0 2017-09- 2421.0 failed 15 us 100.0 2421.0 30000.0 2017-11-01 2017-09-02
02 04:43:57.0

_images/capture53.png
FilterByStringLengthz

NAME Passengerld
TYPE integer
FORMAT

OUTPUT STORAGE LEVEL : @

INPUT COLUMN NAME * : @

MINIMUM LENGTH *: @

MAXIMUM LENGTH *: @

(2] NodeFilterByStringLength

Survived

integer

Pclass

integer

Name Sex Age
string string string
DEFAULT
Age : string
1
99999

SibSp

integer

Parch

integer

Ticket

string

Fare

double

Cabin

string

Embarked

string

_images/capture52.png
DatasetStructured

Executing Node fire.nodes.dataset.NodeDatasetStructured : 2 : Jan 5, 202110:30:01 AM

Row Values

Row Values

error_first_name error_last_name gender birth_date ethnicity =~ SSN med_number state city address zip error_id

StringType StringType StringType StringType StringType IntegerType DoubleType StringType StringType StringType IntegerType IntegerType

Martinealyse Nguyen male 10/16/1943 Pacific 833949858 1.036415183E9 Rhode Island Gubaganuziw 802 Vepcat 70969 462
Islander Circle

Dillon Ramirez female 02/01/1965 Pacific 174725823 5.124618654E9 Kansas Pakepucawar 718 Fohgut 14316 365
Islander Highway

Rebecca Manzanares male 09/08/1900 Pacific 637701044 1.248122191E9 Delaware Ticgazsile 248 30854 797
Islander Ogugtez

River
RAsnan Menealy NA Na/NA/19RN Pacific ANANRNA 7 3N2NRIRR7FQ Genrain Mowiizahaaiiwi 7aR R1440 n7

_images/capture61.png
FilterByStringLength

Row Values
Possengerid Survived Pelass Name Sex Age sibsp Parch Ticket Fare Cabin Embarked
ntegerType inegeryps Iniegeyps SringType Srnglyee Svingype Inegefpe Inegelpe Svinglype DoubieTyps SringType SringTyee
2 ' ' Cumings, Mrs.John Bradley (Flrenece Briggs Thayer) female Y ' o pcirsss ey ces c
B ' ' Furelle, M. Jacaues Heath (Liy May Peei) female s ' o 3803 s o s
7 o ' MeCarthy, M. Timothy | maie P o o 63 Ere e s
" ' 3 Sandstrom, Miss. Marauerie Rut female 4 ' ' Pposas 7 s s
2 ' ' Bonmell Miss Ezabeth female s o o 5783 2555 o3 s
2 ' 2 Beesiy, Mr. Lawrence maie % o o 248698 10 o5 s
1 ' ' Sioper, Mr Wikm Thompson maie » o o 378 55 e s
% o ' Fortune, Mr. Charies Alexander maie 1 3 2 10950 30 asescr s
B ' ' Horper, Mra. Henry Sieeper (Myna Haxtun) female s ' o pcirsr 76729 03 c
s o ' sty M. Engelhort Comeius maie & o ' 3509 61970 a0 c

_images/capture6.png
B Cosewhens | @com s %

e 1D nome | cotegery | moin_cotgory | cuancy | deadine | gool | lonched | pldoed it | bockrs | county | ud_pldood_reo | { 4 |
odond =
o
Q ,
ouTpuTSTORAGE L8¥EL-© = 3
ouTRUT CoLMN NAE :© et e ‘

KEY VALUE ARRAY : @ B

WHEN CONDION © o

P B B

aso B

_images/capture33.png
URLSingleRecord|SONReader

Executing Node fire.nodes.dataset.NodeDatasetURLSingleRecord)sonReader : 1: Jan 5, 202110:38:28 AM

) Row Values

Row Values
description duration embed_privacy height id mobile_url stats_number_of_comments stats_number_of_likes stats_number_of_plays
StringType LongType StringType LongType LongType StringType LongType LongType LongType
US Poet 12 anywhere 300 38356 https://vimeo.com/38356 30 607 21796

Laureate Billy
Collins reads
his poem
“Forgetfulness”
with
animation by
Julian Grey of
Headgear.
This animated
video poetry is
copyright

_images/capture32.png
DatasetStructured

Executing Node fire.nodes.dataset.NodeDatasetStructured : 1: Jan 5, 202110:29:40 AM

Row Values
Row Values
first_name last_name gender birth_date ethnicity SSN med_number state city address zip id
StringType StringType StringType StringType StringType IntegerType DoubleType StringType StringType StringType IntegerType IntegerType
Nathan Cordova female 11/09/1946 Asian 255383175 6.358029309E9 Nevada Falanolzace 899 Casjole Grove 68085 848
Luke Quick female 5/28/1952 Asian 125087187 6.427424655E9 Pennsylvania Gitopupriwa 499 Pihtowi 86488 157
Center
Jodi Baldino female 1/22/1971 Asian 516395786 5.981030723E9 Georgia Gupoowekuro 196 Pipafof Way 65928 980
Guled Shen male 4/15/1948 Pacific 143355093 7.285462698E9 New Jersey Fawwelcoja 682 Purima 14597 225
Islander Junction
\linrlannyu Pir~77a RAaniialac mala N/NAR/MAA Rl~rk 27RARQRATE 2 2RAINAIRA7EQ QAiith Heavriihmii 7QA Dinaatiki 1ERNE QR

_images/capture41.png
DateTimeFieldExtracte © NodeDateTimeFieldExtract ~ Details

NAME Datetime
TYPE timestamp
FORMAT dd-MM-yyyy HH:mm

OUTPUT STORAGE LEVEL : @

COLUMN: @

EXTRACT YEAR : @

EXTRACT MONTH : @

EXTRACT DAY OF MONTH : @

EXTRACT HOUR : @

EXTRACT MINUTE : @

EXTRACT SECOND : @

EXTRACT WEEKOFYEAR : @

DEFAULT

Datetime : timestamp

true

true

true

true

true

true

true

Count

integer

_images/capture4.png
Mu HlsfrlngTODGTeC/f @ NodeMultistringToDate Details Examples

NAME ID name category main_category currency deadline
TYPE integer | string | string string string string
FORMAT
OUTPUT STORAGE LEVEL : @ DEFAULT
VARIABLES LIST : E]
COLUMNS @ INPUT COLUMN FORMATS @
deadline v yyyy-MM-dd
launched v yyyy-MM-dd HH:mm:ss

goal

double

launched pledged state

string double string

OUTPUT COLUMN NAMES ©

deadline_date

launched_ts

backers

integer

country

string

usd pledged usd_pledged_real

double double

NEW DATATYPES @

DATE

TIMESTAMP

usd_goal_real |

double

_images/capture42.png
DropRowsWithNull

Executing Node fire.nodes.etl.NodeDropRowsWithNull : 2 : Jan 5, 2021 9:58:19 AM

Input Schema

Row Values

Row Values

Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
IntegerType IntegerType IntegerType StringType StringType StringType IntegerType IntegerType StringType DoubleType StringType StringType
2 1 1 Cumings, Mrs. John Bradley (Florence female 38 1 0 PC 17599 71.283 Cc8s5 C
Briggs Thayer)
4 1 1 Futrelle, Mrs. Jacques Heath (Lily May female 35 1 0 113803 53.1 C123 S
Peel)
7 0 1 McCarthy, Mr. Timothy | male 54 0 0 17463 51.863 E46 S

